[1]
|
Barney, J., Piuzzi, N.S. and Akhondi, H. (2023) Femoral Head Avascular Necrosis. StatPearls.
|
[2]
|
Tan, B., Li, W., Zeng, P., Guo, H., Huang, Z., Fu, F., et al. (2020) Epidemiological Study Based on China Osteonecrosis of the Femoral Head Database. Orthopaedic Surgery, 13, 153-160. https://doi.org/10.1111/os.12857
|
[3]
|
Zhang, Q., Li, Z., Gao, F. and Sun, W. (2018) Pericollapse Stage of Osteonecrosis of the Femoral Head: A Last Chance for Joint Preservation. Chinese Medical Journal, 131, 2589-2598. https://doi.org/10.4103/0366-6999.244111
|
[4]
|
Bai, R., Feng, W., Liu, W.L., Zhao, Z.H.Q., Zhao, A.Q., Wang, Y., et al. (2016) Roles of Osteocyte Apoptosis in Steroid-Induced Avascular Necrosis of the Femoral Head. Genetics and Molecular Research, 15, gmr.15017529. https://doi.org/10.4238/gmr.15017529
|
[5]
|
Chang, C., Greenspan, A. and Gershwin, M.E. (2020) The Pathogenesis, Diagnosis and Clinical Manifestations of Steroid-Induced Osteonecrosis. Journal of Autoimmunity, 110, Article ID: 102460. https://doi.org/10.1016/j.jaut.2020.102460
|
[6]
|
Zhu, S., Zhuang, J., Wu, Q., Liu, Z., Liao, C., Luo, S., et al. (2018) Advanced Oxidation Protein Products Induce Pre‐osteoblast Apoptosis through a Nicotinamide Adenine Dinucleotide Phosphate Oxidase‐Dependent, Mitogen‐Activated Protein Kinases‐Mediated Intrinsic Apoptosis Pathway. Aging Cell, 17, e12764. https://doi.org/10.1111/acel.12764
|
[7]
|
章喻, 王利波, 戴薇薇. 糖皮质激素与铁死亡[J]. 生理科学进展, 2022, 53(1): 76-81.
|
[8]
|
Zheng, H., Jiang, J., Xu, S., Liu, W., Xie, Q., Cai, X., et al. (2021) Nanoparticle-Induced Ferroptosis: Detection Methods, Mechanisms and Applications. Nanoscale, 13, 2266-2285. https://doi.org/10.1039/d0nr08478f
|
[9]
|
Hassannia, B., Van Coillie, S. and Vanden Berghe, T. (2021) Ferroptosis: Biological Rust of Lipid Membranes. Antioxidants & Redox Signaling, 35, 487-509. https://doi.org/10.1089/ars.2020.8175
|
[10]
|
Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88. https://doi.org/10.1038/s41419-020-2298-2
|
[11]
|
Battaglia, A.M., Chirillo, R., Aversa, I., Sacco, A., Costanzo, F. and Biamonte, F. (2020) Ferroptosis and Cancer: Mitochondria Meet the “Iron Maiden” Cell Death. Cells, 9, Article 1505. https://doi.org/10.3390/cells9061505
|
[12]
|
Bannai, S. and Kitamura, E. (1980) Transport Interaction of L-Cystine and L-Glutamate in Human Diploid Fibroblasts in Culture. Journal of Biological Chemistry, 255, 2372-2376. https://doi.org/10.1016/s0021-9258(19)85901-x
|
[13]
|
Dolma, S., Lessnick, S.L., Hahn, W.C. and Stockwell, B.R. (2003) Identification of Genotype-Selective Antitumor Agents Using Synthetic Lethal Chemical Screening in Engineered Human Tumor Cells. Cancer Cell, 3, 285-296. https://doi.org/10.1016/s1535-6108(03)00050-3
|
[14]
|
Yang, W.S. and Stockwell, B.R. (2008) Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-Ras-Harboring Cancer Cells. Chemistry & Biology, 15, 234-245. https://doi.org/10.1016/j.chembiol.2008.02.010
|
[15]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
|
[16]
|
Chen, H., Han, Z., Wang, Y., Su, J., Lin, Y., Cheng, X., et al. (2023) Targeting Ferroptosis in Bone-Related Diseases: Facts and Perspectives. Journal of Inflammation Research, 16, 4661-4677. https://doi.org/10.2147/jir.s432111
|
[17]
|
Jing, X., Du, T., Yang, X., Zhang, W., Wang, G., Liu, X., et al. (2020) Desferoxamine Protects against Glucocorticoid‐Induced Osteonecrosis of the Femoral Head via Activating HIF‐1α Expression. Journal of Cellular Physiology, 235, 9864-9875. https://doi.org/10.1002/jcp.29799
|
[18]
|
陶红成, 曾平, 刘金富, 等. 三七总皂苷调控破骨细胞外泌体中差异miRNA表达抑制成骨细胞铁死亡[J]. 中国组织工程研究, 2025, 29(19): 4011-4021. http://kns.cnki.net/kcms/detail/21.1581.R.20240508.1000.014.html
|
[19]
|
Sun, F., Zhou, J.L., Liu, Z.L., Jiang, Z.W. and Peng, H. (2022) Dexamethasone Induces Ferroptosis via P53/SLC7A11/GPX4 Pathway in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Biochemical and Biophysical Research Communications, 602, 149-155. https://doi.org/10.1016/j.bbrc.2022.02.112
|
[20]
|
Zhang, Y., Hu, K., Shang, Z., Yang, X. and Cao, L. (2024) Ferroptosis: Regulatory Mechanisms and Potential Targets for Bone Metabolism: A Review. Medicine (Baltimore), 103, e39158. https://doi.org/10.1097/MD.0000000000039158
|
[21]
|
Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331. https://doi.org/10.1016/j.cell.2013.12.010
|
[22]
|
Jia, M., Qin, D., Zhao, C., Chai, L., Yu, Z., Wang, W., et al. (2020) Redox Homeostasis Maintained by GPX4 Facilitates STING Activation. Nature Immunology, 21, 727-735. https://doi.org/10.1038/s41590-020-0699-0
|
[23]
|
章家皓, 刘予豪, 周驰, 等. 氧化应激促进成骨细胞铁死亡介导激素性股骨头坏死的病理过程[J]. 中国组织工程研究, 2024, 28(20): 3202-3208.
|
[24]
|
郑嘉乾. 股骨头GPX4含量及人参皂苷Rg3调控GPX4对MSCs成骨分化的影响[D]: [硕士学位论文]. 广州: 广州中医药大学, 2021.
|
[25]
|
张绵钰, 韩杰, 曾浩, 等. 中药调控成骨细胞铁死亡治疗激素性股骨头坏死[J]. 中国组织工程研究, 2025, 29(1): 185-192.
|
[26]
|
Khan, R.I., Nirzhor, S.S.R. and Akter, R. (2018) A Review of the Recent Advances Made with SIRT6 and Its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets. Biomolecules, 8, Article 44. https://doi.org/10.3390/biom8030044
|
[27]
|
Fang, L., Zhang, G., Wu, Y., Li, Z., Gao, S. and Zhou, L. (2022) SIRT6 Prevents Glucocorticoid-Induced Osteonecrosis of the Femoral Head in Rats. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 6360133. https://doi.org/10.1155/2022/6360133
|
[28]
|
Li, W., Zhang, W., Sun, H., Li, W., Qin, Y., Wang, L., et al. (2023) Harmine Ameliorates Steroid-Induced Osteonecrosis of the Femoral Head by Modulating Metabolism and Ferroptosis via HIF1-α. Fundamental Research. https://doi.org/10.1016/j.fmre.2023.08.015
|
[29]
|
Cipolla-Neto, J. and Amaral, F.G.D. (2018) Melatonin as a Hormone: New Physiological and Clinical Insights. Endocrine Reviews, 39, 990-1028. https://doi.org/10.1210/er.2018-00084
|
[30]
|
Li, W., Li, W., Zhang, W., Wang, H., Yu, L., Yang, P., et al. (2023) Exogenous Melatonin Ameliorates Steroid-Induced Osteonecrosis of the Femoral Head by Modulating Ferroptosis through GDF15-Mediated Signaling. Stem Cell Research & Therapy, 14, Article No. 171. https://doi.org/10.1186/s13287-023-03371-y
|
[31]
|
余鹏, 孟东方, 李慧英, 等. CA9作为激素性股骨头坏死中软骨铁死亡特征基因的生物信息学鉴定[J]. 中国组织工程研究, 2024, 28(27): 4293-4299.
|
[32]
|
邵学坤, 王成, 王仪, 等. 鹿角多肽调控SLC7A11/GPX4轴抑制地塞米松诱导的成骨细胞铁死亡[J]. 中国组织工程研究, 2025, 29(14): 2875-2881.
|
[33]
|
张聿轲. 激素性股骨头坏死中铁死亡靶点基因模型的筛选与验证研究[D]: [硕士学位论文]. 呼和浩特: 内蒙古医科大学, 2023.
|
[34]
|
梁学振, 骆帝, 李嘉程, 等. 激素性股骨头坏死中的PTGS2和STAT3: 潜在铁死亡相关诊断生物标志物[J]. 中国组织工程研究, 2023, 27(36): 5898-5904.
|
[35]
|
Huang, X., Meng, H., Shou, Z., Zhou, H., Chen, L., Yu, J., et al. (2024) Machine Learning‐Mediated Identification of Ferroptosis‐Related Genes in Osteonecrosis of the Femoral Head. FEBS Open Bio, 14, 455-465. https://doi.org/10.1002/2211-5463.13764
|
[36]
|
Lu, H., Fan, Y., Yan, Q., Chen, Z., Wei, Z., Liu, Y., et al. (2023) Identification and Validation of Ferroptosis-Related Biomarkers in Steroid-Induced Osteonecrosis of the Femoral Head. International Immunopharmacology, 124, Article ID: 110906. https://doi.org/10.1016/j.intimp.2023.110906
|
[37]
|
Liu, J., Han, X., Qu, L. and Du, B. (2023) Identification of Key Ferroptosis-Related Biomarkers in Steroid-Induced Osteonecrosis of the Femoral Head Based on Machine Learning. Journal of Orthopaedic Surgery and Research, 18, Article No. 327. https://doi.org/10.1186/s13018-023-03800-x
|
[38]
|
Chen, N., Meng, Y., Zhan, H. and Li, G. (2023) Identification and Validation of Potential Ferroptosis-Related Genes in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Medicina, 59, Article 297. https://doi.org/10.3390/medicina59020297
|
[39]
|
Luo, Y., Gao, X., Zou, L., Lei, M., Feng, J. and Hu, Z. (2021) Bavachin Induces Ferroptosis through the STAT3/P53/SLC7A11 Axis in Osteosarcoma Cells. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 1783485. https://doi.org/10.1155/2021/1783485
|
[40]
|
Wang, C., Liu, H., Xu, S., Deng, Y., Xu, B., Yang, T., et al. (2023) Ferroptosis and Neurodegenerative Diseases: Insights into the Regulatory Roles of SLC7A11. Cellular and Molecular Neurobiology, 43, 2627-2642. https://doi.org/10.1007/s10571-023-01343-7
|
[41]
|
Deng, X., Lin, B., Wang, F., Xu, P. and Wang, N. (2024) Mangiferin Attenuates Osteoporosis by Inhibiting Osteoblastic Ferroptosis through Keap1/Nrf2/SLC7A11/GPX4 Pathway. Phytomedicine, 124, Article ID: 155282. https://doi.org/10.1016/j.phymed.2023.155282
|
[42]
|
Schipani, E., Ryan, H.E., Didrickson, S., Kobayashi, T., Knight, M. and Johnson, R.S. (2001) Hypoxia in Cartilage: HIF-1α Is Essential for Chondrocyte Growth Arrest and Survival. Genes & Development, 15, 2865-2876. https://doi.org/10.1101/gad.934301
|
[43]
|
Bentovim, L., Amarilio, R. and Zelzer, E. (2012) HIF1α Is a Central Regulator of Collagen Hydroxylation and Secretion under Hypoxia during Bone Development. Development, 139, 4473-4483. https://doi.org/10.1242/dev.083881
|
[44]
|
Zhang, W., Xia, C., Qu, Y., Li, J., Liu, J., Ou, S., et al. (2024) MicroRNA-18a Regulates the Pyroptosis, Apoptosis, and Necroptosis (PANoptosis) of Osteoblasts Induced by Tumor Necrosis Factor-α via Hypoxia-Inducible Factor-1α. International Immunopharmacology, 128, Article ID: 111453. https://doi.org/10.1016/j.intimp.2023.111453
|
[45]
|
Yang, S., Kim, J., Ryu, J., Oh, H., Chun, C., Kim, B.J., et al. (2010) Hypoxia-Inducible Factor-2α Is a Catabolic Regulator of Osteoarthritic Cartilage Destruction. Nature Medicine, 16, 687-693. https://doi.org/10.1038/nm.2153
|
[46]
|
Hong, S.W. and Kang, J. (2022) Growth Differentiation Factor-15 as a Modulator of Bone and Muscle Metabolism. Frontiers in Endocrinology, 13, Article 948176. https://doi.org/10.3389/fendo.2022.948176
|
[47]
|
Chen, J., Cui, Z., Wang, Y., Lyu, L., Feng, C., Feng, D., et al. (2022) Cyclic Polypeptide D7 Protects Bone Marrow Mesenchymal Cells and Promotes Chondrogenesis during Osteonecrosis of the Femoral Head via Growth Differentiation Factor 15-Mediated Redox Signaling. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3182368. https://doi.org/10.1155/2022/3182368
|
[48]
|
Wykoff, C.C., Beasley, N.J., Watson, P.H., et al. (2000) Hypoxia-Inducible Expression of Tumor-Associated Carbonic Anhydrases. Cancer Research, 60, 7075-7083.
|
[49]
|
Marchini Armentano, G., Pieretti, J.C., Falconi, C.A., Barozzi Seabra, A. and Carneiro-Ramos, M.S. (2024) Nitric Oxide Plays a Dual Role in Cardiorenal Syndrome in Vitro Model. Cellular Physiology and Biochemistry, 58, 33-48. https://doi.org/10.33594/000000681
|
[50]
|
Yan, Y., Lu, A., Dou, Y., Zhang, Z., Wang, X., Zhai, L., et al. (2023) Nanomedicines Reprogram Synovial Macrophages by Scavenging Nitric Oxide and Silencing CA9 in Progressive Osteoarthritis. Advanced Science, 10, e2207490. https://doi.org/10.1002/advs.202207490
|
[51]
|
Jiang, N., Liu, J., Guan, C., Ma, C., An, J. and Tang, X. (2022) Thioredoxin-Interacting Protein: A New Therapeutic Target in Bone Metabolism Disorders? Frontiers in Immunology, 13, Article 955128. https://doi.org/10.3389/fimmu.2022.955128
|
[52]
|
Zhou, W., Zhu, C. and Zhou, F. (2024) TXNIP Mediated by EZH2 Regulated Osteogenic Differentiation in Hbmscs and MC3T3-E1 Cells through the Modulation of Oxidative Stress and PI3K/AKT/Nrf2 Pathway. Connective Tissue Research, 65, 293-303. https://doi.org/10.1080/03008207.2024.2358361
|
[53]
|
Wang, Y. and Yi, Y. (2024) CISD2 Downregulation Participates in the Ferroptosis Process of Human Ovarian SKOV-3 Cells through Modulating the Wild Type P53-Mediated GLS2/SAT1/SLC7A11 and Gpx4/TRF Signaling Pathway. Tissue and Cell, 89, Article ID: 102458. https://doi.org/10.1016/j.tice.2024.102458
|
[54]
|
Li, Y., Xu, B., Ren, X., Wang, L., Xu, Y., Zhao, Y., et al. (2022) Inhibition of CISD2 Promotes Ferroptosis through Ferritinophagy-Mediated Ferritin Turnover and Regulation of p62-Keap1-NRF2 Pathway. Cellular & Molecular Biology Letters, 27, Article No. 81. https://doi.org/10.1186/s11658-022-00383-z
|
[55]
|
Qiu, C., Li, Z. and Peng, P. (2024) Human Umbilical Cord Mesenchymal Stem Cells Protect MC3T3-E1 Osteoblasts from Dexamethasone-Induced Apoptosis via Induction of the NRF2-Are Signaling Pathway. Regenerative Therapy, 27, 1-11. https://doi.org/10.1016/j.reth.2024.02.009
|
[56]
|
Li, Z., Chen, C., Zhu, X., Li, Y., Yu, R. and Xu, W. (2018) Glycyrrhizin Suppresses Rankl-Induced Osteoclastogenesis and Oxidative Stress through Inhibiting NF-κB and MAPK and Activating AMPK/Nrf2. Calcified Tissue International, 103, 324-337. https://doi.org/10.1007/s00223-018-0425-1
|
[57]
|
Choi, Y.J., Oh, H.R., Choi, M.R., Gwak, M., An, C.H., Chung, Y.J., et al. (2014) Frameshift Mutation of a Histone Methylation-Related Gene SETD1B and Its Regional Heterogeneity in Gastric and Colorectal Cancers with High Microsatellite Instability. Human Pathology, 45, 1674-1681. https://doi.org/10.1016/j.humpath.2014.04.013
|
[58]
|
Förster, B., Demangel, C. and Thye, T. (2020) Mycolactone Induces Cell Death by SETD1B-Dependent Degradation of Glutathione. PLOS Neglected Tropical Diseases, 14, e0008709. https://doi.org/10.1371/journal.pntd.0008709
|
[59]
|
Gawargi, F.I. and Mishra, P.K. (2024) Regulation of Cardiac Ferroptosis in Diabetic Human Heart Failure: Uncovering Molecular Pathways and Key Targets. Cell Death Discovery, 10, Article No. 268. https://doi.org/10.1038/s41420-024-02044-w
|
[60]
|
Yin, Z., Zhang, J., Zhao, M., et al. (2024) EDIL3/Del-1 Prevents Aortic Dissection through Enhancing Internalization and Degradation of Apoptotic Vascular Smooth Muscle Cells. Autophagy, 20, 2405-2425.
|
[61]
|
Sevim-Wunderlich, S., Dang, T., Rossius, J., Schnütgen, F. and Kühn, R. (2024) A Mouse Model of X-Linked Chronic Granulomatous Disease for the Development of Crispr/cas9 Gene Therapy. Genes, 15, Article 706. https://doi.org/10.3390/genes15060706
|
[62]
|
Ciesielska, A., Matyjek, M. and Kwiatkowska, K. (2020) TLR4 and CD14 Trafficking and Its Influence on LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 78, 1233-1261. https://doi.org/10.1007/s00018-020-03656-y
|
[63]
|
Cui, H., Li, J., Li, X., Su, T., Wen, P., Wang, C., et al. (2024) TNF-α Promotes Osteocyte Necroptosis by Upregulating TLR4 in Postmenopausal Osteoporosis. Bone, 182, Article ID: 117050. https://doi.org/10.1016/j.bone.2024.117050
|
[64]
|
Zhang, Y. and Zhao, Q. (2020) AEG-1 Deletion Promotes Cartilage Repair and Modulates Bone Remodeling-Related Cytokines via TLR4/MyD88/NF-κB Inhibition in Ovariectomized Rats with Osteoporosis. Annals of Translational Medicine, 8, 1298-1298. https://doi.org/10.21037/atm-20-5842
|
[65]
|
Zhao, C., Yu, T., Dou, Q., Guo, Y., Yang, X. and Chen, Y. (2020) Knockout of TLR4 Promotes Fracture Healing by Activating Wnt/β-Catenin Signaling Pathway. Pathology—Research and Practice, 216, Article ID: 152766. https://doi.org/10.1016/j.prp.2019.152766
|
[66]
|
Huang, B., Nie, G., Dai, X., Cui, T., Pu, W. and Zhang, C. (2024) Environmentally Relevant Levels of Cd and Mo Coexposure Induces Ferroptosis and Excess Ferritinophagy through AMPK/mTOR Axis in Duck Myocardium. Environmental Toxicology, 39, 4196-4206. https://doi.org/10.1002/tox.24302
|
[67]
|
Zhong, L., Sun, Y., Wang, C., Liu, R., Ru, W., Dai, W., et al. (2024) SP1 Regulates BMSC Osteogenic Differentiation through the miR-133a-3p/MAPK3 Axis: SP1 Regulates Osteogenic Differentiation of BMSCs. Journal of Orthopaedic Surgery and Research, 19, Article No. 396. https://doi.org/10.1186/s13018-024-04889-4
|
[68]
|
Zhang, J., Mo, L., Huang, H., Xu, J., Fan, Y., Li, W., et al. (2022) Loureirin B Downregulates Osteoclast Differentiation of Bone Marrow Macrophages by Targeting the MAPK Signaling Pathway. Scientific Reports, 12, Article No. 14382. https://doi.org/10.1038/s41598-022-18287-5
|
[69]
|
Yang, Y., Zhou, X., Li, Y., Chen, A., Liang, W., Liang, G., et al. (2019) CXCL2 Attenuates Osteoblast Differentiation by Inhibiting the ERK1/2 Signaling Pathway. Journal of Cell Science, 132, jcs230490. https://doi.org/10.1242/jcs.230490
|
[70]
|
Ma, T., Chen, T., Li, P., Ye, Z., Zhai, W., Jia, L., et al. (2016) Heme Oxygenase-1 (HO-1) Protects Human Lens Epithelial Cells (SRA01/04) against Hydrogen Peroxide (h2o2)-Induced Oxidative Stress and Apoptosis. Experimental Eye Research, 146, 318-329. https://doi.org/10.1016/j.exer.2016.02.013
|
[71]
|
Zwerina, J., Tzima, S., Hayer, S., Redlich, K., Hoffmann, O., Hanslik‐Schnabel, B., et al. (2005) Heme Oxygenase 1 (HO‐1) Regulates Osteoclastogenesis and Bone Resorption. The FASEB Journal, 19, 2011-2013. https://doi.org/10.1096/fj.05-4278fje
|
[72]
|
Barbagallo, I., Vanella, A., Peterson, S.J., Kim, D.H., Tibullo, D., Giallongo, C., et al. (2009) Overexpression of Heme Oxygenase-1 Increases Human Osteoblast Stem Cell Differentiation. Journal of Bone and Mineral Metabolism, 28, 276-288. https://doi.org/10.1007/s00774-009-0134-y
|
[73]
|
Chu, M., Chen, G., Chen, K., Zhu, P., Wang, Z., Qian, Z., et al. (2024) Heme Oxygenase 1 Linked to Inactivation of Subchondral Osteoclasts in Osteoarthritis. Journal of Zhejiang University-SCIENCE B, 25, 513-528. https://doi.org/10.1631/jzus.b2300303
|
[74]
|
Tao, L., Wang, J., Wang, K., Liu, Q., Li, H., Xu, S., et al. (2024) Exerkine FNDC5/Irisin-Enriched Exosomes Promote Proliferation and Inhibit Ferroptosis of Osteoblasts through Interaction with Caveolin‐1. Aging Cell, 23, e14181. https://doi.org/10.1111/acel.14181
|
[75]
|
Liu, X., Ji, C., Xu, L., Yu, T., Dong, C. and Luo, J. (2018) Hmox1 Promotes Osteogenic Differentiation at the Expense of Reduced Adipogenic Differentiation Induced by BMP9 in C3H10T1/2 Cells. Journal of Cellular Biochemistry, 119, 5503-5516. https://doi.org/10.1002/jcb.26714
|
[76]
|
Sakauchi, C., Wakatsuki, H., Ichijo, H. and Hattori, K. (2017) Pleiotropic Properties of ASK1. Biochimica et Biophysica Acta (BBA)—General Subjects, 1861, 3030-3038. https://doi.org/10.1016/j.bbagen.2016.09.028
|
[77]
|
Lu, Y., Liu, Y. and Zheng, M. (2022) The Role and Regulation of Apoptosis Signal-Regulated Kinase 1 in Liver Disease. Molecular Biology Reports, 49, 10905-10914. https://doi.org/10.1007/s11033-022-07783-6
|
[78]
|
Han, Y., Feng, H., Sun, J., Liang, X., Wang, Z., Xing, W., et al. (2019) Lkb1 Deletion in Periosteal Mesenchymal Progenitors Induces Osteogenic Tumors through Mtorc1 Activation. Journal of Clinical Investigation, 129, 1895-1909. https://doi.org/10.1172/jci124590
|
[79]
|
Lai, L.P., Lotinun, S., Bouxsein, M.L., Baron, R. and McMahon, A.P. (2014) Stk11 (Lkb1) Deletion in the Osteoblast Lineage Leads to High Bone Turnover, Increased Trabecular Bone Density and Cortical Porosity. Bone, 69, 98-108. https://doi.org/10.1016/j.bone.2014.09.010
|
[80]
|
Xie, J., Zhang, H., Wang, K., Ni, J., Ma, X., Khoury, C.J., et al. (2023) M6A-Mediated-Upregulation of lncRNA BLACAT3 Promotes Bladder Cancer Angiogenesis and Hematogenous Metastasis through YBX3 Nuclear Shuttling and Enhancing NCF2 Transcription. Oncogene, 42, 2956-2970. https://doi.org/10.1038/s41388-023-02814-3
|
[81]
|
Sánchez-de-Diego, C., Pedrazza, L., Pimenta-Lopes, C., Martinez-Martinez, A., Dahdah, N., Valer, J.A., et al. (2021) NRF2 Function in Osteocytes Is Required for Bone Homeostasis and Drives Osteocytic Gene Expression. Redox Biology, 40, Article ID: 101845. https://doi.org/10.1016/j.redox.2020.101845
|
[82]
|
Ma, Y., Feng, J., Xing, X., Zhou, B., Li, S., Zhang, W., et al. (2016) miR-1908 Overexpression Inhibits Proliferation, Changing Akt Activity and P53 Expression in Hypoxic NSCLC Cells. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 24, 9-15. https://doi.org/10.3727/096504016x14570992647168
|
[83]
|
Wiza, C., Nascimento, E.B.M. and Ouwens, D.M. (2012) Role of PRAS40 in Akt and mTOR Signaling in Health and Disease. American Journal of Physiology-Endocrinology and Metabolism, 302, E1453-E1460. https://doi.org/10.1152/ajpendo.00660.2011
|
[84]
|
Malla, R., Ashby, C.R., Narayanan, N.K., Narayanan, B., Faridi, J.S. and Tiwari, A.K. (2015) Proline-Rich AKT Substrate of 40-kDa (PRAS40) in the Pathophysiology of Cancer. Biochemical and Biophysical Research Communications, 463, 161-166. https://doi.org/10.1016/j.bbrc.2015.05.041
|
[85]
|
He, X., Wang, D., Yi, Y., Tan, Y., Wu, M., Wang, H., et al. (2023) δ-Tocotrienol Preconditioning Improves the Capability of Bone Marrow-Derived Mesenchymal Stem Cells in Promoting Wound Healing by Inhibiting BACH1-Related Ferroptosis. Cell Death Discovery, 9, Article No. 349. https://doi.org/10.1038/s41420-023-01653-1
|
[86]
|
Wada, S., Kanzaki, H., Katsumata, Y., Yamaguchi, Y., Narimiya, T., Attucks, O.C., et al. (2020) Bach1 Inhibition Suppresses Osteoclastogenesis via Reduction of the Signaling via Reactive Oxygen Species by Reinforced Antioxidation. Frontiers in Cell and Developmental Biology, 8, Article 740. https://doi.org/10.3389/fcell.2020.00740
|
[87]
|
Yuan, Z., Li, J., Zou, X., Liu, C., Lu, J., Ni, C., et al. (2023) Knockdown of Bach1 Protects Periodontal Bone Regeneration from Inflammatory Damage. Journal of Cellular and Molecular Medicine, 27, 3465-3477. https://doi.org/10.1111/jcmm.17916
|
[88]
|
Zhang, J., Ye, Z., Morgenstern, R., Townsend, D.M. and Tew, K.D. (2023) Microsomal Glutathione Transferase 1 in Cancer and the Regulation of Ferroptosis. Advances in Cancer Research, 160, 107-132. https://doi.org/10.1016/bs.acr.2023.05.001
|
[89]
|
Li, Y., Xu, X., Wang, X., Zhang, C., Hu, A. and Li, Y. (2023) MGST1 Expression Is Associated with Poor Prognosis, Enhancing the Wnt/β-Catenin Pathway via Regulating AKT and Inhibiting Ferroptosis in Gastric Cancer. ACS Omega, 8, 23683-23694. https://doi.org/10.1021/acsomega.3c01782
|
[90]
|
Jain, P., Karthikeyan, C., Moorthy, N.S., Waiker, D., Jain, A. and Trivedi, P. (2014) Human Cdc2-Like Kinase 1 (CLK1): A Novel Target for Alzheimer’s Disease. Current Drug Targets, 15, 539-550. https://doi.org/10.2174/1389450115666140226112321
|
[91]
|
Mullin, S. and Schapira, A. (2013) Α-Synuclein and Mitochondrial Dysfunction in Parkinson’s Disease. Molecular Neurobiology, 47, 587-597. https://doi.org/10.1007/s12035-013-8394-x
|
[92]
|
Calabrese, G., Mesner, L.D., Foley, P.L., Rosen, C.J. and Farber, C.R. (2016) Network Analysis Implicates α-Synuclein (Snca) in the Regulation of Ovariectomy-Induced Bone Loss. Scientific Reports, 6, Article No. 29475. https://doi.org/10.1038/srep29475
|
[93]
|
Yu, L., Sui, B., Zhang, X., Liu, J., Hao, X. and Zheng, L. (2023) miR-92a-1-5p Enriched Prostate Cancer Extracellular Vesicles Regulate Osteoclast Function via MAPK1 and FoxO1. Journal of Experimental & Clinical Cancer Research, 42, Article No. 109. https://doi.org/10.1186/s13046-023-02685-2
|
[94]
|
Li, Q., Wu, M., Fang, G., Li, K., Cui, W., Li, L., et al. (2021) MicroRNA-186-5p Downregulation Inhibits Osteoarthritis Development by Targeting MAPK1. Molecular Medicine Reports, 23, Article No. 253. https://doi.org/10.3892/mmr.2021.11892
|
[95]
|
Lu, X., Xu, Y., Li, X., Wang, J., Wang, L., Hu, X., et al. (2024) Selective STAT3 Inhibitor STX-0119 Alleviates Osteoarthritis Progression by Modulating the STAT3/PPARγ Signaling Pathway. Biochemical Pharmacology, 227, Article ID: 116420. https://doi.org/10.1016/j.bcp.2024.116420
|
[96]
|
He, E., Sui, H., Wang, H., Zhao, X., Guo, W., Dai, Z., et al. (2024) Interleukin-19 in Bone Marrow Contributes to Bone Loss via Suppressing Osteogenic Differentiation Potential of BMSCs in Old Mice. Stem Cell Reviews and Reports, 20, 1311-1324. https://doi.org/10.1007/s12015-024-10709-3
|
[97]
|
Liu, H., Liu, H., Yang, Q. and Fan, Z. (2024) LncRNA SNHG1 Enhances Cartilage Regeneration by Modulating Chondrogenic Differentiation and Angiogenesis Potentials of JBMMSCs via Mitochondrial Function Regulation. Stem Cell Research & Therapy, 15, Article No. 177. https://doi.org/10.1186/s13287-024-03793-2
|
[98]
|
Chen, H., Ji, X., Lee, W., Shi, Y., Li, B., Abel, D., et al. (2019) Increased Glycolysis Mediates Wnt7b‐Induced Bone Formation. The FASEB Journal, 33, 7810-7821. https://doi.org/10.1096/fj.201900201rr
|
[99]
|
Qi, B., Li, C., Cai, X., Pu, L., Guo, M., Tang, Z., et al. (2023) Bioinformatics-Based Analysis of Key Genes in Steroid-Induced Osteonecrosis of the Femoral Head That Are Associated with Copper Metabolism. Biomedicines, 11, Article 873. https://doi.org/10.3390/biomedicines11030873
|
[100]
|
Wu, Z., Wen, Y., Fan, G., He, H., Zhou, S. and Chen, L. (2021) HEMGN and SLC2A1 Might Be Potential Diagnostic Biomarkers of Steroid-Induced Osteonecrosis of Femoral Head: Study Based on WGCNA and DEGs Screening. BMC Musculoskeletal Disorders, 22, Article No. 85. https://doi.org/10.1186/s12891-021-03958-7
|