[1]
|
Zhiznin, S.Z., Timokhov, V.M. and Gusev, A.L. (2020) Economic Aspects of Nuclear and Hydrogen Energy in the World and Russia. International Journal of Hydrogen Energy, 45, 31353-31366. https://doi.org/10.1016/j.ijhydene.2020.08.260
|
[2]
|
Shahin, M.S., Orhan, M.F., Saka, K., Hamada, A.T. and Uygul, F. (2023) Energy Assessment of an Integrated Hydrogen Production System. International Journal of Thermofluids, 17, Article ID: 100262. https://doi.org/10.1016/j.ijft.2022.100262
|
[3]
|
Rosanvallon, S., Torcy, D., Chon, J.K. and Dammann, A. (2016) Waste management plans for ITER. Fusion Engineering and Design, 109, 1442-1446. https://doi.org/10.1016/j.fusengdes.2015.12.002
|
[4]
|
Cui, S., Zhang, D., Lian, Q., Cheng, J., Tian, W., Su, G.H., et al. (2017) Evaluation and Optimization of Tritium Breeding, Shielding and Nuclear Heating Performances of the Helium Cooled Solid Breeder Blanket for CFETR. International Journal of Hydrogen Energy, 42, 24263-24277. https://doi.org/10.1016/j.ijhydene.2017.07.215
|
[5]
|
Rajablou, L., Motevalli, S.M. and Fadaei, F. (2022) Study of Alpha Particle Concentration Effects as the Ash of Deuterium-Tritium Fusion Reaction on Ignition Criteria. Physica Scripta, 97, Article ID: 095601. https://doi.org/10.1088/1402-4896/ac831a
|
[6]
|
Yamamoto, I. and Kanagawa, A. (1993) Similarity in Pressure Dependence among Separation Factors of Thermal Diffusion Column in Total-Reflux Operation. Journal of Nuclear Science and Technology, 30, 831-833. https://doi.org/10.1080/18811248.1993.9734554
|
[7]
|
Park, D., Urm, J.J., Lee, J., Chang, M.H. and Lee, J.M. (2021) Dynamic Optimization of Cryogenic Distillation Operation for Hydrogen Isotope Separation in Fusion Power Plant. International Journal of Hydrogen Energy, 46, 24135-24148. https://doi.org/10.1016/j.ijhydene.2021.04.199
|
[8]
|
Andreev, B.M. (2001) Separation of Hydrogen Isotopes in H2O-H2S System. Separation Science and Technology, 36, 1949-1989. https://doi.org/10.1081/ss-100104764
|
[9]
|
Yasuda, S., Matsushima, H., Harada, K., Tanii, R., Terasawa, T., Yano, M., et al. (2022) Efficient Hydrogen Isotope Separation by Tunneling Effect Using Graphene-Based Heterogeneous Electrocatalysts in Electrochemical Hydrogen Isotope Pumping. ACS Nano, 16, 14362-14369. https://doi.org/10.1021/acsnano.2c04655
|
[10]
|
Mistry, K.A., Shenoy, N.S., Bhanja, K., Kohli, D.K. and Shenoy, K.T. (2023) Modeling and Experimental Investigation for Development of Combined Electrolysis and Catalytic Exchange Process for Hydrogen Isotope Separation. Chemical Engineering Research and Design, 192, 487-499.
|
[11]
|
Glueckauf, E. and Kitt, G.P. (1957) Hydrogen Isotope Separation by Chromatography. Proceedings of the International Symposium on Isotope Separation, Amsterdam, 23-27 April 1957, 210-226.
|
[12]
|
唐涛, 陆光达. 钯-氢体系的物理化学性质[J]. 稀有金属, 2003, 27(2): 278-285.
|
[13]
|
Lee, M.W. (1986) Tritium Separation Using Metal Hydrides. Gordon Research Conference, Oxnard, 10 February 1986.
|
[14]
|
Heung, L.K., Sessions, H.T., Poore, A.S., Jacobs, W.D. and Williams, C.S. (2008) Next-Generation TCAP Hydrogen Isotope Separation Process. Fusion Science and Technology, 54, 399-402. https://doi.org/10.13182/fst08-33
|
[15]
|
Lee, M.W. (2000) Thermal Cycling Absorption Process—A New Way to Separate Hydrogen Isotopes. Westinghouse Savannah River Co. WSRC-MS-2000-00061, 197-200.
|
[16]
|
雷强华, 罗德礼, 熊义富, 等. 载钯硅藻土制备及吸/放氢性能分析[J]. 稀有金属, 2006, 30(6): 746-750.
|
[17]
|
Fisher, I.A. (1993) Structural Stability of 1100 [Degree] C Heated Pd/k during Absorption Cycling in Protium. [Palladium supported on kieselguhr][R]. Savannah River Site (SRS).
|
[18]
|
吉亚莉, 刘晓鹏, 吕芳, 等. 载钯硅藻土复合材料吸/放氢循环性能和抗粉化性能研究[J]. 稀有金属, 2011, 35(2): 238-243.
|
[19]
|
Strzelczyk, F., Leterq, D., Wilhelm, A.M. and Steinbrunn, A. (1998) Gas-Solid Chromatographic Separation of Hydrogen Isotopes: A Comparison between Two Palladium Bearing Materials—Alumina and Kieselguhr. Journal of Chromatography A, 822, 326-331. https://doi.org/10.1016/s0021-9673(98)00618-9
|
[20]
|
Fukada, S., Samsun-Baharin, M. and Fujiwara, H. (2002) Hydrogen Absorption-Desorption Cycle Experiment of Pd-Al2O3 Pellets. International Journal of Hydrogen Energy, 27, 177-181. https://doi.org/10.1016/s0360-3199(01)00101-x
|
[21]
|
黄国强, 雷强华, 钱晓静, 等. 氢同位素分离用涂钯氧化铝性能研究[C]//第七届中国功能材料及其应用学术会议论文集(第5分册). 重庆: 《功能材料》期刊社, 2010: 426-428.
|
[22]
|
Jiang, Y., Ji, F., Feng, Y., Ye, X. and Ni, M. (2022) Effect of Alumina on Thermodynamic Performance of Palladium-H2 (D2) System. International Journal of Hydrogen Energy, 47, 18088-18097. https://doi.org/10.1016/j.ijhydene.2022.03.292
|
[23]
|
龙培虹, 白天驹, 熊良银, 等. 载钯氧化铝复合材料的制备及性能研究[J]. 原子能科学技术, 2023, 57(6): 1089-1098.
|
[24]
|
Morimoto, Y., Kojima, S., Sasaki, T., Matsuyama, M., Hara, M., Akamaru, S., et al. (2006) Development of a Tritium Separation Process Using SDGC. Fusion Engineering and Design, 81, 821-826. https://doi.org/10.1016/j.fusengdes.2005.07.026
|
[25]
|
Liu, R., Peng, Y., Rong, W. and Cao, Q. (2024) Thermodynamics and Kinetics Hydrogen Isotope Effects of Hydrogen/Deuterium Absorption in Pd-5wt.%Pt Alloy. International Journal of Hydrogen Energy, 50, 637-647. https://doi.org/10.1016/j.ijhydene.2023.07.329
|
[26]
|
Lee, M., Paek, S., Ahn, D., Kim, K., Yim, S. and Chung, H. (2007) Preparation of a Pd-Pt Alloy on Alumina and Its Application for a Gas Chromatography. Journal of Alloys and Compounds, 441, 368-373. https://doi.org/10.1016/j.jallcom.2006.09.138
|
[27]
|
Shang, J., Li, G., Webley, P.A. and Liu, J.Z. (2016) A Density Functional Theory Study for the Adsorption of Various Gases on a Caesium-Exchanged Trapdoor Chabazite. Computational Materials Science, 122, 307-313. https://doi.org/10.1016/j.commatsci.2016.05.040
|
[28]
|
邓潇君, 熊仁金, 闫霞艳, 等. 新型氢同位素分离材料研究进展[J]. 材料导报, 2023, 37(13): 1-8.
|
[29]
|
Heung, L.K., Sessions, H.T. and Xiao, X. (2011) TCAP Hydrogen Isotope Separation Using Palladium and Inverse Columns. Fusion Science and Technology, 60, 1331-1334. https://doi.org/10.13182/fst11-t39
|
[30]
|
Xiao, X., Heung, L.K. and Sessions, H.T. (2015) Recent Advances in SRS on Hydrogen Isotope Separation Using Thermal Cycling Absorption Process. Fusion Science and Technology, 67, 643-646. https://doi.org/10.13182/fst14-t100
|
[31]
|
Ana, G., Niculescu, A., Bornea, A., Zamfirache, M. and Draghia, M. (2018) TCAP Hydrogen Isotope Separation Process under Development at ICSI Rm. Valcea. IEEE Transactions on Plasma Science, 46, 2668-2671. https://doi.org/10.1109/tps.2018.2796627
|
[32]
|
Ducret, D., Ballanger, A., Steimetz, J., Laquerbe, C., Baudouin, O. and Sere Peyrigain, P. (2001) Hydrogen Isotopes Separation by Thermal Cycling Absorption Process. Fusion Engineering and Design, 58, 417-421. https://doi.org/10.1016/s0920-3796(01)00475-6
|
[33]
|
Ducret, D., Laquerbe, C., Ballanger, A., Steimetz, J., Porri, V., Verdin, J.P., et al. (2002) Separation of Hydrogen Isotopes by Thermal Cycling Absorption Process: An Experimental Device. Fusion Science and Technology, 41, 1092-1096. https://doi.org/10.13182/fst02-a22752
|
[34]
|
Laquerbe, C., Contreras, S., Baudouin, O. and Demoment, J. (2008) Modelling Aging Effects on a Thermal Cycling Absorption Process Column. Fusion Science and Technology, 54, 403-406. https://doi.org/10.13182/fst08-a1840
|
[35]
|
Guangda, L., Guoqiang, J. and Cansheng, S. (1995) An Experimental Investigation for Hydrogen and Deuterium Separation by Thermal Cycling Absorption Process. Fusion Technology, 28, 672-675. https://doi.org/10.13182/fst95-a30481
|
[36]
|
黄国强, 罗德礼, 雷强华, 等. 热循环吸附装置的初步氢同位素分离[J]. 化学工程, 2010, 38(10): 215-218, 228.
|
[37]
|
王伟伟, 张玲, 余铭铭, 等. TCAP 氢同位素分离装置的小型化及分离性能[J]. 同位素, 2012, 25(1): 37-41.
|
[38]
|
Zhou, J., Zhang, X., Hao, S. and Huang, W. (2014) Dynamic Simulation of Thermal Cycling Absorption Process with Twin Columns for Hydrogen Isotopes Separation. International Journal of Hydrogen Energy, 39, 13873-13879. https://doi.org/10.1016/j.ijhydene.2014.04.025
|
[39]
|
Yan, Y., Li, F., Deng, L., Wang, M., Tang, T., Fang, M., et al. (2023) A Fresh Look at Thermal Cycling Absorption Process for Hydrogen Isotopes Separation by Dynamic Simulation: Initial Feeding Process and Total Reflux Mode. International Journal of Hydrogen Energy, 48, 23894-23908. https://doi.org/10.1016/j.ijhydene.2023.03.101
|
[40]
|
Wang, W., Xia, L., Mao, Y., Wen, C., Li, H., Chen, X., et al. (2021) On-Line Micro GC Testing of Protium Analysis in DT Fuels from TCAP Products. Fusion Engineering and Design, 170, Article ID: 112481. https://doi.org/10.1016/j.fusengdes.2021.112481
|
[41]
|
Deng, L., Chen, C., Huang, G., Shi, Y., Yao, Y., Hu, J., et al. (2023) The Oil Bath Thermal Cycling Absorption Process Design and Separation Process Research. International Journal of Hydrogen Energy, 48, 22132-22140. https://doi.org/10.1016/j.ijhydene.2023.01.236
|