铁死亡与激素性股骨头坏死的研究进展及相关铁死亡基因在骨代谢或氧化应激方面的讨论
Advances in Ferroptosis and Glucocorticoid-Induced Osteonecrosis of Femoral Head and Discussion of Related Ferroptosis Genes in Bone Metabolism or Oxidative Stress
DOI: 10.12677/acm.2025.151230, PDF, HTML, XML,   
作者: 王绍庚*:深圳大学第二附属医院创伤骨科与矫形外科,广东 深圳;黄富超:广东医科大学深圳宝安临床医学院,广东 深圳;汤家骏:暨南大学附属第二临床医学院,广东 深圳
关键词: 激素性股骨头坏死铁死亡氧化应激Steroid-Induced Osteonecrosis of the Femoral Head Ferroptosis Oxidative Stress
摘要: 背景:越来越多研究表明铁死亡可能参与激素性股骨头坏死的发生与发展。目的:探讨铁死亡与激素性股骨头坏死的关系,为其诊治提供新的思路。方法:以“铁死亡,股骨头坏死”为中文检索词,以“ferroptosis, necrosis of the femoral head”为英文检索词,检索PubMed、Science Citation Index Expanded、ScienceDirect、Scopus、万方、维普、中国知网数据库,筛选激素性股骨头坏死与铁死亡研究相关文章进行综述分析。结果与结论:① 铁死亡在激素性股骨头坏死发病中起重要作用。② 激素性股骨头坏死中铁死亡的发生受到多种机制通路调控。通过生物信息学方法筛选出的许多激素相关性股骨头坏死铁死亡相关基因仍需进一步的体内体外实验验证。③ 目前关于激素性股骨头坏死铁死亡相关机制尚不明确,亟需深入探明两者的作用机制,有望为激素性股骨头坏死提供新的治疗思路。
Abstract: Background: Ferroptosis may be involved in the development and progression of steroid-induced osteonecrosis of the femoral head. Objective: To explore the relationship between ferroptosis and steroid-induced osteonecrosis of femoral head, and to provide new ideas for steroid-induced osteonecrosis of femoral head diagnosis and treatment. Methods: Using “ferroptosis, osteonecrosis of the femoral head” as the Chinese search term and “ferroptosis, necrosis of the femoral head” as the English search term, we searched the PubMed, Science Citation Index Expanded, ScienceDirect, Scopus, Wanfang and VIP databases, and screened the articles related to the study of ferroptosis and steroid-induced osteonecrosis of femoral head from the establishment of the databases to 2024, and conducted a review analysis. Results and Conclusions: ① Ferroptosis plays an important role in the pathogenesis of steroid-induced osteonecrosis of the femoral head. ② Ferroptosis in steroid-induced osteonecrosis of femoral head is regulated by various mechanisms. Many of the genes associated with ferroptosis in steroid-induced osteonecrosis of the femoral head screened by bioinformatics methods still need to be validated by further in vivo and in vitro experiments. ③ The mechanism of ferroptosis in steroid-induced osteonecrosis of the femoral head is still unclear. Further investigation on the mechanism of action of both is expected to provide new therapeutic ideas for steroid-induced osteonecrosis of the femoral head.
文章引用:王绍庚, 黄富超, 汤家骏. 铁死亡与激素性股骨头坏死的研究进展及相关铁死亡基因在骨代谢或氧化应激方面的讨论[J]. 临床医学进展, 2025, 15(1): 1717-1730. https://doi.org/10.12677/acm.2025.151230

1. 简介

股骨头坏死(ONFH)是一种常见的骨关节疾病[1]。可以将其分为两类:非创伤性和创伤性股骨头坏死。在非创伤性股骨头坏死中,由于长期、大剂量使用糖皮质激素导致的激素性股骨头坏死(SONFH)是最常见的类型[2]。激素性股骨头坏死,好发于30~50岁的中青年男性。早期隐匿性强、后期残疾率高[3],是由于糖皮质激素的过量使用导致股骨头血供破坏,引起的股骨头中骨细胞及骨髓成分死亡[4]。病理机制包括细胞凋亡,凝血、脂质代谢、免疫失调,氧化应激,内皮细胞损伤等方面。主要的病理改变是骨与成骨细胞凋亡[5]。过量的ROS (活性氧)产生会诱导氧化应激促进成骨细胞凋亡[6]。糖皮质激素水平上升,引起活性氧的产生和聚集,导致氧化应激,引起脂质过氧化物水平上升,诱导铁死亡的发生[7]。铁稳态对维持细胞的正常生理功能有重要意义[8]。铁死亡是由于铁代谢障碍,细胞内铁超载,导致脂质活性氧自由基生产过多,大量铁依赖性的脂质过氧化物积累,破坏细胞膜结构与功能,进而引发细胞死亡[9]。其形态特征在于线粒体体积减小和线粒体的收缩,表现为线粒体膜密度增加、外膜完整性被破坏、线粒体嵴溶解消失[10]。其他生化特征包括细胞内谷胱甘肽(GSH)、丙二醛(MDA)的消耗、谷胱甘肽过氧化物酶4 (GPX4)失活以及ROS和脂质-ROS的聚集[11]。与铁死亡相关的研究,最早可以追溯至1980年,由Bannai等发现并鉴定出胱氨酸/谷氨酸反向转运体系统(System X-C)开始[12]。在2003年,Dolma等发现,Erastin可以诱导Ras基因突变的细胞死亡,但其作用靶点尚不明确[13]。随后,Yang等在2008年确定了这种选择性致细胞死亡的方式并非细胞凋亡[14]。直到2012年,Dixon等发现Erastin可以抑制System X-C,从而导致细胞死亡,并将这种细胞死亡的方式正式命名为“铁死亡(Ferroptosis)”[15]。铁死亡在多种疾病中发挥重要作用,包括缺血性损伤、肾脏疾病、神经退行性疾病等。铁死亡在骨质疏松症、骨关节炎、类风湿性关节炎和骨肉瘤等骨骼相关疾病中也同样起着重要作用[16]。体内体外研究表明,DFO (去铁胺)增加了HIF-1α/VEGF表达并促进了糖皮质激素诱导的股骨头骨坏死中的血管生成和成骨[17]。然而目前关于铁死亡在激素性股骨头坏死中的作用研究仍相对较少[18]。许多证据表明,铁死亡在激素性股骨头坏死的发病机制中起着重要作用。了解铁死亡诱导激素性股骨头坏死发生发展潜在机制可能对其发病机制有更深入的了解。此外,抑制铁死亡可能是治疗激素性股骨头坏死的一种新颖且有希望的选择[19] [20]

2. 铁死亡与激素性股骨头坏死的关系

2014年,Yang等首次提出GPX4在铁死亡中的关键作用[21],可通过降低脂质ROS来抑制铁死亡[22]。如果GSH合成不足,GPX4活性会降低,导致脂质过氧化产物清除障碍并聚集,会破坏细胞膜的功能和结构,最终导致细胞发生铁死亡[23]。郑嘉乾等人收集了4例激素性股骨头坏死的骨组织标本,提取了标本中不同区域骨组织的总蛋白,再用ELISA检测GPX4的含量,发现坏死区GPX4含量低于正常区。GPX4是抑制铁死亡的关键因子,坏死区GPX4含量下降提示铁死亡在一定程度上参与激素性股骨头坏死的发生。以激素性股骨头坏死患者骨髓中培养的原代BMSCs作为实验对象,对hBMSCs进行沉默GPX4 (siGPX4)的转染,发现GPX4表达下调会抑制hBMSCs (人骨髓间充质干细胞)成骨标志物RUNX2、ALP的mRNA表达。而人参皂苷Rg3可上调GPX4的mRNA表达,并促进siGPX4后hBMSCs中被下调的RUNX2、ALP的mRNA表达,促进成骨分化[24]。章家皓等人对激素性股骨头坏死标本中坏死区域与正常区域进行对比,发现差异蛋白的功能主要与氧化还原相关,其中坏死区域中GPX4、超氧化物歧化酶1、Bcl-2蛋白表达及碱性磷酸酶活性较正常区域低。血清检测结果显示激素性股骨头坏死由ARCOII期向III期进展时,脂质氧化产物丙二醛也随之增加。该研究证实了激素的使用可引起抗氧化物质水平降低,提高成骨细胞氧化应激水平,诱导成骨细胞铁死亡的发生,最终导致激素性股骨头坏死发生病理进展[23]。成骨细胞铁死亡在激素性股骨头坏死发病中起重要作用[25]。Sun F等人利用生物信息学分析筛选出地塞米松处理的成骨细胞中的差异表达基因,KEGG功能主要富集在矿物质吸收、谷胱甘肽代谢和铁死亡中。体外实验结果表明,地塞米松处理MC3T3-E1细胞后,SLC7A11蛋白表达显著降低,同时与铁死亡密切相关的指标GPX4表达也显著降低,细胞内MDA含量升高,ROS及脂质ROS增高。电镜扫描结果显示,地塞米松处理后,成骨细胞的线粒体体积减少,线粒体嵴明显减少,提示Dex能够诱导MC3T3-E1细胞发生铁死亡。过表达SLC7A11及使用铁死亡抑制剂(Fer-1)可逆转Dex诱导的MC3T3-E1细胞铁死亡。地塞米松可以诱导p53表达增加,通过小干扰核糖核酸(siRNA)敲低p53的表达可逆转MC3T3-E1和MOLY4细胞中SLC7A11和GPX4表达的抑制,从而减少铁死亡的产生。他们的研究结果表明Dex通过p53/SLC7A11/GPX4通路诱导成骨细胞MC3T3-E1细胞铁死亡,SLC7A11可能在地塞米松介导的铁死亡中发挥重要作用[19]。SIRT6是Sirtuin家族的一员,具有NAD + 依赖性组蛋白去乙酰化酶活性以及ADP-核糖基转移酶活性[26]。SIRT6在成骨分化及血管生成中发挥重要作用。Fang L等人从激素性股骨头坏死模型中大鼠股骨头中提取蛋白质,结果表明SLC7A11和GPX4表达明显减少。GSH和MDA含量也出现了相应的波动。血清铁和铁蛋白水平高于正常对照组。这些结果表明激素性股骨头坏死可能发生了铁死亡。采用Western blot法比较了正常及激素性股骨头坏死模型中大鼠股骨头中SIRT6蛋白表达水平的变化,结果表明大鼠股骨头坏死区SIRT6表达减少。注射过表达SIRT6腺病毒后,与对照组相比,股骨头表面光滑,股骨头结构完整。SIRT6过表达组CD31和VEGF阳性细胞增多,血管密度增加,微血管结构基本完整。体外实验证明SIRT6过表达保护了MC3T3-E1细胞在缺氧条件下的ALP活性和矿化特性,并且Runx2和OCN的表达升高。低氧能增加HUVEC细胞(人脐静脉内皮细胞) GSH的消耗和MDA的含量,提高HUVEC细胞中的ROS水平,导致细胞内GPX4和SLC7A11表达水平降低,过表达SIRT6可以逆转GPX4、SLC7A11和GSH的降低,减少细胞内MDA和ROS的积累。他们的研究结果表明地塞米松显着抑制成骨细胞分化,破坏微血管形成,增加细胞内Fe2+和ROS水平并诱导铁死亡的发生。过表达SIRT6可抑制铁死亡的发生,减轻血管内皮损伤,促进成骨分化,从而防止股骨头骨坏死的发生[27]。MP (甲泼尼龙,Methylprednisolone)破坏ROS清除系统并抑制BMSCs体外成骨分化,BMSCs中的ROS水平与细胞死亡率呈正相关,MP处理后脂质过氧化状态显著增加,而Hm (去氢骆驼蓬碱Harmine)处理以剂量依赖性方式减弱了这种状态。MP处理降低了线粒体电位,这表明线粒体被破坏了。当用Hm处理BMSCs时,线粒体电位得到恢复。铁死亡的特征是线粒体的破坏和脂质过氧化失控。Fer-1和Hm均能有效降低高剂量MP诱导的损伤。Hm处理有效降低了errastin诱导的BMSCs铁死亡。通过生物信息学分析推测HIF1-α参与了MP诱导的铁死亡。蛋白质印迹分析也证实MP处理抑制了HIF1-α的表达。Hm干预可以促进HIF1-α的表达从而增加GSH的产生从而进一步促进自由基的清除。当使用shHif1a抑制HIF1-α表达时,Hm的保护作用消失。这些结果验证了铁死亡参与了MP诱导的BMSC损伤,Hm通过HIF1-α信号通路缓解MP诱导的铁死亡,降低铁死亡在激素性股骨头坏死发病机制中的作用水平[28]。褪黑素(MT,N-乙酰-5-甲氧基色胺)是一种吲哚类激素,主要由哺乳动物松果体在夜间合成和分泌[29]。MP处理BMSC后,ROS水平增加,GPX4、SLC7A11和SOD2的mRNA水平显著下调。MP抑制成骨作用,经MP处理后,ALPL、BGLAP、转录因子Runx2和SP7均显著降低。MT处理可显著减少ROS的产生。同时,MT使GPX4、SLC7A11和SOD2等ROS清除基因的抑制状态恢复正常。加入MT后,BMSC的成骨能力明显恢复。建立激素性股骨头坏死动物模型进一步验证了MT的保护作用。H&E、Masson染色与MicroCT结果显示MT治疗组骨坏死减轻。MP治疗后,股骨头内ROS水平也显著升高,MT组这种变化明显减轻。同样,MT处理能促进成骨分化相关蛋白如RUNX2、Osterix和OCN的表达。铁死亡参与了SONFH的发病过程,MT可抑制铁死亡。利用生物信息学分析方法筛选出GDF15基因。Western印迹分析显示,MP处理的BMSC中GDF15的表达降低。GDF15在糖皮质激素诱导的铁死亡过程中下调,MT处理可能增加GDF15的表达,GDF15发挥中和ROS和减轻铁死亡的能力。应用shGDF15来敲除GDF15在BMSC中的表达,进一步验证了GDF15在MT调节的铁死亡减弱和成骨分化中的功能。BMSC中GDF15基因敲除后,MP可引起更严重的细胞死亡,线粒体电位、脂质过氧化和ROS清除基因SLC7A11的变化趋势更加明显。MT通过上调GDF15的表达,从而促进SLC7A11/GSH/Gpx4轴减轻铁死亡从而减轻SONFH,补充外源性MT可能是治疗SONFH的一种有前途的方法[30]。余鹏等人通过生物信息学分析,获得激素性股骨头坏死的特征基因CA9,其高表达提示激素性股骨头坏死患者发生了软骨退变。动物激素性股骨头坏死模型与正常组相比,软骨中CA9的表达量升高。同时动物模型中的SLC7A11和GPX4蛋白与mRNA表达水平较正常组明显降低,ACSL4蛋白与mRNA表达量显著高于正常组,表明了软骨中存在由脂质过氧化诱导的铁死亡发生;该研究证明了激素性股骨头坏死软骨中发生了脂质过氧化,激素性股骨头坏死的软骨与铁死亡密切相关,CA9可以通过SLC7A11/GPX4轴调控铁死亡的发生[31]。邵学坤等人通过体外实验验证鹿角多肽是否能抑制地塞米松处理后MC3T3-E114细胞铁死亡的通路,研究结果表明鹿角多肽可能通过调控SLC7A11/GPX4轴抑制成骨细胞铁死亡,发挥对激素性股骨头坏死的治疗作用[32]。陶红成等人通过细胞实验验证了三七总皂苷可以抑制破骨细胞分化,并且促进破骨细胞凋亡;进一步对破骨细胞来源外泌体进行miRNA测序,从中筛选出11个与成骨相关的差异表达miRNA,对候选mRNA进行GO和KEGG富集分析,发现在与铁死亡相关的PI3K-Akt信号通路、p53信号通路有富集,说明细胞分化以及成骨细胞铁死亡可能对激素性股骨头坏死的发生发展过程具有重要作用。最后构建了12个铁死亡相关网络(miR-98-5p/PTGS, miR-23b-3p/PTGS2, miR-425-5p/TFRC, miR-133a-3p/TFRC, miR-185-5p/TFRC, miR-23b-3p/NFE2L2, miR-23b-3p/LAMP2, miR-98-5p/LAMP2, miR-182-5p/LAMP2, miR-182-5p/TLR4, miR-23b3p/ZFP36, miR-182-5p/ZFP36),表明破骨细胞来源外泌体中miRNA可能通过介导成骨细胞铁死亡相关基因进而诱发激素性股骨头坏死[18]。张聿轲等人利用生物信息学方法获得了由四个激素性股骨头坏死中铁死亡相关基因TXNIP、CISD2、GCLC和SETD1B组成的预后模型。在小鼠mc3T3-E1细胞系中加入DEX以模拟激素刺激诱导的股骨头坏死。利用qRT-PCR来评估关键基因的mRNA表达水平。发现在48小时后,DEX组中TXNIP的表达被上调,而CISD2的表达被下调。在DEX组加入Fer-1后,TXNIP和SETD1B的表达水平被下调,而CISD2的表达在24小时后被上调,GCLC的表达在48小时后被上调。确定了CISD2、GCLC、TXNIP和SETD1B作为激素性股骨头坏死的预后生物标志物,TXNIP和SETD1B是铁死亡标志基因,CISD2和GCLC是铁死亡抑制基因[33]。梁学振等人通过生物信息学分析,筛选出7个SONFH中与铁死亡有关的基因,包括PTGS2,MAPK3,HMOX1,LR4,CYBB,MAP3K5和TSTAT3,有望成为SONFH潜在的铁死亡相关诊断生物标志物。这些基因已在铁死亡或骨代谢疾病方面有过报道[34]。Huang X等人通过生物信息学分析,鉴定出64个激素性股骨头坏死中与铁死亡相关的差异基因。随后,进行KEGG途径富集度分析,共鉴定出18条通路,包括铁死亡。筛选出4个与铁死亡相关的HUB基因MAPK3、PTGS2、STK11和SLC2A1,被认为可作为激素性股骨头坏死预后和诊断的潜在铁死亡相关生物标志物和药物靶点[35]。Lu H等人利用GSE123568数据库,应用多种生物信息学方法确定了一个包含两个铁死亡相关枢纽基因(FRHGs) NCF2和SLC2A1的诊断标记。蛋白质DIA分析证实了这两个基因在正常和坏死区的差异表达。GO和KEGG富集分析表明,FRHGs在超氧阴离子和HIF-1信号通路中丰富。这些结果提示,FRHGs可促进SIONFH的铁死亡,这可能与增加超氧阴离子的产生和下调HIF-1信号通路有关。采集股骨头标本,评估了NCF2和SLC2A1在标本中的mRNA表达,证实了NCF2在健康区域的表达低于坏死区,而SLC2A1的表达高于坏死区。这些结果提示,FRHGs可促进SIONFH的铁死亡,这可能与增加超氧阴离子的产生和下调HIF-1信号通路有关。细胞实验结果表明,地塞米松干预MC3T3-E1细胞后,Gpx4的表达减少,而TFR1的表达增加,提示地塞米松干预后铁死亡水平升高。同时,NCF2的表达增加,而SLC2A1的表达减少。抗氧化剂VE (牡荆素vitexin)可以挽救激素诱导的Gpx4下调和TFR1上调,同时减少NCF2的表达,增加SLC2A1的表达。提示VE可能通过抑制铁死亡而挽救地塞米松诱导的成骨分化能力受损[36]。Liu J等人通过生物信息学方法,分析得出AKT1S1、BACH1、MGST1和SETD1B是SONFH的4个铁死亡关键相关基因,它们通过破骨细胞分化和免疫机制在SONFH的发生发展中起关键作用。此外,这4个基因均具有较好的疾病预测效果,可作为诊断和治疗SONFH的生物标志物[37]。Chen N等人通过生物信息学方法,在GIONFH病例和非GIONFH对照的外周血样本之间共获得了27个与铁死亡相关的差异表达基因。KEGG和GO通路富集分析显示,与铁死亡相关的差异表达基因主要富集在调控凋亡过程、氧化还原过程和细胞氧化还原稳态,以及HIF-1、TNF、FoxO信号通路和破骨细胞分化方面。确定了8个枢纽基因,包括TLR4、PTGS2、SNCA、MAPK1、CYBB、SLC2A1、TXNIP和MAP3K5。在数据集GSE10311中进一步验证了TLR4、TXNIP和MAP3K5的表达水平显著增加,这三个基因可能作为GIONFH的潜在生物标志物和药物靶点[38]

3. 激素性股骨头坏死中铁死亡相关基因在骨代谢及氧化应激方面的作用

关于上述提到的激素性股骨头坏死中的铁死亡相关基因,许多只是利用生物信息学方法分析得出的结果,仍需要体内和体外实验进一步验证这些铁死亡相关基因是否在激素性股骨头坏死的发生发展中发挥作用,及它们发生作用的机制。目前关于铁死亡在激素性股骨头作用的研究大多数都是通过细胞模型验证,缺乏动物实验研究。以下对上述提到的激素性股骨头坏死中铁死亡相关基因在骨代谢及氧化应激方面的作用做进一步介绍。

3.1. SLC7A11

P53通过转录抑制SLC7A11使细胞对铁死亡敏感,抑制胱氨酸摄取并降低GSH水平[39]。System x-C和SLC7A11在谷胱甘肽合成过程中是必不可少的。SLC7A11的稳定性对铁死亡至关重要。当SLC7A11表达降低时,细胞中谷氨酸和胱氨酸的转运不平衡,GSH的合成减少,导致细胞中ROS和脂质过氧化物水平升高,最终诱导铁死亡[40]。芒果苷(Mangiferin)通过Keap1/Nrf2/SLC7A11/GPX4通路抑制成骨细胞铁死亡来减轻骨质疏松症[41]。Dex处理后的成骨细胞、MP处理后的BMSC及缺氧处理后的HUVEC细胞GPX4和SLC7A11表达水平降低,导致细胞铁死亡。而过表达SIRT6、低表达CA9、MT和鹿角多肽治疗都能通过调节SLC7A11/GPX4轴抑制细胞铁死亡。

3.2. HIF1-α

骨量和血管的减少与成骨细胞中缺氧诱导因子1α (HIF1-α)缺失有关[42]。HIF1-α通过无氧代谢促进软骨细胞发育[43]。MicroRNA-18a通过HIF1-α调控肿瘤坏死因子-α诱导的成骨细胞的焦亡、凋亡和坏死性凋亡[44]。由于缺乏HIF1-α,软骨形成和成骨受到影响[45]

3.3. GDF15

GDF-15在维持骨密度和骨量方面发挥作用[46]。GDF-15水平和激素性股骨头坏死呈负相关。地塞米松通过抑制GDF15/AKT/mTOR信号传导通路,抑制BMSCs的增殖,诱导其凋亡。环状多肽D7通过激活GDF15/AKT/mTOR信号,减轻了地塞米松诱导的BMSCs损伤,并恢复BMSCs的软骨形成功能。此外,地塞米松诱导的过量活性氧(ROS)生成是GDF15介导的信号传导的上游触发因素,而环状多肽D7通过调节GDF15的表达,恢复了SOD1 (超氧化物歧化酶1)、SOD2和过氧化氢酶等抗氧化剂的表达,从而改善了地塞米松诱导的氧化还原失衡[47]

3.4. CA9

CA9是HIF-1最典型的靶标之一,其启动子含有在缺氧期间增加转录的必需元件[48]。缺氧后碳酸酐酶9 (CA9)表达增加[49]。在“二合一”纳米载体(NAHA-CaP/siRNA纳米颗粒)中,碳酸酐酶IX (CA9) siRNA和NO清除剂的组合被开发用于通过清除NO和抑制滑膜巨噬细胞中的CA9表达来进行OA (骨关节炎)治疗。体外实验表明,这些NPs (纳米颗粒)可以显着清除与正常组相似的细胞内NO水平,并下调CA9 mRNA的表达水平,从而使M1巨噬细胞重新极化为M2表型,并提高促软骨形成因子TGF-β1 mRNA的表达水平,抑制软骨细胞凋亡[50]

3.5. TXNIP

TXNIP通过影响细胞内氧化还原稳态和调节炎症来影响成骨细胞、软骨细胞和破骨细胞。此外,TXNIP可用于预测多种骨代谢疾病,包括骨质疏松、类风湿性关节炎和骨关节炎。TXNIP通过氧化还原依赖性和不依赖性途径影响骨代谢[51]。实验表明,敲除TXNIP刺激了hBMSCs和MC3T3-E1细胞中PI3K/AKT/Nrf2信号通路的激活,抑制了活性氧(ROS)产生。进一步的功能实验表明,TXNIP的过表达通过增强ROS的产生来抑制hBMSCs和MC3T3-E1细胞的成骨分化。另一方面,敲低TXNIP通过激活PI3K/AKT/Nrf2通路促进hBMSCs和MC3T3-E1细胞的成骨分化能力[52]

3.6. CISD2

CISD2下调通过调节野生型P53介导的GLS2/SAT1/SLC7A11和Gpx4/TRF信号通路参与人卵巢SKOV-3细胞的铁死亡过程。CISD2下调降低了SKOV-3细胞的Gpx4水平,提高了TRF水平[53]。参与shCISD2介导的铁死亡的两种平行机制。一是shCISD2通过铁蛋白自噬–依赖性铁蛋白转运增强游离铁的积累;另一种是CISD2的耗竭诱导p62-Keap1-NRF2通路的抑制,导致氧化应激和铁死亡[54]

3.7. GCLC

地塞米松增加ROS水平,降低了抗氧化酶SOD、GSH-Px和CAT的活性,同时下调了MC3T3-E1细胞中抗氧化蛋白Nrf2及其下游蛋白NQO-1、GCLC、HO-1和GCLM的表达,导致氧化应激。hUC-mSCs通过上调MC3T3-E1细胞中的Nrf2蛋白表达及其下游蛋白HO-1,NQO-1,GCLM和GCLC的表达来减少MC3T3-E1细胞中的氧化应激[55]。甘草甜素(Glycyrrhizin)通过诱导AMPK磷酸化和NRF2的核转移,减少破骨细胞中ROS的形成,从而导致HO-1、NQO-1和GCLC等抗氧化酶的上调,抑制RANKL诱导的破骨细胞生成[56]

3.8. SETD1B

SETD1B是一个铁死亡相关基因[57]。分枝杆菌毒素(Mycolactone)通过依赖SETD1B降解谷胱甘肽诱导细胞死亡[58]

3.9. CYBB

细胞色素b-245重链(CYBB),是促进活性氧类生成的NADPH氧化酶复合物的组成部分[59]。EDIL3通过阻断ITGAV-ITGB3整联蛋白增强吞噬体中SMPD1的活性,从而导致CYBB介导的ROS产生[60]。慢性肉芽肿病是一种遗传性免疫缺陷疾病(CGD),主要由X连锁的CYBB基因突变引起,这种突变会消除吞噬细胞和微生物防御系统中的活性氧类(ROS)产生[61]

3.10. TLR4

TLR4 属于Toll样受体家族,与多种炎症疾病有关[62]。TNF-α增加TLR4的表达,促进PMOP (绝经后骨质疏松症)骨细胞坏死[63]。AEG-1 (Astrocyte-elevated gene-1)缺失可能通过抑制TLR4/MyD88/NF-κB信号通路而改善骨质疏松过程中的软骨修复和骨重塑[64]。TLR4基因敲除通过激活Wnt/β-catenin信号通路减轻炎症并促进骨折愈合[65]

3.11. PTGS2

小檗碱降低了4-HNE、TF和PTGS2的蛋白表达,增强了FTH蛋白水平,从而抑制了HFFGD喂养小鼠股骨的铁死亡,也抑制NAFLD诱导的骨质流失甚至骨质疏松症[46]。Cd和Mo联合暴露协同提高了心肌Fe2+含量和活化的AMPK/mTOR轴,然后通过明显上调ACSL4、PTGS2和TFRC表达水平,下调SLC7A11、GPX4、FPN1、FTL1和FTH1表达水平诱导铁死亡[66]

3.12. MAPK3

MAPK3和相关的下游信号通路已被证明是质疏松症进展的重要调节因子。SP1 (Specific protein 1)通过miR-133a-3p/MAPK3轴的转录介导加速了BMSC的成骨分化[67]。LrB (Loureirin B)减少了MAPK家族中p-38和JNK的磷酸化,抑制了MAPK的信号转导,影响了BMMs向破骨细胞的增殖和分化,并减少了骨吸收[68]。CXCL2通过抑制成骨细胞ERK1/2 (MAPK3/1)信号通路来减弱成骨细胞分化[69]

3.13. HMOX1

Hmox1调节骨折修复过程中成骨细胞的生成[70],增加间充质干细胞的成骨分化[71],表明Hmox1在骨发育和成骨分化中的作用[72]。鼠尾草酚(Carnosol)通过靶向HMOX1和上调体外抗氧化蛋白表达抑制破骨细胞的生成。同时发现鼠尾草酚通过抑制软骨下破骨细胞的活化减轻骨性关节炎的严重程度[73]。在成骨细胞中,鸢尾素(irisin)直接与Cav1结合,Cav1招募并与AMP活化蛋白激酶α (AMPKα)相互作用以激活AMPK途径,增加HMOX1转录,HMOX1参与调节细胞周期,促进成骨细胞增殖[74]。Hmox1可能通过调节p38、ERK1/2、AKT、Wnt/β-catenin通路等多种信号通路来增强成骨分化[75]

3.14. MAP3K5

细胞凋亡信号调节激酶1 (ASK1)又称丝裂原活化蛋白激酶5 (MAP3K5),人们认为ASK1对氧化应激高度敏感,并且对细胞凋亡起着重要作用[76]。研究表明,ASK1参与细胞凋亡、炎症、氧化应激和其他过程。ASK1在MAPK通路中起着重要作用,MAPK通路具有多种生物学功能,在调节细胞增殖、分化和凋亡中发挥重要作用[77]

3.15. STK11

肝激酶b1 (LKB1,也称为Stk11)是一种丝氨酸/苏氨酸激酶。LKB1缺陷增加了Ctsk骨膜细胞的增殖和成骨细胞分化[78]。Stk11/Lkb1是抑制mTOR通路作用的关键丝氨酸–苏氨酸蛋白激酶。在哺乳动物骨骼中,Stk11调节未成熟软骨细胞和肥厚软骨细胞之间的过渡。成骨细胞内的Stk11活性对于正常结构骨的发育至关重要,它直接调节成骨细胞的数量和协调作用,间接调节破骨细胞的数量[79]

3.16. NCF2

NCF2是NADPH氧化酶的重要活化亚基之一,在NADPH氧化酶的生物学功能中起着不可替代的作用[80]。ROS水平和NRF2活性在成骨过程中增加。NRF2驱动骨细胞特异性并激活骨细胞特异性基因的转录。骨细胞中的NRF2在骨稳态中具有基础作用,其缺失诱导骨量减少。利用富马酸二甲酯激活NRF2可预防卵巢切除术引起的骨质减少[81]

3.17. AKT1S1

AKT1S1作为mTORC1的负调控因子,可能是细胞生长和增殖的抑制因子[82]。作为Akt1和mTOR复合物1的底物,AKT1S1在Akt/mTOR信号通路中发挥着调控多种生物过程的关键作用[83]。越来越多的研究表明,沉默AKT1S1可增加细胞凋亡、降低细胞活力并减少多种癌症的肿瘤发展[84]

3.18. BACH1

细胞具有针对ROS的保护机制,例如Nrf2,它控制许多抗氧化酶基因的表达。相反,BTB和CNC同源性1 (BACH1)是Nrf2的竞争对手,转录抑制抗氧化酶的表达。BACH1抑制剂通过诱导Nrf2调节的抗氧化酶的表达来减弱小鼠RANKL介导的破骨细胞生成和骨破坏,从而降低细胞内ROS水平[85]。BACH1已被证明可以调控铁死亡[86]。敲低Bach1减轻了炎症诱导的氧化应激水平,部分抵消了炎症条件对成骨的抑制作用,以及促进成骨基因BMP6、OPG和RUNX2的表达。敲低BACH1可有效挽救具有炎症的PDLCs的成骨和氧化应激[87]

3.19. MGST1

微粒体谷胱甘肽转移酶1 (MGST1)是MAPEG家族(类二十烷和谷胱甘肽代谢中的膜相关蛋白)的成员。MGST1具有谷胱甘肽转移酶和过氧化物酶活性[88]。MGST1敲低显著抑制GC (Gastric Cancer)细胞增殖和通过调节AKT/GSK-3β/β-连环蛋白轴来调节细胞周期。此外,我们发现MGST1抑制GC细胞中的铁死亡[89]

3.20. SNCA

SNCA已被证明与破骨细胞生成和骨吸收相关,通过与骨形态发生蛋白通路相互作用并调节雌激素缺乏诱导的骨质流失[90]。大量证据表明,点突变和SNCA表达增加导致其聚集,这促进了线粒体功能障碍和氧化应激[91]。缺乏SNCA的小鼠,观察到OVX诱导的骨质流失减少40% [92]

3.21. MAPK1

富含miR-92a-1-5p的EV (extracellular vesicles)通过减少MAPK1和FoxO1表达来促进体外破骨细胞分化,与破骨细胞功能增加有关。靶向MAPK1或FoxO1的siRNA导致破骨细胞功能的相似增加。在体内,通过静脉注射给予的富含miR-92a-1-5p的EV促进骨溶解,这与骨髓中MAPK1和FoxO1表达的降低有关[93]。miR-186-5p可通过增加MAPK1的表达减轻IL-1β诱导的软骨细胞炎症损伤[94]

3.22. STAT3

STAT3是STATT蛋白家族的成员,在介导炎症方面发挥关键作用。来自OA患者和OA小鼠模型的标本中磷酸化STAT3表达水平升高,表明STAT3参与了OA的进展。在由IL-1β诱导的软骨细胞炎症模型中的细胞水平的其他研究证实,STX-0119通过抑制STAT3磷酸化及其核易位而抑制软骨细胞中的炎症反应,同时促进软骨细胞的合成代谢[95]。STAT3和sFRP1的抑制作用消除了IL-19对骨髓间充质干细胞成骨分化的抑制作用[96]。LncRNA SNHG1调节STAT3磷酸化,降低ROS水平,调节线粒体能量代谢,最终促进软骨再生[97]

3.23. SLC2A1

在SLC2A1缺陷的小鼠中,Wnt7b诱导的骨合成代谢功能被阻断,骨形成受到影响[98]。实验证实SLC2A1在SONFH患者的外周血以及激素性骨坏死样品中显着下调[99]。SLC2A1可能是SONFH潜在的诊断性生物标志物[100]

4. 总结与展望

铁死亡与激素性股骨头坏死的相关机制尚不明确。许多通过生物信息学筛选出的铁死亡相关基因是否在激素性股骨头坏死中发挥作用,以及它们如何发挥作用仍然不清。研究铁死亡在激素性股骨头坏死的作用机制,通过调控铁死亡相关通路抑制铁死亡发生,有利于对抗激素性股骨头坏死的发生发展。

致 谢

感谢本次科研及论文写作过程中导师及同事的指导和大力支持。

NOTES

*通讯作者。

参考文献

[1] Barney, J., Piuzzi, N.S. and Akhondi, H. (2023) Femoral Head Avascular Necrosis. StatPearls.
[2] Tan, B., Li, W., Zeng, P., Guo, H., Huang, Z., Fu, F., et al. (2020) Epidemiological Study Based on China Osteonecrosis of the Femoral Head Database. Orthopaedic Surgery, 13, 153-160.
https://doi.org/10.1111/os.12857
[3] Zhang, Q., Li, Z., Gao, F. and Sun, W. (2018) Pericollapse Stage of Osteonecrosis of the Femoral Head: A Last Chance for Joint Preservation. Chinese Medical Journal, 131, 2589-2598.
https://doi.org/10.4103/0366-6999.244111
[4] Bai, R., Feng, W., Liu, W.L., Zhao, Z.H.Q., Zhao, A.Q., Wang, Y., et al. (2016) Roles of Osteocyte Apoptosis in Steroid-Induced Avascular Necrosis of the Femoral Head. Genetics and Molecular Research, 15, gmr.15017529.
https://doi.org/10.4238/gmr.15017529
[5] Chang, C., Greenspan, A. and Gershwin, M.E. (2020) The Pathogenesis, Diagnosis and Clinical Manifestations of Steroid-Induced Osteonecrosis. Journal of Autoimmunity, 110, Article ID: 102460.
https://doi.org/10.1016/j.jaut.2020.102460
[6] Zhu, S., Zhuang, J., Wu, Q., Liu, Z., Liao, C., Luo, S., et al. (2018) Advanced Oxidation Protein Products Induce Pre‐osteoblast Apoptosis through a Nicotinamide Adenine Dinucleotide Phosphate Oxidase‐Dependent, Mitogen‐Activated Protein Kinases‐Mediated Intrinsic Apoptosis Pathway. Aging Cell, 17, e12764.
https://doi.org/10.1111/acel.12764
[7] 章喻, 王利波, 戴薇薇. 糖皮质激素与铁死亡[J]. 生理科学进展, 2022, 53(1): 76-81.
[8] Zheng, H., Jiang, J., Xu, S., Liu, W., Xie, Q., Cai, X., et al. (2021) Nanoparticle-Induced Ferroptosis: Detection Methods, Mechanisms and Applications. Nanoscale, 13, 2266-2285.
https://doi.org/10.1039/d0nr08478f
[9] Hassannia, B., Van Coillie, S. and Vanden Berghe, T. (2021) Ferroptosis: Biological Rust of Lipid Membranes. Antioxidants & Redox Signaling, 35, 487-509.
https://doi.org/10.1089/ars.2020.8175
[10] Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88.
https://doi.org/10.1038/s41419-020-2298-2
[11] Battaglia, A.M., Chirillo, R., Aversa, I., Sacco, A., Costanzo, F. and Biamonte, F. (2020) Ferroptosis and Cancer: Mitochondria Meet the “Iron Maiden” Cell Death. Cells, 9, Article 1505.
https://doi.org/10.3390/cells9061505
[12] Bannai, S. and Kitamura, E. (1980) Transport Interaction of L-Cystine and L-Glutamate in Human Diploid Fibroblasts in Culture. Journal of Biological Chemistry, 255, 2372-2376.
https://doi.org/10.1016/s0021-9258(19)85901-x
[13] Dolma, S., Lessnick, S.L., Hahn, W.C. and Stockwell, B.R. (2003) Identification of Genotype-Selective Antitumor Agents Using Synthetic Lethal Chemical Screening in Engineered Human Tumor Cells. Cancer Cell, 3, 285-296.
https://doi.org/10.1016/s1535-6108(03)00050-3
[14] Yang, W.S. and Stockwell, B.R. (2008) Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-Ras-Harboring Cancer Cells. Chemistry & Biology, 15, 234-245.
https://doi.org/10.1016/j.chembiol.2008.02.010
[15] Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072.
https://doi.org/10.1016/j.cell.2012.03.042
[16] Chen, H., Han, Z., Wang, Y., Su, J., Lin, Y., Cheng, X., et al. (2023) Targeting Ferroptosis in Bone-Related Diseases: Facts and Perspectives. Journal of Inflammation Research, 16, 4661-4677.
https://doi.org/10.2147/jir.s432111
[17] Jing, X., Du, T., Yang, X., Zhang, W., Wang, G., Liu, X., et al. (2020) Desferoxamine Protects against Glucocorticoid‐Induced Osteonecrosis of the Femoral Head via Activating HIF‐1α Expression. Journal of Cellular Physiology, 235, 9864-9875.
https://doi.org/10.1002/jcp.29799
[18] 陶红成, 曾平, 刘金富, 等. 三七总皂苷调控破骨细胞外泌体中差异miRNA表达抑制成骨细胞铁死亡[J]. 中国组织工程研究, 2025, 29(19): 4011-4021.
http://kns.cnki.net/kcms/detail/21.1581.R.20240508.1000.014.html
[19] Sun, F., Zhou, J.L., Liu, Z.L., Jiang, Z.W. and Peng, H. (2022) Dexamethasone Induces Ferroptosis via P53/SLC7A11/GPX4 Pathway in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Biochemical and Biophysical Research Communications, 602, 149-155.
https://doi.org/10.1016/j.bbrc.2022.02.112
[20] Zhang, Y., Hu, K., Shang, Z., Yang, X. and Cao, L. (2024) Ferroptosis: Regulatory Mechanisms and Potential Targets for Bone Metabolism: A Review. Medicine (Baltimore), 103, e39158.
https://doi.org/10.1097/MD.0000000000039158
[21] Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331.
https://doi.org/10.1016/j.cell.2013.12.010
[22] Jia, M., Qin, D., Zhao, C., Chai, L., Yu, Z., Wang, W., et al. (2020) Redox Homeostasis Maintained by GPX4 Facilitates STING Activation. Nature Immunology, 21, 727-735.
https://doi.org/10.1038/s41590-020-0699-0
[23] 章家皓, 刘予豪, 周驰, 等. 氧化应激促进成骨细胞铁死亡介导激素性股骨头坏死的病理过程[J]. 中国组织工程研究, 2024, 28(20): 3202-3208.
[24] 郑嘉乾. 股骨头GPX4含量及人参皂苷Rg3调控GPX4对MSCs成骨分化的影响[D]: [硕士学位论文]. 广州: 广州中医药大学, 2021.
[25] 张绵钰, 韩杰, 曾浩, 等. 中药调控成骨细胞铁死亡治疗激素性股骨头坏死[J]. 中国组织工程研究, 2025, 29(1): 185-192.
[26] Khan, R.I., Nirzhor, S.S.R. and Akter, R. (2018) A Review of the Recent Advances Made with SIRT6 and Its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets. Biomolecules, 8, Article 44.
https://doi.org/10.3390/biom8030044
[27] Fang, L., Zhang, G., Wu, Y., Li, Z., Gao, S. and Zhou, L. (2022) SIRT6 Prevents Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Rats. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 6360133.
https://doi.org/10.1155/2022/6360133
[28] Li, W., Zhang, W., Sun, H., Li, W., Qin, Y., Wang, L., et al. (2023) Harmine Ameliorates Steroid-Induced Osteonecrosis of the Femoral Head by Modulating Metabolism and Ferroptosis via HIF1-α. Fundamental Research.
https://doi.org/10.1016/j.fmre.2023.08.015
[29] Cipolla-Neto, J. and Amaral, F.G.D. (2018) Melatonin as a Hormone: New Physiological and Clinical Insights. Endocrine Reviews, 39, 990-1028.
https://doi.org/10.1210/er.2018-00084
[30] Li, W., Li, W., Zhang, W., Wang, H., Yu, L., Yang, P., et al. (2023) Exogenous Melatonin Ameliorates Steroid-Induced Osteonecrosis of the Femoral Head by Modulating Ferroptosis through GDF15-Mediated Signaling. Stem Cell Research & Therapy, 14, Article No. 171.
https://doi.org/10.1186/s13287-023-03371-y
[31] 余鹏, 孟东方, 李慧英, 等. CA9作为激素性股骨头坏死中软骨铁死亡特征基因的生物信息学鉴定[J]. 中国组织工程研究, 2024, 28(27): 4293-4299.
[32] 邵学坤, 王成, 王仪, 等. 鹿角多肽调控SLC7A11/GPX4轴抑制地塞米松诱导的成骨细胞铁死亡[J]. 中国组织工程研究, 2025, 29(14): 2875-2881.
[33] 张聿轲. 激素性股骨头坏死中铁死亡靶点基因模型的筛选与验证研究[D]: [硕士学位论文]. 呼和浩特: 内蒙古医科大学, 2023.
[34] 梁学振, 骆帝, 李嘉程, 等. 激素性股骨头坏死中的PTGS2和STAT3: 潜在铁死亡相关诊断生物标志物[J]. 中国组织工程研究, 2023, 27(36): 5898-5904.
[35] Huang, X., Meng, H., Shou, Z., Zhou, H., Chen, L., Yu, J., et al. (2024) Machine Learning‐Mediated Identification of Ferroptosis‐Related Genes in Osteonecrosis of the Femoral Head. FEBS Open Bio, 14, 455-465.
https://doi.org/10.1002/2211-5463.13764
[36] Lu, H., Fan, Y., Yan, Q., Chen, Z., Wei, Z., Liu, Y., et al. (2023) Identification and Validation of Ferroptosis-Related Biomarkers in Steroid-Induced Osteonecrosis of the Femoral Head. International Immunopharmacology, 124, Article ID: 110906.
https://doi.org/10.1016/j.intimp.2023.110906
[37] Liu, J., Han, X., Qu, L. and Du, B. (2023) Identification of Key Ferroptosis-Related Biomarkers in Steroid-Induced Osteonecrosis of the Femoral Head Based on Machine Learning. Journal of Orthopaedic Surgery and Research, 18, Article No. 327.
https://doi.org/10.1186/s13018-023-03800-x
[38] Chen, N., Meng, Y., Zhan, H. and Li, G. (2023) Identification and Validation of Potential Ferroptosis-Related Genes in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Medicina, 59, Article 297.
https://doi.org/10.3390/medicina59020297
[39] Luo, Y., Gao, X., Zou, L., Lei, M., Feng, J. and Hu, Z. (2021) Bavachin Induces Ferroptosis through the STAT3/P53/SLC7A11 Axis in Osteosarcoma Cells. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 1783485.
https://doi.org/10.1155/2021/1783485
[40] Wang, C., Liu, H., Xu, S., Deng, Y., Xu, B., Yang, T., et al. (2023) Ferroptosis and Neurodegenerative Diseases: Insights into the Regulatory Roles of SLC7A11. Cellular and Molecular Neurobiology, 43, 2627-2642.
https://doi.org/10.1007/s10571-023-01343-7
[41] Deng, X., Lin, B., Wang, F., Xu, P. and Wang, N. (2024) Mangiferin Attenuates Osteoporosis by Inhibiting Osteoblastic Ferroptosis through Keap1/Nrf2/SLC7A11/GPX4 Pathway. Phytomedicine, 124, Article ID: 155282.
https://doi.org/10.1016/j.phymed.2023.155282
[42] Schipani, E., Ryan, H.E., Didrickson, S., Kobayashi, T., Knight, M. and Johnson, R.S. (2001) Hypoxia in Cartilage: HIF-1α Is Essential for Chondrocyte Growth Arrest and Survival. Genes & Development, 15, 2865-2876.
https://doi.org/10.1101/gad.934301
[43] Bentovim, L., Amarilio, R. and Zelzer, E. (2012) HIF1α Is a Central Regulator of Collagen Hydroxylation and Secretion under Hypoxia during Bone Development. Development, 139, 4473-4483.
https://doi.org/10.1242/dev.083881
[44] Zhang, W., Xia, C., Qu, Y., Li, J., Liu, J., Ou, S., et al. (2024) MicroRNA-18a Regulates the Pyroptosis, Apoptosis, and Necroptosis (PANoptosis) of Osteoblasts Induced by Tumor Necrosis Factor-α via Hypoxia-Inducible Factor-1α. International Immunopharmacology, 128, Article ID: 111453.
https://doi.org/10.1016/j.intimp.2023.111453
[45] Yang, S., Kim, J., Ryu, J., Oh, H., Chun, C., Kim, B.J., et al. (2010) Hypoxia-Inducible Factor-2α Is a Catabolic Regulator of Osteoarthritic Cartilage Destruction. Nature Medicine, 16, 687-693.
https://doi.org/10.1038/nm.2153
[46] Hong, S.W. and Kang, J. (2022) Growth Differentiation Factor-15 as a Modulator of Bone and Muscle Metabolism. Frontiers in Endocrinology, 13, Article 948176.
https://doi.org/10.3389/fendo.2022.948176
[47] Chen, J., Cui, Z., Wang, Y., Lyu, L., Feng, C., Feng, D., et al. (2022) Cyclic Polypeptide D7 Protects Bone Marrow Mesenchymal Cells and Promotes Chondrogenesis during Osteonecrosis of the Femoral Head via Growth Differentiation Factor 15-Mediated Redox Signaling. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3182368.
https://doi.org/10.1155/2022/3182368
[48] Wykoff, C.C., Beasley, N.J., Watson, P.H., et al. (2000) Hypoxia-Inducible Expression of Tumor-Associated Carbonic Anhydrases. Cancer Research, 60, 7075-7083.
[49] Marchini Armentano, G., Pieretti, J.C., Falconi, C.A., Barozzi Seabra, A. and Carneiro-Ramos, M.S. (2024) Nitric Oxide Plays a Dual Role in Cardiorenal Syndrome in Vitro Model. Cellular Physiology and Biochemistry, 58, 33-48.
https://doi.org/10.33594/000000681
[50] Yan, Y., Lu, A., Dou, Y., Zhang, Z., Wang, X., Zhai, L., et al. (2023) Nanomedicines Reprogram Synovial Macrophages by Scavenging Nitric Oxide and Silencing CA9 in Progressive Osteoarthritis. Advanced Science, 10, e2207490.
https://doi.org/10.1002/advs.202207490
[51] Jiang, N., Liu, J., Guan, C., Ma, C., An, J. and Tang, X. (2022) Thioredoxin-Interacting Protein: A New Therapeutic Target in Bone Metabolism Disorders? Frontiers in Immunology, 13, Article 955128.
https://doi.org/10.3389/fimmu.2022.955128
[52] Zhou, W., Zhu, C. and Zhou, F. (2024) TXNIP Mediated by EZH2 Regulated Osteogenic Differentiation in Hbmscs and MC3T3-E1 Cells through the Modulation of Oxidative Stress and PI3K/AKT/Nrf2 Pathway. Connective Tissue Research, 65, 293-303.
https://doi.org/10.1080/03008207.2024.2358361
[53] Wang, Y. and Yi, Y. (2024) CISD2 Downregulation Participates in the Ferroptosis Process of Human Ovarian SKOV-3 Cells through Modulating the Wild Type P53-Mediated GLS2/SAT1/SLC7A11 and Gpx4/TRF Signaling Pathway. Tissue and Cell, 89, Article ID: 102458.
https://doi.org/10.1016/j.tice.2024.102458
[54] Li, Y., Xu, B., Ren, X., Wang, L., Xu, Y., Zhao, Y., et al. (2022) Inhibition of CISD2 Promotes Ferroptosis through Ferritinophagy-Mediated Ferritin Turnover and Regulation of p62-Keap1-NRF2 Pathway. Cellular & Molecular Biology Letters, 27, Article No. 81.
https://doi.org/10.1186/s11658-022-00383-z
[55] Qiu, C., Li, Z. and Peng, P. (2024) Human Umbilical Cord Mesenchymal Stem Cells Protect MC3T3-E1 Osteoblasts from Dexamethasone-Induced Apoptosis via Induction of the NRF2-Are Signaling Pathway. Regenerative Therapy, 27, 1-11.
https://doi.org/10.1016/j.reth.2024.02.009
[56] Li, Z., Chen, C., Zhu, X., Li, Y., Yu, R. and Xu, W. (2018) Glycyrrhizin Suppresses Rankl-Induced Osteoclastogenesis and Oxidative Stress through Inhibiting NF-κB and MAPK and Activating AMPK/Nrf2. Calcified Tissue International, 103, 324-337.
https://doi.org/10.1007/s00223-018-0425-1
[57] Choi, Y.J., Oh, H.R., Choi, M.R., Gwak, M., An, C.H., Chung, Y.J., et al. (2014) Frameshift Mutation of a Histone Methylation-Related Gene SETD1B and Its Regional Heterogeneity in Gastric and Colorectal Cancers with High Microsatellite Instability. Human Pathology, 45, 1674-1681.
https://doi.org/10.1016/j.humpath.2014.04.013
[58] Förster, B., Demangel, C. and Thye, T. (2020) Mycolactone Induces Cell Death by SETD1B-Dependent Degradation of Glutathione. PLOS Neglected Tropical Diseases, 14, e0008709.
https://doi.org/10.1371/journal.pntd.0008709
[59] Gawargi, F.I. and Mishra, P.K. (2024) Regulation of Cardiac Ferroptosis in Diabetic Human Heart Failure: Uncovering Molecular Pathways and Key Targets. Cell Death Discovery, 10, Article No. 268.
https://doi.org/10.1038/s41420-024-02044-w
[60] Yin, Z., Zhang, J., Zhao, M., et al. (2024) EDIL3/Del-1 Prevents Aortic Dissection through Enhancing Internalization and Degradation of Apoptotic Vascular Smooth Muscle Cells. Autophagy, 20, 2405-2425.
[61] Sevim-Wunderlich, S., Dang, T., Rossius, J., Schnütgen, F. and Kühn, R. (2024) A Mouse Model of X-Linked Chronic Granulomatous Disease for the Development of Crispr/cas9 Gene Therapy. Genes, 15, Article 706.
https://doi.org/10.3390/genes15060706
[62] Ciesielska, A., Matyjek, M. and Kwiatkowska, K. (2020) TLR4 and CD14 Trafficking and Its Influence on LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 78, 1233-1261.
https://doi.org/10.1007/s00018-020-03656-y
[63] Cui, H., Li, J., Li, X., Su, T., Wen, P., Wang, C., et al. (2024) TNF-α Promotes Osteocyte Necroptosis by Upregulating TLR4 in Postmenopausal Osteoporosis. Bone, 182, Article ID: 117050.
https://doi.org/10.1016/j.bone.2024.117050
[64] Zhang, Y. and Zhao, Q. (2020) AEG-1 Deletion Promotes Cartilage Repair and Modulates Bone Remodeling-Related Cytokines via TLR4/MyD88/NF-κB Inhibition in Ovariectomized Rats with Osteoporosis. Annals of Translational Medicine, 8, 1298-1298.
https://doi.org/10.21037/atm-20-5842
[65] Zhao, C., Yu, T., Dou, Q., Guo, Y., Yang, X. and Chen, Y. (2020) Knockout of TLR4 Promotes Fracture Healing by Activating Wnt/β-Catenin Signaling Pathway. PathologyResearch and Practice, 216, Article ID: 152766.
https://doi.org/10.1016/j.prp.2019.152766
[66] Huang, B., Nie, G., Dai, X., Cui, T., Pu, W. and Zhang, C. (2024) Environmentally Relevant Levels of Cd and Mo Coexposure Induces Ferroptosis and Excess Ferritinophagy through AMPK/mTOR Axis in Duck Myocardium. Environmental Toxicology, 39, 4196-4206.
https://doi.org/10.1002/tox.24302
[67] Zhong, L., Sun, Y., Wang, C., Liu, R., Ru, W., Dai, W., et al. (2024) SP1 Regulates BMSC Osteogenic Differentiation through the miR-133a-3p/MAPK3 Axis: SP1 Regulates Osteogenic Differentiation of BMSCs. Journal of Orthopaedic Surgery and Research, 19, Article No. 396.
https://doi.org/10.1186/s13018-024-04889-4
[68] Zhang, J., Mo, L., Huang, H., Xu, J., Fan, Y., Li, W., et al. (2022) Loureirin B Downregulates Osteoclast Differentiation of Bone Marrow Macrophages by Targeting the MAPK Signaling Pathway. Scientific Reports, 12, Article No. 14382.
https://doi.org/10.1038/s41598-022-18287-5
[69] Yang, Y., Zhou, X., Li, Y., Chen, A., Liang, W., Liang, G., et al. (2019) CXCL2 Attenuates Osteoblast Differentiation by Inhibiting the ERK1/2 Signaling Pathway. Journal of Cell Science, 132, jcs230490.
https://doi.org/10.1242/jcs.230490
[70] Ma, T., Chen, T., Li, P., Ye, Z., Zhai, W., Jia, L., et al. (2016) Heme Oxygenase-1 (HO-1) Protects Human Lens Epithelial Cells (SRA01/04) against Hydrogen Peroxide (h2o2)-Induced Oxidative Stress and Apoptosis. Experimental Eye Research, 146, 318-329.
https://doi.org/10.1016/j.exer.2016.02.013
[71] Zwerina, J., Tzima, S., Hayer, S., Redlich, K., Hoffmann, O., Hanslik‐Schnabel, B., et al. (2005) Heme Oxygenase 1 (HO‐1) Regulates Osteoclastogenesis and Bone Resorption. The FASEB Journal, 19, 2011-2013.
https://doi.org/10.1096/fj.05-4278fje
[72] Barbagallo, I., Vanella, A., Peterson, S.J., Kim, D.H., Tibullo, D., Giallongo, C., et al. (2009) Overexpression of Heme Oxygenase-1 Increases Human Osteoblast Stem Cell Differentiation. Journal of Bone and Mineral Metabolism, 28, 276-288.
https://doi.org/10.1007/s00774-009-0134-y
[73] Chu, M., Chen, G., Chen, K., Zhu, P., Wang, Z., Qian, Z., et al. (2024) Heme Oxygenase 1 Linked to Inactivation of Subchondral Osteoclasts in Osteoarthritis. Journal of Zhejiang University-SCIENCE B, 25, 513-528.
https://doi.org/10.1631/jzus.b2300303
[74] Tao, L., Wang, J., Wang, K., Liu, Q., Li, H., Xu, S., et al. (2024) Exerkine FNDC5/Irisin-Enriched Exosomes Promote Proliferation and Inhibit Ferroptosis of Osteoblasts through Interaction with Caveolin‐1. Aging Cell, 23, e14181.
https://doi.org/10.1111/acel.14181
[75] Liu, X., Ji, C., Xu, L., Yu, T., Dong, C. and Luo, J. (2018) Hmox1 Promotes Osteogenic Differentiation at the Expense of Reduced Adipogenic Differentiation Induced by BMP9 in C3H10T1/2 Cells. Journal of Cellular Biochemistry, 119, 5503-5516.
https://doi.org/10.1002/jcb.26714
[76] Sakauchi, C., Wakatsuki, H., Ichijo, H. and Hattori, K. (2017) Pleiotropic Properties of ASK1. Biochimica et Biophysica Acta (BBA)—General Subjects, 1861, 3030-3038.
https://doi.org/10.1016/j.bbagen.2016.09.028
[77] Lu, Y., Liu, Y. and Zheng, M. (2022) The Role and Regulation of Apoptosis Signal-Regulated Kinase 1 in Liver Disease. Molecular Biology Reports, 49, 10905-10914.
https://doi.org/10.1007/s11033-022-07783-6
[78] Han, Y., Feng, H., Sun, J., Liang, X., Wang, Z., Xing, W., et al. (2019) Lkb1 Deletion in Periosteal Mesenchymal Progenitors Induces Osteogenic Tumors through Mtorc1 Activation. Journal of Clinical Investigation, 129, 1895-1909.
https://doi.org/10.1172/jci124590
[79] Lai, L.P., Lotinun, S., Bouxsein, M.L., Baron, R. and McMahon, A.P. (2014) Stk11 (Lkb1) Deletion in the Osteoblast Lineage Leads to High Bone Turnover, Increased Trabecular Bone Density and Cortical Porosity. Bone, 69, 98-108.
https://doi.org/10.1016/j.bone.2014.09.010
[80] Xie, J., Zhang, H., Wang, K., Ni, J., Ma, X., Khoury, C.J., et al. (2023) M6A-Mediated-Upregulation of lncRNA BLACAT3 Promotes Bladder Cancer Angiogenesis and Hematogenous Metastasis through YBX3 Nuclear Shuttling and Enhancing NCF2 Transcription. Oncogene, 42, 2956-2970.
https://doi.org/10.1038/s41388-023-02814-3
[81] Sánchez-de-Diego, C., Pedrazza, L., Pimenta-Lopes, C., Martinez-Martinez, A., Dahdah, N., Valer, J.A., et al. (2021) NRF2 Function in Osteocytes Is Required for Bone Homeostasis and Drives Osteocytic Gene Expression. Redox Biology, 40, Article ID: 101845.
https://doi.org/10.1016/j.redox.2020.101845
[82] Ma, Y., Feng, J., Xing, X., Zhou, B., Li, S., Zhang, W., et al. (2016) miR-1908 Overexpression Inhibits Proliferation, Changing Akt Activity and P53 Expression in Hypoxic NSCLC Cells. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 24, 9-15.
https://doi.org/10.3727/096504016x14570992647168
[83] Wiza, C., Nascimento, E.B.M. and Ouwens, D.M. (2012) Role of PRAS40 in Akt and mTOR Signaling in Health and Disease. American Journal of Physiology-Endocrinology and Metabolism, 302, E1453-E1460.
https://doi.org/10.1152/ajpendo.00660.2011
[84] Malla, R., Ashby, C.R., Narayanan, N.K., Narayanan, B., Faridi, J.S. and Tiwari, A.K. (2015) Proline-Rich AKT Substrate of 40-kDa (PRAS40) in the Pathophysiology of Cancer. Biochemical and Biophysical Research Communications, 463, 161-166.
https://doi.org/10.1016/j.bbrc.2015.05.041
[85] He, X., Wang, D., Yi, Y., Tan, Y., Wu, M., Wang, H., et al. (2023) δ-Tocotrienol Preconditioning Improves the Capability of Bone Marrow-Derived Mesenchymal Stem Cells in Promoting Wound Healing by Inhibiting BACH1-Related Ferroptosis. Cell Death Discovery, 9, Article No. 349.
https://doi.org/10.1038/s41420-023-01653-1
[86] Wada, S., Kanzaki, H., Katsumata, Y., Yamaguchi, Y., Narimiya, T., Attucks, O.C., et al. (2020) Bach1 Inhibition Suppresses Osteoclastogenesis via Reduction of the Signaling via Reactive Oxygen Species by Reinforced Antioxidation. Frontiers in Cell and Developmental Biology, 8, Article 740.
https://doi.org/10.3389/fcell.2020.00740
[87] Yuan, Z., Li, J., Zou, X., Liu, C., Lu, J., Ni, C., et al. (2023) Knockdown of Bach1 Protects Periodontal Bone Regeneration from Inflammatory Damage. Journal of Cellular and Molecular Medicine, 27, 3465-3477.
https://doi.org/10.1111/jcmm.17916
[88] Zhang, J., Ye, Z., Morgenstern, R., Townsend, D.M. and Tew, K.D. (2023) Microsomal Glutathione Transferase 1 in Cancer and the Regulation of Ferroptosis. Advances in Cancer Research, 160, 107-132.
https://doi.org/10.1016/bs.acr.2023.05.001
[89] Li, Y., Xu, X., Wang, X., Zhang, C., Hu, A. and Li, Y. (2023) MGST1 Expression Is Associated with Poor Prognosis, Enhancing the Wnt/β-Catenin Pathway via Regulating AKT and Inhibiting Ferroptosis in Gastric Cancer. ACS Omega, 8, 23683-23694.
https://doi.org/10.1021/acsomega.3c01782
[90] Jain, P., Karthikeyan, C., Moorthy, N.S., Waiker, D., Jain, A. and Trivedi, P. (2014) Human Cdc2-Like Kinase 1 (CLK1): A Novel Target for Alzheimer’s Disease. Current Drug Targets, 15, 539-550.
https://doi.org/10.2174/1389450115666140226112321
[91] Mullin, S. and Schapira, A. (2013) Α-Synuclein and Mitochondrial Dysfunction in Parkinson’s Disease. Molecular Neurobiology, 47, 587-597.
https://doi.org/10.1007/s12035-013-8394-x
[92] Calabrese, G., Mesner, L.D., Foley, P.L., Rosen, C.J. and Farber, C.R. (2016) Network Analysis Implicates α-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss. Scientific Reports, 6, Article No. 29475.
https://doi.org/10.1038/srep29475
[93] Yu, L., Sui, B., Zhang, X., Liu, J., Hao, X. and Zheng, L. (2023) miR-92a-1-5p Enriched Prostate Cancer Extracellular Vesicles Regulate Osteoclast Function via MAPK1 and FoxO1. Journal of Experimental & Clinical Cancer Research, 42, Article No. 109.
https://doi.org/10.1186/s13046-023-02685-2
[94] Li, Q., Wu, M., Fang, G., Li, K., Cui, W., Li, L., et al. (2021) MicroRNA-186-5p Downregulation Inhibits Osteoarthritis Development by Targeting MAPK1. Molecular Medicine Reports, 23, Article No. 253.
https://doi.org/10.3892/mmr.2021.11892
[95] Lu, X., Xu, Y., Li, X., Wang, J., Wang, L., Hu, X., et al. (2024) Selective STAT3 Inhibitor STX-0119 Alleviates Osteoarthritis Progression by Modulating the STAT3/PPARγ Signaling Pathway. Biochemical Pharmacology, 227, Article ID: 116420.
https://doi.org/10.1016/j.bcp.2024.116420
[96] He, E., Sui, H., Wang, H., Zhao, X., Guo, W., Dai, Z., et al. (2024) Interleukin-19 in Bone Marrow Contributes to Bone Loss via Suppressing Osteogenic Differentiation Potential of BMSCs in Old Mice. Stem Cell Reviews and Reports, 20, 1311-1324.
https://doi.org/10.1007/s12015-024-10709-3
[97] Liu, H., Liu, H., Yang, Q. and Fan, Z. (2024) LncRNA SNHG1 Enhances Cartilage Regeneration by Modulating Chondrogenic Differentiation and Angiogenesis Potentials of JBMMSCs via Mitochondrial Function Regulation. Stem Cell Research & Therapy, 15, Article No. 177.
https://doi.org/10.1186/s13287-024-03793-2
[98] Chen, H., Ji, X., Lee, W., Shi, Y., Li, B., Abel, D., et al. (2019) Increased Glycolysis Mediates Wnt7b‐Induced Bone Formation. The FASEB Journal, 33, 7810-7821.
https://doi.org/10.1096/fj.201900201rr
[99] Qi, B., Li, C., Cai, X., Pu, L., Guo, M., Tang, Z., et al. (2023) Bioinformatics-Based Analysis of Key Genes in Steroid-Induced Osteonecrosis of the Femoral Head That Are Associated with Copper Metabolism. Biomedicines, 11, Article 873.
https://doi.org/10.3390/biomedicines11030873
[100] Wu, Z., Wen, Y., Fan, G., He, H., Zhou, S. and Chen, L. (2021) HEMGN and SLC2A1 Might Be Potential Diagnostic Biomarkers of Steroid-Induced Osteonecrosis of Femoral Head: Study Based on WGCNA and DEGs Screening. BMC Musculoskeletal Disorders, 22, Article No. 85.
https://doi.org/10.1186/s12891-021-03958-7