[1]
|
Wei, E.K., Giovannucci, E., Wu, K., Rosner, B., Fuchs, C.S., Willett, W.C., et al. (2003) Comparison of Risk Factors for Colon and Rectal Cancer. International Journal of Cancer, 108, 433-442. https://doi.org/10.1002/ijc.11540
|
[2]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[3]
|
Siegel, R.L., Miller, K.D., Goding Sauer, A., Fedewa, S.A., Butterly, L.F., Anderson, J.C., et al. (2020) Colorectal Cancer Statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 145-164. https://doi.org/10.3322/caac.21601
|
[4]
|
Ferlay, J., Colombet, M., Soerjomataram, I., Dyba, T., Randi, G., Bettio, M., et al. (2018) Cancer Incidence and Mortality Patterns in Europe: Estimates for 40 Countries and 25 Major Cancers in 2018. European Journal of Cancer, 103, 356-387. https://doi.org/10.1016/j.ejca.2018.07.005
|
[5]
|
Cercek, A., Roxburgh, C.S.D., Strombom, P., Smith, J.J., Temple, L.K.F., Nash, G.M., et al. (2018) Adoption of Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer. JAMA Oncology, 4, e180071. https://doi.org/10.1001/jamaoncol.2018.0071
|
[6]
|
Bigness, A., Imanirad, I., Sahin, I.H., Xie, H., Frakes, J., Hoffe, S., et al. (2021) Locally Advanced Rectal Adenocarcinoma: Treatment Sequences, Intensification, and Rectal Organ Preservation. CA: A Cancer Journal for Clinicians, 71, 198-208. https://doi.org/10.3322/caac.21661
|
[7]
|
Conroy, T., Bosset, J., Etienne, P., Rio, E., François, É., Mesgouez-Nebout, N., et al. (2021) Neoadjuvant Chemotherapy with FOLFIRINOX and Preoperative Chemoradiotherapy for Patients with Locally Advanced Rectal Cancer (UNICANCER-PRODIGE 23): A Multicentre, Randomised, Open-Label, Phase 3 Trial. The Lancet Oncology, 22, 702-715. https://doi.org/10.1016/s1470-2045(21)00079-6
|
[8]
|
Li, Y., Wang, J., Ma, X., Tan, L., Yan, Y., Xue, C., et al. (2016) A Review of Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. International Journal of Biological Sciences, 12, 1022-1031. https://doi.org/10.7150/ijbs.15438
|
[9]
|
Zou, H., Yu, J., Wei, Y., Wu, J. and Xu, Q. (2018) Response to Neoadjuvant Chemoradiotherapy for Locally Advanced Rectum Cancer: Texture Analysis of Dynamic Contrast‐Enhanced MRI. Journal of Magnetic Resonance Imaging, 49, 885-893. https://doi.org/10.1002/jmri.26254
|
[10]
|
Vandendorpe, B., Durot, C., Lebellec, L., Le Deley, M., Sylla, D., Bimbai, A., et al. (2019) Prognostic Value of the Texture Analysis Parameters of the Initial Computed Tomographic Scan for Response to Neoadjuvant Chemoradiation Therapy in Patients with Locally Advanced Rectal Cancer. Radiotherapy and Oncology, 135, 153-160. https://doi.org/10.1016/j.radonc.2019.03.011
|
[11]
|
Dilek, O., Akkaya, H., Parlatan, C., Koseci, T., Tas, Z.A., Soker, G., et al. (2021) Can the Mesorectal Fat Tissue Volume Be Used as a Predictive Factor in Foreseeing the Response to Neoadjuvant Chemoradiotherapy in Rectum Cancer? A CT-Based Preliminary Study. Abdominal Radiology, 46, 2415-2422. https://doi.org/10.1007/s00261-021-02951-x
|
[12]
|
Olsen, A.S.F., Gundestrup, A.K., Kleif, J., Thanon, T. and Bertelsen, C.A. (2020) Accuracy of Preoperative Staging with Multidetector Computed Tomography in Colon Cancer. Colorectal Disease, 23, 680-688. https://doi.org/10.1111/codi.15415
|
[13]
|
Joye, I., Deroose, C.M., Vandecaveye, V. and Haustermans, K. (2014) The Role of Diffusion-Weighted MRI and 18F-FDG PET/CT in the Prediction of Pathologic Complete Response after Radiochemotherapy for Rectal Cancer: A Systematic Review. Radiotherapy and Oncology, 113, 158-165. https://doi.org/10.1016/j.radonc.2014.11.026
|
[14]
|
Patel, U.B., Brown, G., Machado, I., Santos-Cores, J., Pericay, C., Ballesteros, E., et al. (2017) MRI Assessment and Outcomes in Patients Receiving Neoadjuvant Chemotherapy Only for Primary Rectal Cancer: Long-Term Results from the GEMCAD 0801 Trial. Annals of Oncology, 28, 344-353. https://doi.org/10.1093/annonc/mdw616
|
[15]
|
Beets-Tan, R., Beets, G., Vliegen, R., Kessels, A., Boven, H.V., Bruine, A.D., et al. (2001) Accuracy of Magnetic Resonance Imaging in Prediction of Tumour-Free Resection Margin in Rectal Cancer Surgery. The Lancet, 357, 497-504. https://doi.org/10.1016/s0140-6736(00)04040-x
|
[16]
|
Gollub, M.J., Schwartz, L.H. and Akhurst, T. (2007) Update on Colorectal Cancer Imaging. Radiologic Clinics of North America, 45, 85-118. https://doi.org/10.1016/j.rcl.2006.10.003
|
[17]
|
Xiao, Y., Xu, D., Ju, H., Yang, C., Wang, L., Wang, J., et al. (2018) Application Value of Biplane Transrectal Ultrasonography Plus Ultrasonic Elastosonography and Contrast-Enhanced Ultrasonography in Preoperative T Staging after Neoadjuvant Chemoradiotherapy for Rectal Cancer. European Journal of Radiology, 104, 20-25. https://doi.org/10.1016/j.ejrad.2018.04.027
|
[18]
|
Crimì, F., Capelli, G., Spolverato, G., Bao, Q.R., Florio, A., Milite Rossi, S., et al. (2020) MRI T2-Weighted Sequences-Based Texture Analysis (TA) as a Predictor of Response to Neoadjuvant Chemo-Radiotherapy (nCRT) in Patients with Locally Advanced Rectal Cancer (LARC). La Radiologia Medica, 125, 1216-1224. https://doi.org/10.1007/s11547-020-01215-w
|
[19]
|
Bakke, K.M., Hole, K.H., Dueland, S., Grøholt, K.K., Flatmark, K., Ree, A.H., et al. (2017) Diffusion-Weighted Magnetic Resonance Imaging of Rectal Cancer: Tumour Volume and Perfusion Fraction Predict Chemoradiotherapy Response and Survival. Acta Oncologica, 56, 813-818. https://doi.org/10.1080/0284186x.2017.1287951
|
[20]
|
Cao, W., Li, B., Gong, J., Hu, M., Li, W., Pan, X., et al. (2020) Diffusion-Weighted Magnetic Resonance Imaging of Mucin Pools in Locally Advanced Rectal Mucinous Adenocarcinoma Predicts Tumor Response to Neoadjuvant Therapy. European Journal of Radiology, 125, Article 108890. https://doi.org/10.1016/j.ejrad.2020.108890
|
[21]
|
Napoletano, M., Mazzucca, D., Prosperi, E., Aisa, M.C., Lupattelli, M., Aristei, C., et al. (2019) Locally Advanced Rectal Cancer: Qualitative and Quantitative Evaluation of Diffusion-Weighted Magnetic Resonance Imaging in Restaging after Neoadjuvant Chemo-Radiotherapy. Abdominal Radiology, 44, 3664-3673. https://doi.org/10.1007/s00261-019-02012-4
|
[22]
|
Liang, C., Chen, M., Zhao, X., Yan, C., Mei, Y. and Xu, Y. (2019) Multiple Mathematical Models of Diffusion-Weighted Magnetic Resonance Imaging Combined with Prognostic Factors for Assessing the Response to Neoadjuvant Chemotherapy and Radiation Therapy in Locally Advanced Rectal Cancer. European Journal of Radiology, 110, 249-255. https://doi.org/10.1016/j.ejrad.2018.12.005
|
[23]
|
Yang, L., Xia, C., Zhao, J., Zhou, X. and Wu, B. (2021) The Value of Intravoxel Incoherent Motion and Diffusion Kurtosis Imaging in the Assessment of Tumor Regression Grade and T Stages after Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer. European Journal of Radiology, 136, Article 109504. https://doi.org/10.1016/j.ejrad.2020.109504
|
[24]
|
Uutela, A., Ovissi, A., Hakkarainen, A., Ristimäki, A., Lundbom, N., Kallio, R., et al. (2021) Treatment Response of Colorectal Cancer Liver Metastases to Neoadjuvant or Conversion Therapy: A Prospective Multicentre Follow-Up Study Using MRI, Diffusion-Weighted Imaging and 1H-MR Spectroscopy Compared with Histology (Subgroup in the RAXO Trial). ESMO Open, 6, Article 100208. https://doi.org/10.1016/j.esmoop.2021.100208
|
[25]
|
Nishie, A., Asayama, Y., Ishigami, K., Ushijima, Y., Takayama, Y., Okamoto, D., et al. (2018) Amide Proton Transfer Imaging to Predict Tumor Response to Neoadjuvant Chemotherapy in Locally Advanced Rectal Cancer. Journal of Gastroenterology and Hepatology, 34, 140-146. https://doi.org/10.1111/jgh.14315
|
[26]
|
Li, N., Dou, L., Zhang, Y., Jin, J., Wang, G., Xiao, Q., et al. (2017) Use of Sequential Endorectal US to Predict the Tumor Response of Preoperative Chemoradiotherapy in Rectal Cancer. Gastrointestinal Endoscopy, 85, 669-674. https://doi.org/10.1016/j.gie.2016.06.042
|
[27]
|
Maas, M., Lambregts, D.M.J., Nelemans, P.J., Heijnen, L.A., Martens, M.H., Leijtens, J.W.A., et al. (2015) Assessment of Clinical Complete Response after Chemoradiation for Rectal Cancer with Digital Rectal Examination, Endoscopy, and MRI: Selection for Organ-Saving Treatment. Annals of Surgical Oncology, 22, 3873-3880. https://doi.org/10.1245/s10434-015-4687-9
|
[28]
|
Tjalma, J.J.J., Koller, M., Linssen, M.D., Hartmans, E., de Jongh, S., Jorritsma-Smit, A., et al. (2019) Quantitative Fluorescence Endoscopy: An Innovative Endoscopy Approach to Evaluate Neoadjuvant Treatment Response in Locally Advanced Rectal Cancer. Gut, 69, 406-410. https://doi.org/10.1136/gutjnl-2019-319755
|
[29]
|
Zhou, J., Zhan, W., Chang, C., Zhang, X., Jia, Y., Dong, Y., et al. (2014) Breast Lesions: Evaluation with Shear Wave Elastography, with Special Emphasis on the “Stiff Rim” Sign. Radiology, 272, 63-72. https://doi.org/10.1148/radiol.14130818
|
[30]
|
Cong, Y., Fan, Z., Dai, Y., Zhang, Z. and Yan, K. (2020) Application Value of Shear Wave Elastography in the Evaluation of Tumor Downstaging for Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy. Journal of Ultrasound in Medicine, 40, 81-89. https://doi.org/10.1002/jum.15378
|
[31]
|
Martin-Gonzalez, P., de Mariscal, E.G., Martino, M.E., Gordaliza, P.M., Peligros, I., Carreras, J.L., et al. (2020) Association of Visual and Quantitative Heterogeneity of 18F-FDG PET Images with Treatment Response in Locally Advanced Rectal Cancer: A Feasibility Study. PLOS ONE, 15, e0242597. https://doi.org/10.1371/journal.pone.0242597
|
[32]
|
Karahan Şen, N.P., Aksu, A. and Kaya, G.Ç. (2020) Value of Volumetric and Textural Analysis in Predicting the Treatment Response in Patients with Locally Advanced Rectal Cancer. Annals of Nuclear Medicine, 34, 960-967. https://doi.org/10.1007/s12149-020-01527-x
|
[33]
|
Kong, J.C., Ryan, J., Akhurst, T., Ngan, S.Y., Michael, M., Tie, J., et al. (2021) The Predictive Value of PET/CT for Distant Recurrences in Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy. Journal of Medical Imaging and Radiation Oncology, 65, 917-924. https://doi.org/10.1111/1754-9485.13315
|
[34]
|
Schurink, N.W., van Kranen, S.R., Berbee, M., van Elmpt, W., Bakers, F.C.H., Roberti, S., et al. (2021) Studying Local Tumour Heterogeneity on MRI and FDG-PET/CT to Predict Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer. European Radiology, 31, 7031-7038. https://doi.org/10.1007/s00330-021-07724-0
|
[35]
|
Sauer, R., Becker, H., Hohenberger, W., Rödel, C., Wittekind, C., Fietkau, R., et al. (2004) Preoperative versus Postoperative Chemoradiotherapy for Rectal Cancer. New England Journal of Medicine, 351, 1731-1740. https://doi.org/10.1056/nejmoa040694
|
[36]
|
Rödel, C., Martus, P., Papadoupolos, T., Füzesi, L., Klimpfinger, M., Fietkau, R., et al. (2005) Prognostic Significance of Tumor Regression after Preoperative Chemoradiotherapy for Rectal Cancer. Journal of Clinical Oncology, 23, 8688-8696. https://doi.org/10.1200/jco.2005.02.1329
|
[37]
|
Zhang, Z., Jiang, X., Zhang, R., Yu, T., Liu, S. and Luo, Y. (2021) Radiomics Signature as a New Biomarker for Preoperative Prediction of Neoadjuvant Chemoradiotherapy Response in Locally Advanced Rectal Cancer. Diagnostic and Interventional Radiology, 27, 308-314. https://doi.org/10.5152/dir.2021.19677
|
[38]
|
Wan, L., Peng, W., Zou, S., Ye, F., Geng, Y., Ouyang, H., et al. (2021) MRI-Based Delta-Radiomics Are Predictive of Pathological Complete Response after Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Academic Radiology, 28, S95-S104. https://doi.org/10.1016/j.acra.2020.10.026
|
[39]
|
Horvat, N., Veeraraghavan, H., Khan, M., Blazic, I., Zheng, J., Capanu, M., et al. (2018) MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiology, 287, 833-843. https://doi.org/10.1148/radiol.2018172300
|
[40]
|
Li, Z., Ma, X., Shen, F., Lu, H., Xia, Y. and Lu, J. (2021) Evaluating Treatment Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer Using Various MRI-Based Radiomics Models. BMC Medical Imaging, 21, Article No. 30. https://doi.org/10.1186/s12880-021-00560-0
|
[41]
|
Giannini, V., Mazzetti, S., Bertotto, I., Chiarenza, C., Cauda, S., Delmastro, E., et al. (2019) Predicting Locally Advanced Rectal Cancer Response to Neoadjuvant Therapy with 18F-FDG PET and MRI Radiomics Features. European Journal of Nuclear Medicine and Molecular Imaging, 46, 878-888. https://doi.org/10.1007/s00259-018-4250-6
|
[42]
|
Shaish, H., Aukerman, A., Vanguri, R., Spinelli, A., Armenta, P., Jambawalikar, S., et al. (2020) Radiomics of MRI for Pretreatment Prediction of Pathologic Complete Response, Tumor Regression Grade, and Neoadjuvant Rectal Score in Patients with Locally Advanced Rectal Cancer Undergoing Neoadjuvant Chemoradiation: An International Multicenter Study. European Radiology, 30, 6263-6273. https://doi.org/10.1007/s00330-020-06968-6
|
[43]
|
Liu, X., Zhang, D., Liu, Z., Li, Z., Xie, P., Sun, K., et al. (2021) Deep Learning Radiomics-Based Prediction of Distant Metastasis in Patients with Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy: A Multicentre Study. eBioMedicine, 69, Article 103442. https://doi.org/10.1016/j.ebiom.2021.103442
|
[44]
|
Zhang, X., Wang, L., Zhu, H., Li, Z., Ye, M., Li, X., et al. (2020) Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI. Radiology, 296, 56-64. https://doi.org/10.1148/radiol.2020190936
|
[45]
|
Jin, C., Yu, H., Ke, J., Ding, P., Yi, Y., Jiang, X., et al. (2021) Predicting Treatment Response from Longitudinal Images Using Multi-Task Deep Learning. Nature Communications, 12, Article No. 1851. https://doi.org/10.1038/s41467-021-22188-y
|
[46]
|
Nie, K., Shi, L., Chen, Q., Hu, X., Jabbour, S.K., Yue, N., et al. (2016) Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome Based on Radiomics of Multiparametric MRI. Clinical Cancer Research, 22, 5256-5264. https://doi.org/10.1158/1078-0432.ccr-15-2997
|
[47]
|
Feng, L., Liu, Z., Li, C., Li, Z., Lou, X., Shao, L., et al. (2022) Development and Validation of a Radiopathomics Model to Predict Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer: A Multicentre Observational Study. The Lancet Digital Health, 4, e8-e17. https://doi.org/10.1016/s2589-7500(21)00215-6
|