[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Wong, E.Y.T., Chua, C., Beh, S.Y., Koh, D., Chong, D. and Tan, I.B. (2015) Addressing the Needs of Colorectal Cancer Survivors: Current Strategies and Future Directions. Expert Review of Anticancer Therapy, 15, 639-648. https://doi.org/10.1586/14737140.2015.1038248
|
[3]
|
Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., et al. (2014) Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. International Journal of Cancer, 136, E359-E386. https://doi.org/10.1002/ijc.29210
|
[4]
|
Duan, B., Zhao, Y., Bai, J., Wang, J., Duan, X., Luo, X., et al. (2022) Colorectal Cancer: An Overview. In: Morgado-Diaz, J.A., Ed., Gastrointestinal Cancers, Exon Publications, 1-12. https://doi.org/10.36255/exon-publications-gastrointestinal-cancers-colorectal-cancer
|
[5]
|
Bai, X., Wei, H., Liu, W., Coker, O.O., Gou, H., Liu, C., et al. (2022) Cigarette Smoke Promotes Colorectal Cancer through Modulation of Gut Microbiota and Related Metabolites. Gut, 71, 2439-2450. https://doi.org/10.1136/gutjnl-2021-325021
|
[6]
|
Kampman, E., Vrieling, A., van Duijnhoven, F.J. and Winkels, R.M. (2012) Impact of Diet, Body Mass Index, and Physical Activity on Cancer Survival. Current Nutrition Reports, 1, 30-36. https://doi.org/10.1007/s13668-011-0004-9
|
[7]
|
Dekker, E., Tanis, P.J., Vleugels, J.L.A., Kasi, P.M. and Wallace, M.B. (2019) Colorectal Cancer. The Lancet, 394, 1467-1480. https://doi.org/10.1016/s0140-6736(19)32319-0
|
[8]
|
Wrana, J.L. (1998) TGF-β Receptors and Signalling Mechanisms. Mineral and Electrolyte Metabolism, 24, 120-130. https://doi.org/10.1159/000057359
|
[9]
|
Morikawa, M., Derynck, R. and Miyazono, K. (2016) TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harbor Perspectives in Biology, 8, a021873. https://doi.org/10.1101/cshperspect.a021873
|
[10]
|
Drabsch, Y. and ten Dijke, P. (2012) TGF-β Signalling and Its Role in Cancer Progression and Metastasis. Cancer and Metastasis Reviews, 31, 553-568. https://doi.org/10.1007/s10555-012-9375-7
|
[11]
|
Heldin, C. and Moustakas, A. (2016) Signaling Receptors for TGF-β Family Members. Cold Spring Harbor Perspectives in Biology, 8, a022053. https://doi.org/10.1101/cshperspect.a022053
|
[12]
|
Ihara, S., Hirata, Y. and Koike, K. (2017) TGF-β in Inflammatory Bowel Disease: A Key Regulator of Immune Cells, Epithelium, and the Intestinal Microbiota. Journal of Gastroenterology, 52, 777-787. https://doi.org/10.1007/s00535-017-1350-1
|
[13]
|
Muñoz, N.M., Upton, M., Rojas, A., Washington, M.K., Lin, L., Chytil, A., et al. (2006) Transforming Growth Factor β Receptor Type II Inactivation Induces the Malignant Transformation of Intestinal Neoplasms Initiated by apc Mutation. Cancer Research, 66, 9837-9844. https://doi.org/10.1158/0008-5472.can-06-0890
|
[14]
|
Law, B.K. (2012) TGF-Beta Antiproliferative Effects in Tumor Suppression. Frontiers in Bioscience, 4, 749-766. https://doi.org/10.2741/s297
|
[15]
|
Connolly, E.C., Freimuth, J. and Akhurst, R.J. (2012) Complexities of TGF-β Targeted Cancer Therapy. International Journal of Biological Sciences, 8, 964-978. https://doi.org/10.7150/ijbs.4564
|
[16]
|
Bierie, B. and Moses, H. (2006) TGF-β and Cancer. Cytokine & Growth Factor Reviews, 17, 29-40. https://doi.org/10.1016/j.cytogfr.2005.09.006
|
[17]
|
Lee, Y., Park, J. and Oh, S. (2020) TOPK Promotes Epithelial-Mesenchymal Transition and Invasion of Breast Cancer Cells through Upregulation of TBX3 in TGF-β1/Smad Signaling. Biochemical and Biophysical Research Communications, 522, 270-277. https://doi.org/10.1016/j.bbrc.2019.11.104
|
[18]
|
Itatani, Y., Kawada, K. and Sakai, Y. (2019) Transforming Growth Factor-β Signaling Pathway in Colorectal Cancer and Its Tumor Microenvironment. International Journal of Molecular Sciences, 20, Article No. 5822. https://doi.org/10.3390/ijms20235822
|
[19]
|
Ma, C., Rong, Y., Radiloff, D.R., Datto, M.B., Centeno, B., Bao, S., et al. (2008) Extracellular Matrix Protein βig-H3/TGFBI Promotes Metastasis of Colon Cancer by Enhancing Cell Extravasation. Genes & Development, 22, 308-321. https://doi.org/10.1101/gad.1632008
|
[20]
|
Chiavarina, B., Costanza, B., Ronca, R., Blomme, A., Rezzola, S., Chiodelli, P., et al. (2021) Metastatic Colorectal Cancer Cells Maintain the TGFβ Program and Use TGFBI to Fuel Angiogenesis. Theranostics, 11, 1626-1640. https://doi.org/10.7150/thno.51507
|
[21]
|
David, C.J. and Massagué, J. (2018) Contextual Determinants of TGFβ Action in Development, Immunity and Cancer. Nature Reviews Molecular Cell Biology, 19, 419-435. https://doi.org/10.1038/s41580-018-0007-0
|
[22]
|
Hao, Y., Baker, D. and ten Dijke, P. (2019) TGF-β-Mediated Epithelial-Mesenchymal Transition and Cancer Metastasis. International Journal of Molecular Sciences, 20, Article No. 2767. https://doi.org/10.3390/ijms20112767
|
[23]
|
Zheng, Y., Danilenko, D.M., Valdez, P., Kasman, I., Eastham-Anderson, J., Wu, J., et al. (2006) Interleukin-22, a TH17 Cytokine, Mediates Il-23-Induced Dermal Inflammation and Acanthosis. Nature, 445, 648-651. https://doi.org/10.1038/nature05505
|
[24]
|
Perez, L.G., Kempski, J., McGee, H.M., Pelzcar, P., Agalioti, T., Giannou, A., et al. (2020) TGF-β Signaling in Th17 Cells Promotes IL-22 Production and Colitis-Associated Colon Cancer. Nature Communications, 11, Article No. 2608. https://doi.org/10.1038/s41467-020-16363-w
|
[25]
|
Chan, M.K., Chan, E.L., Ji, Z.Z., Chan, A.S., Li, C., Leung, K., et al. (2023) Transforming Growth Factor-β Signaling: From Tumor Microenvironment to Anticancer Therapy. Exploration of Targeted Anti-tumor Therapy, 4, 316-343. https://doi.org/10.37349/etat.2023.00137
|
[26]
|
Pickup, M., Novitskiy, S. and Moses, H.L. (2013) The Roles of TGFβ in the Tumour Microenvironment. Nature Reviews Cancer, 13, 788-799. https://doi.org/10.1038/nrc3603
|
[27]
|
Pastushenko, I., Mauri, F., Song, Y., de Cock, F., Meeusen, B., Swedlund, B., et al. (2020) Fat1 Deletion Promotes Hybrid EMT State, Tumour Stemness and Metastasis. Nature, 589, 448-455. https://doi.org/10.1038/s41586-020-03046-1
|
[28]
|
Lamouille, S., Xu, J. and Derynck, R. (2014) Molecular Mechanisms of Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 15, 178-196. https://doi.org/10.1038/nrm3758
|
[29]
|
Pastushenko, I., Brisebarre, A., Sifrim, A., Fioramonti, M., Revenco, T., Boumahdi, S., et al. (2018) Identification of the Tumour Transition States Occurring during EMT. Nature, 556, 463-468. https://doi.org/10.1038/s41586-018-0040-3
|
[30]
|
Puram, S.V., Parikh, A.S. and Tirosh, I. (2018) Single Cell RNA-Seq Highlights a Role for a Partial EMT in Head and Neck Cancer. Molecular & Cellular Oncology, 5, e1448244. https://doi.org/10.1080/23723556.2018.1448244
|
[31]
|
Miyashita, N. and Saito, A. (2021) Organ Specificity and Heterogeneity of Cancer-Associated Fibroblasts in Colorectal Cancer. International Journal of Molecular Sciences, 22, Article No. 10973. https://doi.org/10.3390/ijms222010973
|
[32]
|
Desmoulière, A., Geinoz, A., Gabbiani, F. and Gabbiani, G. (1993) Transforming Growth Factor-Beta 1 Induces Alpha-Smooth Muscle Actin Expression in Granulation Tissue Myofibroblasts and in Quiescent and Growing Cultured Fibroblasts. The Journal of Cell Biology, 122, 103-111. https://doi.org/10.1083/jcb.122.1.103
|
[33]
|
Sime, P.J., Xing, Z., Graham, F.L., Csaky, K.G. and Gauldie, J. (1997) Adenovector-Mediated Gene Transfer of Active Transforming Growth Factor-Beta 1 Induces Prolonged Severe Fibrosis in Rat Lung. Journal of Clinical Investigation, 100, 768-776. https://doi.org/10.1172/jci119590
|
[34]
|
Xu, Y. and Pasche, B. (2007) TGF-β Signaling Alterations and Susceptibility to Colorectal Cancer. Human Molecular Genetics, 16, R14-R20. https://doi.org/10.1093/hmg/ddl486
|
[35]
|
Heerboth, S., Housman, G., Leary, M., Longacre, M., Byler, S., Lapinska, K., et al. (2015) EMT and Tumor Metastasis. Clinical and Translational Medicine, 4, Article No. 6. https://doi.org/10.1186/s40169-015-0048-3
|
[36]
|
Liu, A., Yu, C., Qiu, C., Wu, Q., Huang, C., Li, X., et al. (2023) PRMT5 Methylating SMAD4 Activates TGF-β Signaling and Promotes Colorectal Cancer Metastasis. Oncogene, 42, 1572-1584. https://doi.org/10.1038/s41388-023-02674-x
|
[37]
|
Zhao, J., Ou, B., Han, D., Wang, P., Zong, Y., Zhu, C., et al. (2017) Tumor-Derived CXCL5 Promotes Human Colorectal Cancer Metastasis through Activation of the ERK/Elk-1/Snail and AKT/GSK3β/β-Catenin Pathways. Molecular Cancer, 16, Article No. 70. https://doi.org/10.1186/s12943-017-0629-4
|
[38]
|
O'Hayre, M., Salanga, C.L., Handel, T.M. and Allen, S.J. (2008) Chemokines and Cancer: Migration, Intracellular Signalling and Intercellular Communication in the Microenvironment. Biochemical Journal, 409, 635-649. https://doi.org/10.1042/bj20071493
|
[39]
|
Stillie, R., Farooq, S.M., Gordon, J.R. and Stadnyk, A.W. (2009) The Functional Significance behind Expressing Two IL-8 Receptor Types on PMN. Journal of Leukocyte Biology, 86, 529-543. https://doi.org/10.1189/jlb.0208125
|
[40]
|
Zhang, X., Hu, F., Li, G., Li, G., Yang, X., Liu, L., et al. (2018) Human Colorectal Cancer-Derived Mesenchymal Stem Cells Promote Colorectal Cancer Progression through IL-6/JAK2/STAT3 Signaling. Cell Death & Disease, 9, Article No. 25. https://doi.org/10.1038/s41419-017-0176-3
|
[41]
|
Xu, Z., Gao, H., Zhang, Y., Feng, W., Miao, Y., Xu, Z., et al. (2022) CCL7 and TGF-β Secreted by MSCS Play Opposite Roles in Regulating CRC Metastasis in a Klf5/cxcl5-Dependent Manner. Molecular Therapy, 30, 2327-2341. https://doi.org/10.1016/j.ymthe.2022.03.005
|
[42]
|
Sanjabi, S., Oh, S.A. and Li, M.O. (2017) Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harbor Perspectives in Biology, 9, a022236. https://doi.org/10.1101/cshperspect.a022236
|
[43]
|
Batlle, E. and Massagué, J. (2019) Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity, 50, 924-940. https://doi.org/10.1016/j.immuni.2019.03.024
|
[44]
|
Schramm, C., Protschka, M., Köhler, H.H., Podlech, J., Reddehase, M.J., Schirmacher, P., et al. (2003) Impairment of TGF-β Signaling in T Cells Increases Susceptibility to Experimental Autoimmune Hepatitis in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 284, G525-G535. https://doi.org/10.1152/ajpgi.00286.2002
|
[45]
|
Derynck, R., Turley, S.J. and Akhurst, R.J. (2020) TGFβ Biology in Cancer Progression and Immunotherapy. Nature Reviews Clinical Oncology, 18, 9-34. https://doi.org/10.1038/s41571-020-0403-1
|
[46]
|
Seoane, J. and Gomis, R.R. (2017) TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harbor Perspectives in Biology, 9, a022277. https://doi.org/10.1101/cshperspect.a022277
|