[1]
|
Duff, N., Steele, A.D. and Garrett, D. (2020) Global Action for Local Impact: The 11th International Conference on Typhoid and Other Invasive Salmonelloses. Clinical Infectious Diseases, 71, S59-S63. https://doi.org/10.1093/cid/ciaa236
|
[2]
|
Chiou, C., Hong, Y., Wang, Y., Chen, B., Teng, R., Song, H., et al. (2023) Microbiology Spectrum, 11, e03364-22. https://doi.org/10.1128/spectrum.03364-22
|
[3]
|
Aleksandrowicz, A., Carolak, E., Dutkiewicz, A., Błachut, A., Waszczuk, W. and Grzymajlo, K. (2023) Better Together—Salmonella Biofilm-Associated Antibiotic Resistance. Gut Microbes, 15, Article 2229937. https://doi.org/10.1080/19490976.2023.2229937
|
[4]
|
Michael, G.B. and Schwarz, S. (2016) Antimicrobial Resistance in Zoonotic Nontyphoidal Salmonella: An Alarming Trend? Clinical Microbiology and Infection, 22, 968-974. https://doi.org/10.1016/j.cmi.2016.07.033
|
[5]
|
Crump, J.A., Sjölund-Karlsson, M., Gordon, M.A. and Parry, C.M. (2015) Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clinical Microbiology Reviews, 28, 901-937. https://doi.org/10.1128/cmr.00002-15
|
[6]
|
Threlfall, E.J. (2002) Antimicrobial Drug Resistance in Salmonella: Problems and Perspectives in Food-and Water-Borne Infections. FEMS Microbiology Reviews, 26, 141-148. https://doi.org/10.1111/j.1574-6976.2002.tb00606.x
|
[7]
|
Chiu, C., Lee, J., Wang, M. and Chu, C. (2021) Genetic Analysis and Plasmid-Mediated blaCMY-2 in Salmonella and Shigella and the Ceftriaxone Susceptibility Regulated by the ISEcp-1 tnpA-blaCMY-2-blc-sugE. Journal of Microbiology, Immunology and Infection, 54, 649-657. https://doi.org/10.1016/j.jmii.2020.01.008
|
[8]
|
Hiley, L., Graham, R.M.A. and Jennison, A.V. (2021) Characterisation of Inci1 Plasmids Associated with Change of Phage Type in Isolates of Salmonella enterica Serovar Typhimurium. BMC Microbiology, 21, Article No. 92. https://doi.org/10.1186/s12866-021-02151-z
|
[9]
|
Wang, Y., Liu, Y., Lyu, N., Li, Z., Ma, S., Cao, D., et al. (2022) The Temporal Dynamics of Antimicrobial-Resistant Salmonella enterica and Predominant Serovars in China. National Science Review, 10, nwac269. https://doi.org/10.1093/nsr/nwac269
|
[10]
|
Correia, S., Poeta, P., Hébraud, M., Capelo, J.L. and Igrejas, G. (2017) Mechanisms of Quinolone Action and Resistance: Where Do We Stand? Journal of Medical Microbiology, 66, 551-559. https://doi.org/10.1099/jmm.0.000475
|
[11]
|
Redgrave, L.S., Sutton, S.B., Webber, M.A. and Piddock, L.J.V. (2014) Fluoroquinolone Resistance: Mechanisms, Impact on Bacteria, and Role in Evolutionary Success. Trends in Microbiology, 22, 438-445. https://doi.org/10.1016/j.tim.2014.04.007
|
[12]
|
Aldred, K.J., Kerns, R.J. and Osheroff, N. (2014) Mechanism of Quinolone Action and Resistance. Biochemistry, 53, 1565-1574. https://doi.org/10.1021/bi5000564
|
[13]
|
Drlica, K., Malik, M., Kerns, R.J. and Zhao, X. (2008) Quinolone-Mediated Bacterial Death. Antimicrobial Agents and Chemotherapy, 52, 385-392. https://doi.org/10.1128/aac.01617-06
|
[14]
|
Cuypers, W.L., Jacobs, J., Wong, V., Klemm, E.J., Deborggraeve, S. and Van Puyvelde, S. (2018) Fluoroquinolone Resistance in Salmonella: Insights by Whole-Genome Sequencing. Microbial Genomics, 4, e000195. https://doi.org/10.1099/mgen.0.000195
|
[15]
|
Nordmann, P., Dortet, L. and Poirel, L. (2012) Carbapenem Resistance in Enterobacteriaceae: Here Is the Storm! Trends in Molecular Medicine, 18, 263-272. https://doi.org/10.1016/j.molmed.2012.03.003
|
[16]
|
Fernández, J., Guerra, B. and Rodicio, M. (2018) Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food. Veterinary Sciences, 5, Article 40. https://doi.org/10.3390/vetsci5020040
|
[17]
|
Martínez-Martínez, L. (2008) Extended-Spectrum β-Lactamases and the Permeability Barrier. Clinical Microbiology and Infection, 14, 82-89. https://doi.org/10.1111/j.1469-0691.2007.01860.x
|
[18]
|
Pitout, J.D.D., Nordmann, P. and Poirel, L. (2015) Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance. Antimicrobial Agents and Chemotherapy, 59, 5873-5884. https://doi.org/10.1128/aac.01019-15
|
[19]
|
Patel, G. and Bonomo, R.A. (2013) “Stormy Waters Ahead”: Global Emergence of Carbapenemases. Frontiers in Microbiology, 4, Article 48. https://doi.org/10.3389/fmicb.2013.00048
|
[20]
|
Potter, R.F., D’Souza, A.W. and Dantas, G. (2016) The Rapid Spread of Carbapenem-Resistant Enterobacteriaceae. Drug Resistance Updates, 29, 30-46. https://doi.org/10.1016/j.drup.2016.09.002
|
[21]
|
Rozwandowicz, M., Brouwer, M.S.M., Fischer, J., Wagenaar, J.A., Gonzalez-Zorn, B., Guerra, B., et al. (2018) Plasmids Carrying Antimicrobial Resistance Genes in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 73, 1121-1137. https://doi.org/10.1093/jac/dkx488
|
[22]
|
Threlfall, E.J., Fisher, I.S.T., Berghold, C., Gerner-Smidt, P., Tschäpe, H., Cormican, M., et al. (2003) Antimicrobial Drug Resistance in Isolates of Salmonella enterica from Cases of Salmonellosis in Humans in Europe in 2000: Results of International Multi-Centre Surveillance. Eurosurveillance, 8, 41-45. https://doi.org/10.2807/esm.08.02.00400-en
|
[23]
|
Yang, C., Xiang, Y. and Qiu, S. (2023) Resistance in Enteric Shigella and Nontyphoidal Salmonella: Emerging Concepts. Current Opinion in Infectious Diseases, 36, 360-365. https://doi.org/10.1097/qco.0000000000000960
|
[24]
|
Cao, G., Zhao, S., Kuang, D., Hsu, C., Yin, L., Luo, Y., et al. (2023) Geography Shapes the Genomics and Antimicrobial Resistance of Salmonella enterica Serovar Enteritidis Isolated from Humans. Scientific Reports, 13, Article No. 1331. https://doi.org/10.1038/s41598-022-24150-4
|
[25]
|
华德, 王鲁彦, 邝仕壮, 等. 2020年海南省人源沙门菌耐药性及携带耐药基因分析[J]. 疾病监测, 2023, 38(6): 722-728.
|
[26]
|
郑之北, 郑伟, 汪皓秋, 等. 杭州地区多重耐药沙门氏菌的耐药特征[J]. 微生物学通报, 2021, 48(2): 536-544.
|
[27]
|
Wei, X., Long, L., You, L., Wang, M., Wang, D., Liu, C., et al. (2023) Serotype Distribution, Trend of Multidrug Resistance and Prevalence of β-Lactamase Resistance Genes in Human Salmonella Isolates from Clinical Specimens in Guizhou, China. PLOS ONE, 18, e0282254. https://doi.org/10.1371/journal.pone.0282254
|
[28]
|
Wang, Y., Xu, X., Zhu, B., Lyu, N., Liu, Y., Ma, S., et al. (2023) Genomic Analysis of Almost 8,000 Salmonella Genomes Reveals Drivers and Landscape of Antimicrobial Resistance in China. Microbiology Spectrum, 11, e02080-23. https://doi.org/10.1128/spectrum.02080-23
|
[29]
|
Talukder, H., Roky, S.A., Debnath, K., Sharma, B., Ahmed, J. and Roy, S. (2023) Prevalence and Antimicrobial Resistance Profile of Salmonella Isolated from Human, Animal and Environment Samples in South Asia: A 10-Year Meta-Analysis. Journal of Epidemiology and Global Health, 13, 637-652. https://doi.org/10.1007/s44197-023-00160-x
|
[30]
|
Montone, A.M.I., Cutarelli, A., Peruzy, M.F., La Tela, I., Brunetti, R., Pirofalo, M.G., et al. (2023) Antimicrobial Resistance and Genomic Characterization of Salmonella Infantis from Different Sources. International Journal of Molecular Sciences, 24, Article 5492. https://doi.org/10.3390/ijms24065492
|
[31]
|
Cuypers, W.L., Jacobs, J., Wong, V., Klemm, E.J., Deborggraeve, S. and Van Puyvelde, S. (2018) Fluoroquinolone Resistance in Salmonella: Insights by Whole-Genome Sequencing. Microbial Genomics, 4, e000195. https://doi.org/10.1099/mgen.0.000195
|
[32]
|
Miriagou, V., Tzouvelekis, L.S., Rossiter, S., Tzelepi, E., Angulo, F.J. and Whichard, J.M. (2003) Imipenem Resistance in a Salmonella Clinical Strain Due to Plasmid-Mediated Class A Carbapenemase KPC-2. Antimicrobial Agents and Chemotherapy, 47, 1297-1300. https://doi.org/10.1128/aac.47.4.1297-1300.2003
|
[33]
|
Le Hello, S., Harrois, D., Bouchrif, B., Sontag, L., Elhani, D., Guibert, V., et al. (2013) Highly Drug-Resistant Salmonella enterica Serotype Kentucky ST198-X1: A Microbiological Study. The Lancet Infectious Diseases, 13, 672-679. https://doi.org/10.1016/s1473-3099(13)70124-5
|
[34]
|
Nordmann, P., Poirel, L., Mak, J.K., White, P.A., McIver, C.J. and Taylor, P. (2008) Multidrug-Resistant Salmonella Strains Expressing Emerging Antibiotic Resistance Determinants. Clinical Infectious Diseases, 46, 324-325. https://doi.org/10.1086/524898
|
[35]
|
Huang, J., Wang, M., Ding, H., Ye, M., Hu, F., Guo, Q., et al. (2013) New Delhi Metallo-β-Lactamase-1 in Carbapenem-Resistant Salmonella Strain, China. Emerging Infectious Diseases, 19, 2049-2051. https://doi.org/10.3201/eid1912.130051
|
[36]
|
Day, M.R., Meunier, D., Doumith, M., de Pinna, E., Woodford, N. and Hopkins, K.L. (2015) Carbapenemase-Producing Salmonella enterica Isolates in the UK. Journal of Antimicrobial Chemotherapy, 70, 2165-2167. https://doi.org/10.1093/jac/dkv075
|
[37]
|
Irfan, S., Khan, E., Jabeen, K., Bhawan, P., Hopkins, K.L., Day, M., et al. (2015) Clinical Isolates of Salmonella enterica Serovar Agona Producing NDM-1 Metallo-Β-Lactamase: First Report from Pakistan. Journal of Clinical Microbiology, 53, 346-348. https://doi.org/10.1128/jcm.02396-14
|
[38]
|
Shen, H., Chen, H., Ou, Y., Huang, T., Chen, S., Zhou, L., et al. (2020) Prevalence, Serotypes, and Antimicrobial Resistance of Salmonella Isolates from Patients with Diarrhea in Shenzhen, China. BMC Microbiology, 20, Article No. 197. https://doi.org/10.1186/s12866-020-01886-5
|
[39]
|
Fischer, J., Rodríguez, I., Schmoger, S., Friese, A., Roesler, U., Helmuth, R., et al. (2012) Salmonella enterica Subsp. Enterica Producing VIM-1 Carbapenemase Isolated from Livestock Farms. Journal of Antimicrobial Chemotherapy, 68, 478-480. https://doi.org/10.1093/jac/dks393
|
[40]
|
Wang, W., Baloch, Z., Peng, Z., Hu, Y., Xu, J., Fanning, S., et al. (2017) Genomic Characterization of a Large Plasmid Containing a blaNDM-1 Gene Carried on Salmonella enterica Serovar Indiana C629 Isolate from China. BMC Infectious Diseases, 17, Article No. 479. https://doi.org/10.1186/s12879-017-2515-5
|
[41]
|
Villa, L., Guerra, B., Schmoger, S., Fischer, J., Helmuth, R., Zong, Z., et al. (2015) IncA/C Plasmid Carrying blaNDM-1, blaCMY-16, and fosA3 in a Salmonella enterica Serovar Corvallis Strain Isolated from a Migratory Wild Bird in Germany. Antimicrobial Agents and Chemotherapy, 59, 6597-6600. https://doi.org/10.1128/aac.00944-15
|
[42]
|
Mollenkopf, D.F., Stull, J.W., Mathys, D.A., Bowman, A.S., Feicht, S.M., Grooters, S.V., et al. (2017) Carbapenemase-Producing Enterobacteriaceae Recovered from the Environment of a Swine Farrow-to-Finish Operation in the United States. Antimicrobial Agents and Chemotherapy, 61. https://doi.org/10.1128/aac.01298-16
|
[43]
|
Tennant, S.M., Schmidlein, P., Simon, R., Pasetti, M.F., Galen, J.E. and Levine, M.M. (2015) Refined Live Attenuated Salmonella enterica Serovar Typhimurium and Enteritidis Vaccines Mediate Homologous and Heterologous Serogroup Protection in Mice. Infection and Immunity, 83, 4504-4512. https://doi.org/10.1128/iai.00924-15
|
[44]
|
Higginson, E.E., Ramachandran, G., Panda, A., Shipley, S.T., Kriel, E.H., DeTolla, L.J., et al. (2018) Improved Tolerability of a Salmonella enterica Serovar Typhimurium Live-Attenuated Vaccine Strain Achieved by Balancing Inflammatory Potential with Immunogenicity. Infection and Immunity, 86. https://doi.org/10.1128/iai.00440-18
|
[45]
|
Matsui, H., Suzuki, M., Isshiki, Y., Kodama, C., Eguchi, M., Kikuchi, Y., et al. (2003) Oral Immunization with ATP-Dependent Protease-Deficient Mutants Protects Mice against Subsequent Oral Challenge with Virulent Salmonella enterica Serovar Typhimurium. Infection and Immunity, 71, 30-39. https://doi.org/10.1128/iai.71.1.30-39.2003
|
[46]
|
Allam, U.S., Krishna, M.G., Lahiri, A., Joy, O. and Chakravortty, D. (2011) Salmonella enterica Serovar Typhimurium Lacking hfq Gene Confers Protective Immunity against Murine Typhoid. PLOS ONE, 6, e16667. https://doi.org/10.1371/journal.pone.0016667
|
[47]
|
Angelakopoulos, H. and Hohmann, E.L. (2000) Pilot Study of PhoP/PhoQ-Deleted Salmonella enterica Serovar Typhimurium Expressing Helicobacter pylori Urease in Adult Volunteers. Infection and Immunity, 68, 2135-2141. https://doi.org/10.1128/iai.68.4.2135-2141.2000
|
[48]
|
Martin, L.B., Tack, B., Marchello, C.S., Sikorski, M.J., Owusu-Dabo, E., Nyirenda, T., et al. (2024) Vaccine Value Profile for Invasive Non-Typhoidal Salmonella Disease. Vaccine, 42, S101-S124. https://doi.org/10.1016/j.vaccine.2024.04.045
|