[1]
|
Morikawa, Y., Nishimura, S., Hashimoto, R., Ohnuma, M. and Yamada, A. (2019) Mechanism of Sodium Storage in Hard Carbon: An X‐Ray Scattering Analysis. Advanced Energy Materials, 10, Article ID: 1903176. https://doi.org/10.1002/aenm.201903176
|
[2]
|
Xu, Z., Wang, J., Guo, Z., Xie, F., Liu, H., Yadegari, H., et al. (2022) The Role of Hydrothermal Carbonization in Sustainable Sodium‐Ion Battery Anodes. Advanced Energy Materials, 12, Article ID: 2200208. https://doi.org/10.1002/aenm.202200208
|
[3]
|
Cai, W., Yao, Y., Zhu, G., Yan, C., Jiang, L., He, C., et al. (2020) A Review on Energy Chemistry of Fast-Charging Anodes. Chemical Society Reviews, 49, 3806-3833. https://doi.org/10.1039/c9cs00728h
|
[4]
|
Mühlbauer, M.J., Dolotko, O., Hofmann, M., Ehrenberg, H. and Senyshyn, A. (2017) Effect of Fatigue/Ageing on the Lithium Distribution in Cylinder-Type Li-Ion Batteries. Journal of Power Sources, 348, 145-149. https://doi.org/10.1016/j.jpowsour.2017.02.077
|
[5]
|
Kabir, M.M. and Demirocak, D.E. (2017) Degradation Mechanisms in Li-Ion Batteries: A State-Of-The-Art Review. International Journal of Energy Research, 41, 1963-1986. https://doi.org/10.1002/er.3762
|
[6]
|
戴海峰, 王楠, 魏学哲, 等. 车用动力锂离子电池单体不一致性问题研究综述[J]. 汽车工程, 2014, 36(2): 181-188, 203.
|
[7]
|
Yu, Y. (2022) Sodium‐Ion Batteries: Energy Storage Materials and Technologies. Wiley. https://doi.org/10.1002/9783527831623
|
[8]
|
Yang, W., Liu, Q., Zhao, Y., Mu, D., Tan, G., Gao, H., et al. (2022) Progress on Fe‐Based Polyanionic Oxide Cathodes Materials toward Grid-Scale Energy Storage for Sodium‐Ion Batteries. Small Methods, 6, Article ID: 2200555. https://doi.org/10.1002/smtd.202200555
|
[9]
|
Ud Din, M.A., Li, C., Zhang, L., Han, C. and Li, B. (2021) Recent Progress and Challenges on the Bismuth-Based Anode for Sodium-Ion Batteries and Potassium-Ion Batteries. Materials Today Physics, 21, Article ID: 100486. https://doi.org/10.1016/j.mtphys.2021.100486
|
[10]
|
Liu, Y., Jiang, S.P. and Shao, Z. (2020) Intercalation Pseudocapacitance in Electrochemical Energy Storage: Recent Advances in Fundamental Understanding and Materials Development. Materials Today Advances, 7, Article ID: 100072. https://doi.org/10.1016/j.mtadv.2020.100072
|
[11]
|
Fatima, H., Zhong, Y., Wu, H. and Shao, Z. (2021) Recent Advances in Functional Oxides for High Energy Density Sodium-Ion Batteries. Materials Reports: Energy, 1, Article ID: 100022. https://doi.org/10.1016/j.matre.2021.100022
|
[12]
|
Cheng, H., Shapter, J.G., Li, Y. and Gao, G. (2021) Recent Progress of Advanced Anode Materials of Lithium-Ion Batteries. Journal of Energy Chemistry, 57, 451-468. https://doi.org/10.1016/j.jechem.2020.08.056
|
[13]
|
Tan, H., Chen, D., Rui, X. and Yu, Y. (2019) Peering into Alloy Anodes for Sodium‐ion Batteries: Current Trends, Challenges, and Opportunities. Advanced Functional Materials, 29, Article ID: 1808745. https://doi.org/10.1002/adfm.201808745
|
[14]
|
He, W., Chen, K., Pathak, R., Hummel, M., Reza, K.M., Ghimire, N., et al. (2021) High-Mass-Loading Sn-Based Anode Boosted by Pseudocapacitance for Long-Life Sodium-Ion Batteries. Chemical Engineering Journal, 414, Article ID: 128638. https://doi.org/10.1016/j.cej.2021.128638
|
[15]
|
Darwiche, A., Dugas, R., Fraisse, B. and Monconduit, L. (2016) Reinstating Lead for High-Loaded Efficient Negative Electrode for Rechargeable Sodium-Ion Battery. Journal of Power Sources, 304, 1-8. https://doi.org/10.1016/j.jpowsour.2015.10.087
|
[16]
|
Ezpeleta, I., Freire, L., Mateo‐Mateo, C., Nóvoa, X.R., Pintos, A. and Valverde‐Pérez, S. (2022) Characterisation of Commercial Li‐ion Batteries Using Electrochemical Impedance Spectroscopy. ChemistrySelect, 7, e202104464. https://doi.org/10.1002/slct.202104464
|
[17]
|
Chahbaz, A., Meishner, F., Li, W., Ünlübayir, C. and Uwe Sauer, D. (2021) Non-Invasive Identification of Calendar and Cyclic Ageing Mechanisms for Lithium-Titanate-Oxide Batteries. Energy Storage Materials, 42, 794-805. https://doi.org/10.1016/j.ensm.2021.08.025
|
[18]
|
Hogrefe, C., Waldmann, T., Hölzle, M. and Wohlfahrt-Mehrens, M. (2023) Direct Observation of Internal Short Circuits by Lithium Dendrites in Cross-Sectional Lithium-Ion in Situ Full Cells. Journal of Power Sources, 556, Article ID: 232391. https://doi.org/10.1016/j.jpowsour.2022.232391
|
[19]
|
Seaman, A., Dao, T. and McPhee, J. (2014) A Survey of Mathematics-Based Equivalent-Circuit and Electrochemical Battery Models for Hybrid and Electric Vehicle Simulation. Journal of Power Sources, 256, 410-423. https://doi.org/10.1016/j.jpowsour.2014.01.057
|
[20]
|
Alvin, S., Chandra, C. And Kim, J. (2020) Extended Plateau Capacity of Phosphorus-Doped Hard Carbon Used as an Anode in Na-and K-Ion Batteries. Chemical Engineering Journal, 391, Article ID: 123576. https://doi.org/10.1016/j.cej.2019.123576
|
[21]
|
Jin, Q., Wang, K., Feng, P., et al. (2020) Surface-Dominated Storage of Heteroatoms-Doping Hard Carbon for Sodium-Ion Batteries. Energy Storage Materials, 27, 43-50. https://doi.org/10.1016/j.ensm.2020.01.014
|
[22]
|
Tang, Z., Zhang, R., Wang, H., et al. (2023) Revealing the Closed Pore Formation of Waste Wood-Derived Hard Carbon for Advanced Sodium-Ion Battery. Nature Communications, 14, Article No. 6024. https://doi.org/10.1038/s41467-023-39637-5
|
[23]
|
Shao, W., Cao, Q., Liu, S., et al. (2022) Replacing “Alkyl” with “Aryl” for Inducing Accessible Channels to Closed Pores as Plateau-Dominated Sodium-Ion Battery Anode. SusMat, 2, 319-334. https://doi.org/10.1002/sus2.68
|
[24]
|
Svirinovsky-Arbeli, A., Juelsholt, M., May, R., Kwon, Y. and Marbella, L.E. (2024) Using NMR Spectroscopy to Link Structure to Function at the Li Solid Electrolyte Interphase. Joule, 8, 1919-1935.
|
[25]
|
Chen, S., Peng, Q., Wei, Z., Li, Y., Yue, Y., Zhang, Y., et al. (2024) Revealing the Quasi-Solid-State Electrolyte Role on the Thermal Runaway Behavior of Lithium Metal Battery. Energy Storage Materials, 70, Article ID: 103481. https://doi.org/10.1016/j.ensm.2024.103481
|
[26]
|
Yang, M.Y., Zybin, S.V., Das, T., Merinov, B.V., Goddard, W.A., Mok, E.K., Hah, H.J., Han, H.E., Choi, Y.C. and Kim, S.H. (2022) Characterization of the Solid Electrolyte Interphase at the Li Metal-Ionic Liquid Interface. Advanced Energy Materials, 13, Article ID: 2202949.
|
[27]
|
Hu, J.Y., Wang, H.W., Yuan, F., Wang, J.L., Zhang, H.D., Zhao, R.Y., Wu, Y.Y., Kang, F.Y. and Zhai, D.Y. (2024) Deciphering the Formation and Accumulation of Solid-Electrolyte Interphases in Na and K Carbonate-Based Batteries. Nano Letters, 24, 1673-1678.
|
[28]
|
Heiskanen, S.K., Laszczynski, N. and Lucht, B.L. (2020) Perspective—surface Reactions of Electrolyte with LiNixCoyMnzO2 Cathodes for Lithium Ion Batteries. Journal of The Electrochemical Society, 167, article ID: 100519. https://doi.org/10.1149/1945-7111/ab981c
|
[29]
|
Hinkle, C. (2014) Chemical Synthesis, Computational Modeling, and Surface Reactions of Silicon Nanotube Anodes and Silicate Cathodes for Lithium-Ion Batteries. APS Meeting Abstracts.
|
[30]
|
Ahn, J.Y., et al. (2023) Edge-Protected Ni-Enriched LiNixCoyMnzO2 Cathode Materials by Interface Modification with a Si-and F-Functionalized Surface Modifier. ACS Sustainable Chemistry & Engineering, 11, 4342-4352.
|
[31]
|
Oh, J.A.S., Deysher, G., Ridley, P., et al. (2023) High-Performing All-Solid-State Sodium-Ion Batteries Enabled by the Presodiation of Hard Carbon. Advanced Energy Materials, 13, Article ID: 2300776. https://doi.org/10.1002/aenm.202300776
|
[32]
|
Yang, J., Wang, X., Dai, W., Lian, X., Cui, X., Zhang, W., et al. (2021) From Micropores to Ultra-Micropores Inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage. Nano-Micro Letters, 13, Article No. 98. https://doi.org/10.1007/s40820-020-00587-y
|
[33]
|
Zhao, X., Ding, Y., Xu, Q., Yu, X., Liu, Y. and Shen, H. (2019) Low‐Temperature Growth of Hard Carbon with Graphite Crystal for Sodium‐Ion Storage with High Initial Coulombic Efficiency: A General Method. Advanced Energy Materials, 9, Article ID: 1803648. https://doi.org/10.1002/aenm.201803648
|
[34]
|
Zhao, J., He, X., Lai, W., Yang, Z., Liu, X., Li, L., et al. (2023) Catalytic Defect‐Repairing Using Manganese Ions for Hard Carbon Anode with High‐Capacity and High‐Initial‐Coulombic‐Efficiency in Sodium‐Ion Batteries. Advanced Energy Materials, 13, Article ID: 2300444. https://doi.org/10.1002/aenm.202300444
|
[35]
|
Lu, H., Chen, X., Jia, Y., Chen, H., Wang, Y., Ai, X., et al. (2019) Engineering Al2O3 Atomic Layer Deposition: Enhanced Hard Carbon-Electrolyte Interface Towards Practical Sodium Ion Batteries. Nano Energy, 64, Article ID: 103903. https://doi.org/10.1016/j.nanoen.2019.103903
|
[36]
|
Wang, G., Yu, M. and Feng, X. (2021) Carbon Materials for Ion-Intercalation Involved Rechargeable Battery Technologies. Chemical Society Reviews, 50, 2388-2443. https://doi.org/10.1039/d0cs00187b
|
[37]
|
Kamiyama, A., Kubota, K., Nakano, T., Fujimura, S., Shiraishi, S., Tsukada, H., et al. (2019) High-Capacity Hard Carbon Synthesized from Macroporous Phenolic Resin for Sodium-Ion and Potassium-Ion Battery. ACS Applied Energy Materials, 3, 135-140. https://doi.org/10.1021/acsaem.9b01972
|
[38]
|
Chen, B., Yang, L., Bai, X., Wu, Q., Liang, M., Wang, Y., et al. (2021) Heterostructure Engineering of Core‐Shelled Sb@Sb2O3 Encapsulated in 3D N‐Doped Carbon Hollow‐Spheres for Superior Sodium/Potassium Storage. Small, 17, Article ID: 2006824. https://doi.org/10.1002/smll.202006824
|
[39]
|
Zhao, X., Gong, F., Zhao, Y., Huang, B., Qian, D., Wang, H., et al. (2020) Encapsulating Nis Nanocrystal into Nitrogen-Doped Carbon Framework for High Performance Sodium/potassium-Ion Storage. Chemical Engineering Journal, 392, Article ID: 123675. https://doi.org/10.1016/j.cej.2019.123675
|
[40]
|
Cui, R.C., Xu, B., Dong, H.J., Yang, C.C. and Jiang, Q. (2020) N/O Dual‐Doped Environment‐Friendly Hard Carbon as Advanced Anode for Potassium‐Ion Batteries. Advanced Science, 7, Article ID: 1902547. https://doi.org/10.1002/advs.201902547
|
[41]
|
Zhao, Q., Zheng, Q., Li, S., He, B., Wu, X., Wang, Y., et al. (2023) Nitrogen/Oxygen/Sulfur Tri-Doped Hard Carbon Nanospheres Derived from Waste Tires with High Sodium and Potassium Anodic Performances. Inorganic Chemistry Frontiers, 10, 2574-2585. https://doi.org/10.1039/d2qi02378d
|
[42]
|
Ma, X., Xiao, N., Xiao, J., Song, X., Guo, H., Wang, Y., et al. (2021) Nitrogen and Phosphorus Dual-Doped Porous Carbons for High-Rate Potassium Ion Batteries. Carbon, 179, 33-41. https://doi.org/10.1016/j.carbon.2021.03.067
|
[43]
|
Xu, S., Cai, L., Niu, P., Li, Z., Wei, L., Yao, G., et al. (2021) The Creation of Extra Storage Capacity in Nitrogen-Doped Porous Carbon as High-Stable Potassium-Ion Battery Anodes. Carbon, 178, 256-264. https://doi.org/10.1016/j.carbon.2021.03.039
|
[44]
|
Zhao, Q., Meng, Y., Yang, L., He, X., He, B., Liu, Y., et al. (2019) Facile Synthesis of Phosphorus-Doped Carbon under Tuned Temperature with High Lithium and Sodium Anodic Performances. Journal of Colloid and Interface Science, 551, 61-71. https://doi.org/10.1016/j.jcis.2019.05.021
|
[45]
|
Zhao, Q., Meng, Y., Li, J. and Xiao, D. (2019) Sulfur and Nitrogen Dual-Doped Porous Carbon Nanosheet Anode for Sodium Ion Storage with a Self-Template and Self-Porogen Method. Applied Surface Science, 481, 473-483. https://doi.org/10.1016/j.apsusc.2019.03.143
|
[46]
|
Akula, S., Balasubramaniam, B., Varathan, P. and Sahu, A.K. (2019) Nitrogen-Fluorine Dual Doped Porous Carbon Derived from Silk Cotton as Efficient Oxygen Reduction Catalyst for Polymer Electrolyte Fuel Cells. ACS Applied Energy Materials, 2, 3253-3263. https://doi.org/10.1021/acsaem.9b00100
|
[47]
|
Yang, X., Li, L., Zhao, W., Wang, M., Yang, W., Tian, Y., et al. (2023) Characteristics and Functional Application of Cellulose Fibers Extracted from Cow Dung Wastes. Materials, 16, Article 648. https://doi.org/10.3390/ma16020648
|