[1]
|
Gramegna, M., Beneduce, A., Bertoldi, L.F., Pagnesi, M., Marini, C., Pazzanese, V., et al. (2020) Impella RP Support in Refractory Right Ventricular Failure Complicating Acute Myocardial Infarction with Unsuccessful Right Coronary Artery Revascularization. International Journal of Cardiology, 302, 135-137. https://doi.org/10.1016/j.ijcard.2019.12.024
|
[2]
|
Thygesen, K., Alpert, J.S., Jaffe, A.S., Chaitman, B.R., Bax, J.J., Morrow, D.A., et al. (2018) Fourth Universal Definition of Myocardial Infarction (2018). Circulation, 138, e618-e651. https://doi.org/10.1161/cir.0000000000000617
|
[3]
|
Thiagarajan, H., Thiyagamoorthy, U., Shanmugham, I., Dharmalingam Nandagopal, G. and Kaliyaperumal, A. (2017) Angiogenic Growth Factors in Myocardial Infarction: A Critical Appraisal. Heart Failure Reviews, 22, 665-683. https://doi.org/10.1007/s10741-017-9630-7
|
[4]
|
Desta, L., Jernberg, T., Löfman, I., Hofman-Bang, C., Hagerman, I., Spaak, J., et al. (2015) Incidence, Temporal Trends, and Prognostic Impact of Heart Failure Complicating Acute Myocardial Infarction. JACC: Heart Failure, 3, 234-242. https://doi.org/10.1016/j.jchf.2014.10.007
|
[5]
|
DeLeon-Pennell, K.Y., Meschiari, C.A., Jung, M. and Lindsey, M.L. (2017) Matrix Metalloproteinases in Myocardial Infarction and Heart Failure. In: Progress in Molecular Biology and Translational Science, Elsevier, 75-100. https://doi.org/10.1016/bs.pmbts.2017.02.001
|
[6]
|
Deng, F., Xia, Y., Fu, M., Hu, Y., Jia, F., Rahardjo, Y., et al. (2016) Influence of Heart Failure on the Prognosis of Patients with Acute Myocardial Infarction in Southwestern China. Experimental and Therapeutic Medicine, 11, 2127-2138. https://doi.org/10.3892/etm.2016.3211
|
[7]
|
Berezin, A.E. and Berezin, A.A. (2020) Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. Disease Markers, 2020, Article ID: 1215802. https://doi.org/10.1155/2020/1215802
|
[8]
|
Sharma, U., Pal, D. and Prasad, R. (2013) Alkaline Phosphatase: An Overview. Indian Journal of Clinical Biochemistry, 29, 269-278. https://doi.org/10.1007/s12291-013-0408-y
|
[9]
|
Shamsian, E., Than, S., Canellos, M., Singh, M. and Savinova, O.V. (2021) Abstract P129: Ablation of TNAP (Tissue-Nonspecific Alkaline Phosphatase) in Macrophages Does Not Affect Atherosclerotic Plaque Calcification or Cardiovascular Physiology. Arteriosclerosis, Thrombosis, and Vascular Biology, 41, 129. https://doi.org/10.1161/atvb.41.suppl_1.p129
|
[10]
|
Panh, L., Rousseau, H., Petermann, A., Taraszkiewicz, D., Bongard, V., Lairez, O., et al. (2017) Relation between Alkaline Phosphatase and Coronary Artery Calcification in Subjects Free of Cardiovascular Disease. Archives of Cardiovascular Diseases Supplements, 9, 94-95. https://doi.org/10.1016/s1878-6480(17)30285-9
|
[11]
|
Yan, W., Yan, M., Wang, H. and Xu, Z. (2023) Associations of Serum Alkaline Phosphatase Level with All-Cause and Cardiovascular Mortality in the General Population. Frontiers in Endocrinology, 14, Article ID: 1217369. https://doi.org/10.3389/fendo.2023.1217369
|
[12]
|
Liu, K., Yu, Y., Yuan, Y., Xu, X., Lei, W., Niu, R., et al. (2023) Elevated Levels of Serum Alkaline Phosphatase Are Associated with Increased Risk of Cardiovascular Disease: A Prospective Cohort Study. Journal of Atherosclerosis and Thrombosis, 30, 795-819. https://doi.org/10.5551/jat.63646
|
[13]
|
Kunutsor, S.K., Apekey, T.A. and Khan, H. (2014) Liver Enzymes and Risk of Cardiovascular Disease in the General Population: A Meta-Analysis of Prospective Cohort Studies. Atherosclerosis, 236, 7-17. https://doi.org/10.1016/j.atherosclerosis.2014.06.006
|
[14]
|
Panh, L., Ruidavets, J.B., Rousseau, H., Petermann, A., Bongard, V., Bérard, E., et al. (2017) Association between Serum Alkaline Phosphatase and Coronary Artery Calcification in a Sample of Primary Cardiovascular Prevention Patients. Atherosclerosis, 260, 81-86. https://doi.org/10.1016/j.atherosclerosis.2017.03.030
|
[15]
|
Huang, Q., Guo, Y., Zhu, C., Qing, P., Xu, R., Wu, N., et al. (2014) Association of Alkaline Phosphatase with Isolated Coronary Artery Ectasia. Scandinavian Journal of Clinical and Laboratory Investigation, 74, 228-234. https://doi.org/10.3109/00365513.2013.878030
|
[16]
|
Karabulut, A., Sahin, I., Avci, I.I., Okuyan, E., Dogan, Z., Uzunlar, B., et al. (2014) Impact of Serum Alkaline Phosphatase Level on Coronary Collateral Circulation. Kardiologia Polska, 72, 1388-1393. https://doi.org/10.5603/kp.a2014.0114
|
[17]
|
Lai, Z., Liu, Y., Huang, M., Li, L., Li, Z., Su, J., et al. (2023) Associations between Atherosclerosis and Elevated Serum Alkaline Phosphatase in Patients with Coronary Artery Disease in an Inflammatory State. Heart, Lung and Circulation, 32, 1096-1106. https://doi.org/10.1016/j.hlc.2023.05.012
|
[18]
|
Oh, P.C., Lee, K., Kim, T., Moon, J., Park, H.W., Jang, H., et al. (2017) Prognostic Impact of Alkaline Phosphatase Measured at Time of Presentation in Patients Undergoing Primary Percutaneous Coronary Intervention for ST-Segment Elevation Myocardial Infarction. PLOS ONE, 12, e0171914. https://doi.org/10.1371/journal.pone.0171914
|
[19]
|
Reinstadler, S.J., Reindl, M., Feistritzer, H., Klug, G., Mayr, A., Kofler, M., et al. (2015) Prognostic Significance of Transaminases after Acute St-Elevation Myocardial Infarction: Insights from a Cardiac Magnetic Resonance Study. Wiener Klinische Wochenschrift, 127, 843-850. https://doi.org/10.1007/s00508-015-0868-6
|
[20]
|
Klimczak-Tomaniak, D., Andrzejczyk, K., Abou Kamar, S., Baart, S., Van Boven, N., Akkerhuis, K.M., et al. (2024) Temporal Evolution of Liver Function Parameters Predicts Clinical Outcome in Chronic Heart Failure Patients (Bio-SHiFT Study). Cardiology Journal, 31, 409-417. https://doi.org/10.5603/cj.95174
|
[21]
|
Wu, G., Li, S., Luo, M., Li, X., Zhu, X., Zhang, J., et al. (2024) Role of Serum Alkaline Phosphatase as a Potential Biomarker of Severity and Prognosis in Intracerebral Hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 33, Article ID: 107478. https://doi.org/10.1016/j.jstrokecerebrovasdis.2023.107478
|
[22]
|
Ambery, P., Van-den-Broek, F. and Brookes-Smith, I. (2021) Abstract 9388: The ALPACA Study, an EHR Based Analysis of the Association of Elevated Alkaline Phosphatase with Cardiovascular Events. Circulation, 144, 9388. https://doi.org/10.1161/circ.144.suppl_1.9388
|
[23]
|
王立友, 雷韵祎, 高磊, 等. 组织非特异性碱性磷酸酶与心肌梗死后心肌纤维化的相关性研究[J]. 第三军医大学学报, 2020, 42(11): 1072-1077.
|
[24]
|
李华政, 史尊基, 夏树涛. 血清白蛋白-碱性磷酸酶比值在心肌梗死后心力衰竭患者中的表达及其与心室重塑的关系[J]. 中国实用医刊, 2023, 50(14): 37-40.
|
[25]
|
熊星, 王志梅, 张宁, 等. 血清碱性磷酸酶在心血管疾病中的研究进展[J]. 华西医学, 2024, 39(4): 645-648.
|
[26]
|
Gyöngyösi, M., Winkler, J., Ramos, I., Do, Q., Firat, H., McDonald, K., et al. (2017) Myocardial Fibrosis: Biomedical Research from Bench to Bedside. European Journal of Heart Failure, 19, 177-191. https://doi.org/10.1002/ejhf.696
|
[27]
|
Frangogiannis, N.G. (2015) Pathophysiology of Myocardial Infarction. In: Pollock, D.M., Ed., Comprehensive Physiology, American Physiological Society, 1841-1875. https://doi.org/10.1002/cphy.c150006
|
[28]
|
Martin, S., Lin, H., Ejimadu, C. and Lee, T. (2015) Tissue-Nonspecific Alkaline Phosphatase as a Target of sFRP2 in Cardiac Fibroblasts. American Journal of Physiology-Cell Physiology, 309, C139-C147. https://doi.org/10.1152/ajpcell.00009.2015
|
[29]
|
王立友, 张冬颖. 过表达肝/骨/肾型碱性磷酸酶对小鼠急性心肌梗死后心室重塑的影响[J]. 解剖学报, 2020, 51(3): 431-436.
|
[30]
|
Rodionov, R.N., Begmatov, H., Jarzebska, N., Patel, K., Mills, M.T., Ghani, Z., et al. (2019) Homoarginine Supplementation Prevents Left Ventricular Dilatation and Preserves Systolic Function in a Model of Coronary Artery Disease. Journal of the American Heart Association, 8, e012486. https://doi.org/10.1161/jaha.119.012486
|
[31]
|
Gao, L., Wang, L., Liu, Z., Jiang, D., Wu, S., Guo, Y., et al. (2020) TNAP Inhibition Attenuates Cardiac Fibrosis Induced by Myocardial Infarction through Deactivating TGF-β1/Smads and Activating P53 Signaling Pathways. Cell Death & Disease, 11, Article No. 44. https://doi.org/10.1038/s41419-020-2243-4
|
[32]
|
Whelan, R.S., Kaplinskiy, V. and Kitsis, R.N. (2010) Cell Death in the Pathogenesis of Heart Disease: Mechanisms and Significance. Annual Review of Physiology, 72, 19-44. https://doi.org/10.1146/annurev.physiol.010908.163111
|
[33]
|
李靖南, 张俊霞, 张岩. 心肌细胞程序性坏死——心脏疾病防治的新靶点[J]. 中国心血管杂志, 2019, 24(5): 404-407.
|
[34]
|
Kung, G., Konstantinidis, K. and Kitsis, R.N. (2011) Programmed Necrosis, Not Apoptosis, in the Heart. Circulation Research, 108, 1017-1036. https://doi.org/10.1161/circresaha.110.225730
|
[35]
|
Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., et al. (2012) Mixed Lineage Kinase Domain-Like Protein Mediates Necrosis Signaling Downstream of RIP3 Kinase. Cell, 148, 213-227. https://doi.org/10.1016/j.cell.2011.11.031
|
[36]
|
Xu, Y., Song, L. and Zhou, L. (2024) The Association of Vitamin D Insufficiency with the Prevalence of Obesity in Children: Implications for Serum Calcium Levels, Alkaline Phosphatase Activity, and Bone Maturation. Frontiers in Nutrition, 11, Article ID: 1466270. https://doi.org/10.3389/fnut.2024.1466270
|
[37]
|
Bellastella, G., Scappaticcio, L., Longo, M., Carotenuto, R., Carbone, C., Caruso, P., et al. (2021) New Insights into Vitamin D Regulation: Is There a Role for Alkaline Phosphatase? Journal of Endocrinological Investigation, 44, 1891-1896. https://doi.org/10.1007/s40618-021-01503-w
|
[38]
|
Witkowska-Sędek, E., Stelmaszczyk-Emmel, A., Majcher, A., Demkow, U. and Pyrżak, B. (2018) The Relationships of Alkaline Phosphatase and Bone Alkaline Phosphatase to the Growth Hormone/Insulin-Like Growth Factor-1 Axis and Vitamin D Status in Children with Growth Hormone Deficiency. Acta Biochimica Polonica, 65, 269-275. https://doi.org/10.18388/abp.2017_2541
|
[39]
|
Lim, S.M., Kim, Y.N., Park, K.H., Kang, B., Chon, H.J., Kim, C., et al. (2016) Bone Alkaline Phosphatase as a Surrogate Marker of Bone Metastasis in Gastric Cancer Patients. BMC Cancer, 16, Article No. 385. https://doi.org/10.1186/s12885-016-2415-x
|
[40]
|
王艳萍, 李明, 孙明明等. 新生儿血清25(OH)D水平及其与钙、磷、碱性磷酸酶的关系分析[J]. 临床医学进展, 2021, 11(6): 2744-2752.
|
[41]
|
Azpiazu, D., Gonzalo, S. and Villa-Bellosta, R. (2019) Tissue Non-Specific Alkaline Phosphatase and Vascular Calcification: A Potential Therapeutic Target. Current Cardiology Reviews, 15, 91-95. https://doi.org/10.2174/1573403x14666181031141226
|
[42]
|
Orriss, I.R., Arnett, T.R. and Russell, R.G.G. (2016) Pyrophosphate: A Key Inhibitor of Mineralisation. Current Opinion in Pharmacology, 28, 57-68. https://doi.org/10.1016/j.coph.2016.03.003
|
[43]
|
López-Posadas, R., González, R., Ballester, I., Martínez-Moya, P., Romero-Calvo, I., Suárez, M.D., et al. (2011) Tissue-nonspecific Alkaline Phosphatase Is Activated in Enterocytes by Oxidative Stress via Changes in Glycosylation. Inflammatory Bowel Diseases, 17, 543-556. https://doi.org/10.1002/ibd.21381
|
[44]
|
Dai, X., Zheng, Y., Tang, J., Wang, W., Guo, Q., Yin, S., et al. (2021) Alkaline Phosphatase-to-Albumin Ratio as a Novel Predictor of Long-Term Adverse Outcomes in Coronary Artery Disease Patients Who Underwent PCI. Bioscience Reports, 41, BSR20203904. https://doi.org/10.1042/bsr20203904
|
[45]
|
Khan, N.A., Rashid, F., Jadoon, M.S.K., Jalil, S., Khan, Z.A., Orfali, R., et al. (2022) Design, Synthesis, and Biological Evaluation of Novel Dihydropyridine and Pyridine Analogs as Potent Human Tissue Nonspecific Alkaline Phosphatase Inhibitors with Anticancer Activity: ROS and DNA Damage-Induced Apoptosis. Molecules, 27, Article No. 6235. https://doi.org/10.3390/molecules27196235
|
[46]
|
Haas, M.J., Jafri, M., Wehmeier, K.R., Onstead-Haas, L.M. and Mooradian, A.D. (2016) Inhibition of Endoplasmic Reticulum Stress and Oxidative Stress by Vitamin D in Endothelial Cells. Free Radical Biology and Medicine, 99, 1-10. https://doi.org/10.1016/j.freeradbiomed.2016.07.020
|
[47]
|
Ong, S., Hernández-Reséndiz, S., Crespo-Avilan, G.E., Mukhametshina, R.T., Kwek, X., Cabrera-Fuentes, H.A., et al. (2018) Inflammation Following Acute Myocardial Infarction: Multiple Players, Dynamic Roles, and Novel Therapeutic Opportunities. Pharmacology & Therapeutics, 186, 73-87. https://doi.org/10.1016/j.pharmthera.2018.01.001
|
[48]
|
Haarhaus, M., Gilham, D., Kulikowski, E., Magnusson, P. and Kalantar-Zadeh, K. (2020) Pharmacologic Epigenetic Modulators of Alkaline Phosphatase in Chronic Kidney Disease. Current Opinion in Nephrology and Hypertension, 29, 4-15. https://doi.org/10.1097/mnh.0000000000000570
|
[49]
|
Seo, M., Shim, J. and Lee, Y. (2019) Relationship between Serum Alkaline Phosphatase Level, C-Reactive Protein and Leukocyte Counts in Adults Aged 60 Years or Older. Scandinavian Journal of Clinical and Laboratory Investigation, 79, 233-237. https://doi.org/10.1080/00365513.2019.1585567
|
[50]
|
Balabanova, L., Bondarev, G., Seitkalieva, A., Son, O. and Tekutyeva, L. (2024) Insights into Alkaline Phosphatase Anti-Inflammatory Mechanisms. Biomedicines, 12, Article No. 2502. https://doi.org/10.3390/biomedicines12112502
|
[51]
|
Sun, Y., Wang, M., Tan, X., Zhang, H. and Yang, S. (2023) Identification of Oxidative Stress-Related Biomarkers in Acute Myocardial Infarction. International Journal of General Medicine, 16, 4805-4818. https://doi.org/10.2147/ijgm.s428709
|
[52]
|
Haarhaus, M., Ray, K.K., Nicholls, S.J., Schwartz, G.G., Kulikowski, E., Johansson, J.O., et al. (2019) Apabetalone Lowers Serum Alkaline Phosphatase and Improves Cardiovascular Risk in Patients with Cardiovascular Disease. Atherosclerosis, 290, 59-65. https://doi.org/10.1016/j.atherosclerosis.2019.09.002
|