影像学在直肠癌新辅助治疗疗效预测中的研究进展
Research Progress of Imaging Technology in Predicting the Efficacy of Neoadjuvant Therapy for Rectal Cancer
DOI: 10.12677/acm.2025.151238, PDF, HTML, XML,    国家自然科学基金支持
作者: 杨银蕊, 张彩霞, 普宗胜, 李振辉, 王关顺*:云南省肿瘤医院/昆明医科大学第三附属医院放射科,云南 昆明
关键词: 直肠癌新辅助治疗肿瘤影像组学深度学习Rectal Cancer Neoadjuvant Therapy Tumor Radiomics Deep Learning
摘要: 目的:了解影像学在直肠癌新辅助治疗疗效预测中的研究进展。方法:检索近年来有关直肠癌新辅助治疗疗效预测的相关文献并进行综述。结果:讨论了对于影像学新技术在直肠癌疗效预测中的最新进展,并且评估了新辅助治疗对直肠癌疗效的常用成像方法及新技术的优点和缺点。结论:对于临床治疗而言,我们应该准确地利用各种影像学方法的优势,采用综合的方法来对直肠癌新辅助治疗疗效进行全方位、客观、准确的评估,为临床提供决策依据,最终提高直肠癌患者的总体生存期。
Abstract: Objective: To review the progress in imaging techniques for predicting the efficacy of neoadjuvant therapy in rectal cancer. Methods: A literature review was conducted on recent studies related to the prediction of neoadjuvant therapy efficacy in rectal cancer. Results: The latest advances in imaging technologies for assessing the efficacy of neoadjuvant therapy in rectal cancer were discussed. Additionally, common imaging methods and new technologies used to evaluate neoadjuvant treatment efficacy were assessed in terms of their advantages and limitations. Conclusion: For clinical practice, it is essential to accurately leverage the strengths of various imaging modalities. A comprehensive approach should be adopted to provide a thorough, objective, and precise evaluation of the efficacy of neoadjuvant therapy in rectal cancer, which will assist in clinical decision-making and ultimately improve the overall survival of rectal cancer patients.
文章引用:杨银蕊, 张彩霞, 普宗胜, 李振辉, 王关顺. 影像学在直肠癌新辅助治疗疗效预测中的研究进展[J]. 临床医学进展, 2025, 15(1): 1785-1794. https://doi.org/10.12677/acm.2025.151238

1. 引言

癌症愈加成为严重威胁全球人类健康的一大因素,其中直肠癌就是一种常见的消化道恶性疾病[1]。根据2020年全球癌症统计显示,结直肠癌已成为仅次于肺癌的第二大癌症死亡疾病[2],直肠癌占结直肠癌新发病例190万例中的30%~50%,相关死亡93.5万例[3] [4]。有效的治疗直肠癌是重要且必要的。根据2022年CSCO结直肠指南,直肠癌患者的诊断常采用全结肠镜检查加活检及肛门指诊;直肠癌原发瘤分期采取盆腔高分辨率磁共振及经直肠超声检查,远处转移推荐使用胸腹部CT平扫及增强;在临床中对于直肠癌的患者常根据对其进行TNM分期结果给予相应治疗。因此,影像学对于TNM分期及治疗疗效评估而言具有优势性。其中,TNM分期为cT3-cT4或N+ (II期或III期)且无远处转移的直肠癌患者诊断为局部晚期直肠癌(Locally advanced rectal cancer, LARC) [5],此类患者预后差[6]。新辅助化疗(Neoadjuvant chemotherapy, NCRT)伴全肠系膜切除术(Total Mesorectal Excision, TME)是对于LARC进行了6~10周NCRT治疗后的首选治疗方法[7]。NCRT可以减小肿瘤大小和肿瘤分期,阻断肿瘤侵袭,提高术中切除和括约肌保留概率,从而提高局部控制率和患者生存率[8]。通过影像技术准确地评估NCRT疗效可以使患者接受更为个性化的治疗。

2. 计算机断层扫描对直肠癌NCRT的疗效评价

计算机断层扫描(Computed Tomography, CT)在直肠癌新辅助治疗疗效中展现了一定的价值。Tochigi T.等人便基于CT的分形维数分析了局部晚期直肠癌的新辅助放化疗反应进行预测[9]。研究表明CT分形维数可用于帮助做出治疗决策。另一项研究探讨了使用计算机断层扫描的织构分析参数对局部晚期直肠癌患者新辅助放化疗反应的预后价值[10]。通过模型提供了一个降级的预后评分,使每个患者更个性化的治疗。对于肠系膜脂肪组织体积能否作为疗效预后因素而言,Dilek等人展开了研究[11]。通过在CT图像测量腹部,皮下,内脏和直肠系直肠脂肪组织计算MRV证明了MRV可作为预测局部晚期直肠癌患者对nCRT病理反应的新参数。Olsen A. S. F [12]等人通过多探测器计算机断层扫描识别结肠癌不良预后因素的准确性,结果表明CT检测恶性预测预后分层的一致性为中等。另外关于探讨多探测器CT识别直肠癌不良预后因素准确性的研究表明[13],CT对于预测预后分层只具有中等的一致性。

3. 磁共振成像对直肠癌NCRT的疗效评价

3.1. 常规磁共振成像检查

对于直肠癌分期,磁共振成像(Magnetic Resonance Imaging, MRI)是优先选择。它可以准确地评估肿瘤的大小、形态、直肠系膜筋膜[14]、壁外静脉是否侵犯累及范围等。T2加权序列是MRI中最常用的一种序列,主要用于评估软组织的水含量。对于直肠癌的诊断,T2WI是高分辨率的软组织成像,可以对直肠癌进行分期和局部侵犯观察,在肿瘤的检测、分期和评估中起着关键作用。对于直肠癌等肿瘤,T2加权序列能够提供详细的解剖结构图像,帮助识别肿瘤与周围组织的关系。通过观察肿瘤大小、成分的变化可以评估LRAC [15] [16]。与CT、超声相比,MRI更贴近病理结果,对于直肠癌的确诊及疗效评价更为准确。

3.2. 动态增强磁共振成像

动态增强磁共振成像(Dynamically enhanced magnetic resonance imaging, DCE-MRI)是通过对静脉注射造影剂后多次扫描,通过观察信号随着时间的变化,反映肿瘤的性质。Xiao Y等人研究了动态对比增强磁共振成像的灌注参数在评估局部晚期直肠癌治疗反应中的作用,以PCR (病理完全缓解)作为准确性判断标准[17]。结果显示灌注参数可以作为NCRT疗效的预测因子,在LARC患者中起成像生物标志物的作用。但是由于DCE的判断标准不统一,对于肿瘤坏死、出血、纤维化等情况而言,不同的扫描结果不一定相匹配。因此,不能因为DCE阴性而决定手术与否及疗效的绝对效果。

3.3. 扩散加权成像

扩散加权成像(Diffusion-weighted imaging, DWI)是在T2WI序列基础上加入运动敏感梯度脉冲,对于水分子弥散程度不同,DWI也会呈现出不同的信号,并且通过ADC值定量地体现出来。T2WI提供肿瘤的解剖学信息,而DWI可以评估肿瘤的细胞密度和微观结构。DWI在早期发现和评估肿瘤侵袭性方面具有优势,尤其是对于肿瘤的早期浸润、转移性病变的检测及术后复发的监测。结合T2WI,DWI增强了对直肠癌的敏感性,帮助更好地识别肿瘤的恶性程度。在基于MRI的T2加权序列的质构分析是否能够作为局部晚期直肠癌(LARC)患者对新辅助放化疗(nCRT)反应的预测因子[18]的研究中,结论表明基于MRI T2加权序列的质构分析不能有效预测LARC患者对nCRT的病理完全反应,因此需要进一步的研究来彻底调查MRI的TA在这种情况下的潜力。Bakke K. M.等人[19]通过弥散加权磁共振成像的潜力,量化表观扩散系数(ADC)和灌注分数(F),以及T2加权(T2WI) MRI的体积图,以预测直肠癌治疗结果,证实了基线时的MRI参数F/V是LARC患者组织病理学肿瘤反应和5年PFS的一个非常强的预测因子。对于预后较差的直肠粘液腺癌也尝试通过DWI探讨其内成分蛋白粘池是否可以作为预后因素[20],结果证明,DWI可以可靠地用于测量黏蛋白池ADC (MP-ADC)。一项确定扩散加权磁共振成像(DWI)在新辅助放化疗(CRT)后局部晚期直肠癌(LARC)重整的定性和定量评估的附加值的研究证明[21],将DWI加入常规MRI序列可以提高MRI评估能力因此对于术前行NCRT的患者而言,通过DWI及ADC测量可以更直观的反应疗效并进行疗效评估,为治疗提供补充依据。

3.3.1. 体素内非相干运动成像

体素内非相干运动成像(Incoherent motion imaging within voxels, IVIM)可以在不需要造影剂的情况下同时获得毛细血管的灌注信息和水分子的扩散信息。在一项扩散加权磁共振成像结合预后因素的多种数学模型来评估局部晚期直肠癌对新辅助化疗和放疗的反应的文章中,Liang C. Y.等人[22]比较了多种数学模型(ADC、IVIM和拉伸指数模型(SEM))的诊断性能,以肿瘤退缩分级作为评价标准评价LARC对CRT的反应[22]。研究证明了IVIM对于LRAC的pCR预测中的表现一般,因此,对于IVIM预测NCRT的准确性和敏感性需要进一步研究。

3.3.2. 扩散峰度成像

扩散峰度成像(diffusion tensor imaging, DTI)是一种新兴扩散成像技术,反映生物组织中水分子扩散特性。在一项通过比较42名患者两类图像与TRG分级之间的关系探讨IVIM与DTI对于LRAC患者NCRT治疗后疗效评估的研究[23]中,DTI中的MD值的敏感性高于IVIM中的参数值,但是由于样本量较小,图像质量有限,DTI能否作为评估LRAC的预后疗效指标之一还有待进一步的探讨。

3.4. 质子磁共振波谱

质子磁共振波谱(Proton Magnetic Resonance Spectroscopy, 1H-MRS)是一种非侵入性技术,结果通常用胆碱与其他代谢物的比率来表示。Cho在恶性区值较高,可以用来反映肿瘤的良恶情况。但是这种技术也存在一些局限性[24]。与MRI相比,1H-MRS的敏感性相对较低。由于这种方法在临床中并未如DWI/T1T2等检查应用普遍,因此尚处在起步阶段。

3.5. 酰胺质子成像

酰胺质子成像(Amide proton imaging, APT)是通过对不同的质子在产生共振频率施加饱和脉冲实现的。Nishie A.等人利用APT对LARC患者NCRT后肿瘤反应进行了预测[25]。结果表明,治疗前APT可以预测LARC患者的肿瘤反应。但由于成像图像质量相比于常规DWI成像欠佳,此项成像技术在临床的应用并不广泛。

4. 超声对直肠癌NCRT的疗效评价

超声是一种经济快捷的检查方法,常规超声既可以进行无创而全面的检查,也可以清楚地显示肿瘤的位置、形态、大小、边界等情况。超声检查新技术的广泛应用可以针对不同组织及器官进行成像,从而更适应临床需求。

4.1. 直肠内镜超声

直肠内镜超声(Endorectal Ultrasound, ERUS)被广泛应用于直肠癌的治疗前分期,可以对直肠壁层进行高分辨率检查。Li N.等人[26]对于这个问题开展了前瞻性研究。通过对41名患者三个时期的ERUS测量数据的采集并且构建模型,用TRG、PCR等指标进行了评估。结果显示,虽然局部复发、远处转移、无病生存和总生存率无显著差异,但该诊断模型能够预测长期结果。因此,ERUS对于NCRT疗效的评价方面应用值得进一步探索。

4.2. 内窥镜

4.2.1. 常规内窥镜

直肠癌患者的常规检查多为多期CT及MRI检查。然而内镜和临床评估已被证明比MRI更准确。有研究进行了内镜对反应评估的整体诊断准确性及各种内镜特征的直肠癌的预测价值的评估[27]。结果表明在直肠癌新辅助治疗后,超过70%的腔内直肠癌患者可以在9周时通过内窥镜发现。因此内窥镜对于评估直肠癌患者NCRT的疗效反应在一定条件下是可行的。

4.2.2. 定量荧光内窥镜

定量荧光内窥镜(Quantitative Fluorescence Endoscopy, QFE)是一种能够可视化和定量荧光标记肿瘤组织的新技术。对于此种新技术在直肠癌新辅助治疗疗效评估中的使用进行评估[28]的结果证明用QFE可以改善nCRT后LARC患者的反应评估。QFE是一种前沿的技术,值得在更大规模的临床试验中进一步验证。

4.3. 横波弹性成像

横波弹性成像(Shear Wave Elastography, SWE)在乳腺癌新辅助放化疗后病变评估中效果佳,提示其在放化疗后病变评估中具有潜在的优势[29]。因此对于其在直肠癌中的应用进行了调查。Cong Y.等的研究[30]采用SWE评价局部晚期直肠癌新辅助放化疗后病灶浸润深度及SWE在放化疗后肿瘤降期诊断中的临床价值进行再分级。结论表明,SWE可提高肿瘤降期的诊断疗效,为临床决策提供有效的影像学支持。

4.4. 双平面经直肠超声检查

对于直肠癌新辅助放化疗后术前T分期中的准确性的问题,Xiao Y.等人[17]通过联合使用双平面经直肠超声检查(Biplane Transrectal Ultrasound, TRUS)加超声弹性成像(Ultrasound Elastography, UE)和造影剂增强超声(Contrast-Enhanced Ultrasound, CEUS)三种超声新技术进行了探讨。结论表明,三者联合可用于新辅助放化疗后直肠癌术前准确进行T分期;及新辅助放化疗前后直肠癌侵入肠壁深度的变化的评估。它在临床评估新辅助放化疗的疗效、选择治疗方案和避免过度治疗方面具有重要价值。

5. 正电子计算机断层扫描对直肠癌NCRT的疗效评价

正电子计算机断层扫描(Positron Emission Tomography-Computed Tomography, PET-CT)可以通过反映肿瘤细胞不同于正常组织细胞的高代谢来反映肿瘤情况。NCRT的直肠癌患者可以通过PET-CT示踪剂所反映的治疗前后病灶代谢变化进一步反映治疗疗效。Martin-Gonzalez P.[31]等人对18F-FDG PET图像的视觉和定量异质性与局部晚期直肠癌治疗反应是否具有相关性进行了可行性研究,探讨其是否可以作为预测LRAC的预测因子。结论表明PET-CT对于LRAC的NCRT具有一定的预后价值。但是其准确性及特异性值得进一步研究。从18F-氟脱氧葡萄糖正电子计算机断层扫描(18F-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography, 18F-FDG PET/CT)图像获得的体积数据评估基线18F-FDG PET/CT在预测局部晚期直肠癌(LARC)患者对新辅助化学放疗(NCRT)的反应方面的价值的研究中[32],通过计算体积特征代谢肿瘤体积和总病变糖酵解,证明在预测治疗反应方面,18F-FDG PET/CT图像的诊断并不优于代谢肿瘤体积。Kong J. C.等人前瞻性地研究了FDG-PET/CT对于局部晚期直肠癌新辅助放化疗和根治性手术治疗患者的预测和预后价值[33]。结果分析表明,治疗前后两次FDG-PET/CT扫描对于LRAC且接受了NCRT的患者预测价值是有限的。因此,PET-CT常与其他影像学检查方法联合应用进行疗效评估。Schurink N. W.等人用MRI和FDG-PET/CT研究局部肿瘤异质性预测对直肠癌新辅助放化疗的反应[34]。通过回顾性分析接受放化疗61例局部晚期直肠癌患者,并在基线时使用MRI和FDG-PET/CT进行分期。通过进行计算参数建立多变量预测模型,以预测对放化疗反应是否良好。结果显示与预测反应的全局肿瘤特征相比,局部纹理分析具有潜在的附加价值。越来越多的证据表明,使用PET-CT来评估代谢反应对接受LNRCT治疗的直肠癌患者的预后有影响且有助于肿瘤的诊断和预后评估。因此,与MRI相比,PET-CT并不具有绝对优势。因此,临床上仅用PET-CT评价NCRT疗效的方法并不多见。

6. 影像组学对直肠癌NCRT的疗效评价

影像组学(Radiomics)是指高通量地提取大量描述肿瘤特征性的影像特征,包括从常规成像中提取和分析放射图像特征,以评估肿瘤特征,如纹理、形状和异质性[35]并且可以根据其进行模型构建进行更加复杂的预测与评估[36]在病理学、基因组学、治疗反应和临床结果预测中均有应用。Hang Z.等人就多序列MRI基础上研究了有影像组学标志物作为局部晚期直肠癌术前预测新辅助放化疗反应的新生物标志物的情况[37]。基于MRI的影像组学可以通过mrTRG、淋巴结状态、KRAS状态等因素来测定局部晚期直肠癌患者对于新辅助治疗的疗效[37]及病理完全反应情况[38] [39],评估是否可以进行器官保存[40]。结果显示ROC曲线特异性及灵敏度分别为0.794和0.815,所提取的特征对nCRT具有良好的预测能力。此文的观点为使用多个MRI序列的影像组学方法可用于在治疗前实现LARC患者的nCRT的个体化预测。预测局部晚期直肠癌对新辅助治疗的反应18F-FDG PET和MRI影像组学特征研究中[41],治疗前PET和MRI可能有助于个性化患者治疗。另一项研究通过病理完全反应、肿瘤退缩分级和新辅助直肠评分作为影像组学治疗前预测接受新辅助放化疗的局部晚期直肠癌患者的准确性研究终点[42],结论表明治疗前MRI的影像组学可以预测接受新辅助治疗的LARC患者的pCR、TRG且准确性中等。Liu X.等人通过深度学习影像组学进行直肠癌远处转移进行预测[43]。结果表明基于MRI的深度学习影像组学有可能预测接受nCRT的LARC患者的远处转移,并可以帮助评估对nCRT有不同反应的患者的远处转移风险。因此,影像组学对于预测直肠癌患者NCRT疗效而言有着广阔的研究前景及重要的研究价值。

7. 深度学习

深度学习(Deep Learning, DL)是机器通过学习样本数据的内在规律和表示层次,使其具有分析学习能力,识别数据等特征。深度学习常与其他影像新技术联合使用对直肠癌新辅助治疗疗效进行评估。Liu X.等人[43]通过深度学习影像组学进行接受新辅助放化疗的局部晚期直肠癌患者远处转移进行了预测,构建基于多参数磁共振成像的深度学习影像特征(Deep Learning Radiomics Signature Based on Multiparametric Magnetic Resonance Imaging, DLRS)。结果显示,DLRS在远处转移预测中表现良好。基于MRI的深度学习影像组学有可能预测接受nCRT的LARC患者的远处转移,并且可以评估远处转移风险。通过弥散峰度和T2加权MRI的深度学习方法建立模型作为预测预后的方法[44]结论证明了预测病理完全反应方面表现出良好的性能。多任务深度学习方法建立模型同时进行肿瘤分割和反应预测[45]结果显示,当与基于血液的肿瘤标志物结合使用时,该集成模型进一步提高了AUC的预测准确性。深度学习在治疗疗效中对于病理反应是否可以进行预测得到了进一步探讨,Nie K.等人通过开发一种基于图像的深度学习模型,用于使用放化疗后磁共振成像预测直肠癌的病理反应[46],基于放化疗后T2加权轴向MR图像,分别建立了两种深度学习模型来预测pCR和GR (良好反应)。结果显示,深度学习模型具有优于观察者的预测性能。另外,也有研究通过人工智能建立病理与影像结合的模型进行治疗疗效进行预测[47]。Feng L. 通过一种人工智能影像——病理学综合模型,使用治疗前MRI和苏木精和H&E染色活检载玻片来预测局部晚期直肠癌患者的病理完全反应,并且评估模型性能。结果显示了模型的AUC值0.812,敏感性及特异性均高,证明了联合模型能够基于治疗前影像病理学图像预测对新辅助放化疗的病理性完全反应,并且具有高精度和稳健性。

8. 结论

综上所述,对于直肠癌晚期患者常规会进行新辅助治疗后行手术治疗,因此,准确的评估治疗疗效是十分重要的。在临床中,各种不同的影像学检查方法都被运用于疗效评价中。本研究中CT及MRI均表现出较高的敏感性和特异性,其中MRI更佳,对于直肠癌的确诊及疗效评价更为准确;CT对直肠癌的敏感性相对较低,尤其在局限性病变的检测中。CT主要用于肿瘤的远程转移以及直肠癌的术前分期(如肿瘤与周围结构的关系)。但对于直肠癌的局部浸润、淋巴结转移等局部评估上存在一定局限。MRI的特异性较高,特别是在判断肿瘤侵袭以及淋巴结转移时,可以较为准确地提供信息,但其对于远处转移的评价并非首选。本研究分析的CT及MRI技术均基于患者为局部晚期直肠癌,因此结论存在局限性。在常规影像学的基础上,新技术的出现无疑为诊断的特异性及敏感性的提高提供了技术手段。不同的技术对于评估治疗疗效的价值也不尽相同(见表1~2)。结合新旧技术的优缺点对直肠癌的诊断和疗效评价至关重要。由于肿瘤病程是多变的、连续的、复杂的,单一的影像学检查不能很准确地评价NCRT整个过程的疗效。因此,对于临床治疗而言,我们应该准确地利用各种影像学方法的优势,采用综合的方法来对直肠癌NCRT疗效进行全方位、客观、准确的评估,为临床提供决策依据,最终提高直肠癌患者的总体生存期。

Table 1. Studies on the efficacy of various imaging techniques on NCRT in rectal cancer (evaluation index: Sensitivity, Specificity)

1. 各种成像技术对直肠癌NCRT疗效的研究(评价指标:敏感性,特异性)

Number

Study

Number of patients

Research type

Examination

Sensitivity (%)

Specificity (%)

1

Tochigi T. et al. (6)

215

retrospective study

CT

0.60

0.89

2

Feng, L. et al. (8)

100

prospective study

MRI

0.888

0.740

3

Zhang, Z. et al. (13)

189

retrospective study

MRI

0.815

0.794

4

Yang, L. et al. (14)

42

prospective study

IVIM

0.829

0.771

5

Li, Z. et al. (19)

84

prospective study

MDCT

0.78

0.67

6

Horvat, N. et al. (24)

114

retrospective study

MRI

1

0.91

7

Dilek, O. et al. (26)

88

retrospective study

CT

0.829

0.585

8

Zou, H. H. et al. (41)

171

retrospective study

MRI

0.867

0.818

9

Nishie, A. et al. (46)

17

prospective study

APT

0.75

1

10

Napoletano, M. et al. (47)

21

prospective study

MRI/D WI

0.80/1

0.50/0.67

11

Liang, C. Y. et al. (48)

60

prospective study

MRI

1

0.80

12

Giannini, V. et al. (52)

52

prospective study

PET/CT

0.727

0.767

13

Patel, U. B. et al. (62)

46

prospective study

MRI

0.743

0.755

14

Bakke, K. M. et al. (68)

27

prospective study

MRI

0.69

1

Table 2. Studies on the efficacy of various imaging techniques on NCRT in rectal cancer (evaluation index: AUC)

2. 各种成像技术对直肠癌NCRT疗效的研究(评价指标:AUC)

Number

Study

Number of patients

Research type

Examination

AUC

1

Wan, L. et al. (15)

165

prospective study

MRI

0.91

2

Schurink, N. W. et al. (18)

61

prospective study

MRI + PET/CT

0.81

3

Liu, X. et al. (20)

235

prospective study

CT

0.894

4

Li, Z. et al. (21)

898

prospective study

DLRS

0.82

5

Jin, C. et al. (23)

321

prospective study

MRI

0.97

6

Zhang, X. Y. et al. (29)

383

prospective study

MRI

0.99

7

Karahan Şen, N. P. et al. (36)

110

prospective study

MRI

0.714

8

Cao, W. et al. (39)

59

prospective study

PET/CT

0.881

9

Vandendorpe, B. et al. (43)

121

prospective study

DWI-MRI

0.70

10

Gollub, M. J. et al. (51)

65

prospective study

CT

0.72

11

Nie, K. et al. (54)

48

prospective study

DCE-MRI

0.84

基金项目

云南省应用基础研究面上项目(202201AT070010),国家自然科学基金(82360345),国家自然科学基金(82001986)。

NOTES

*通讯作者。

参考文献

[1] Wei, E.K., Giovannucci, E., Wu, K., Rosner, B., Fuchs, C.S., Willett, W.C., et al. (2003) Comparison of Risk Factors for Colon and Rectal Cancer. International Journal of Cancer, 108, 433-442.
https://doi.org/10.1002/ijc.11540
[2] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[3] Siegel, R.L., Miller, K.D., Goding Sauer, A., Fedewa, S.A., Butterly, L.F., Anderson, J.C., et al. (2020) Colorectal Cancer Statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 145-164.
https://doi.org/10.3322/caac.21601
[4] Ferlay, J., Colombet, M., Soerjomataram, I., Dyba, T., Randi, G., Bettio, M., et al. (2018) Cancer Incidence and Mortality Patterns in Europe: Estimates for 40 Countries and 25 Major Cancers in 2018. European Journal of Cancer, 103, 356-387.
https://doi.org/10.1016/j.ejca.2018.07.005
[5] Cercek, A., Roxburgh, C.S.D., Strombom, P., Smith, J.J., Temple, L.K.F., Nash, G.M., et al. (2018) Adoption of Total Neoadjuvant Therapy for Locally Advanced Rectal Cancer. JAMA Oncology, 4, e180071.
https://doi.org/10.1001/jamaoncol.2018.0071
[6] Bigness, A., Imanirad, I., Sahin, I.H., Xie, H., Frakes, J., Hoffe, S., et al. (2021) Locally Advanced Rectal Adenocarcinoma: Treatment Sequences, Intensification, and Rectal Organ Preservation. CA: A Cancer Journal for Clinicians, 71, 198-208.
https://doi.org/10.3322/caac.21661
[7] Conroy, T., Bosset, J., Etienne, P., Rio, E., François, É., Mesgouez-Nebout, N., et al. (2021) Neoadjuvant Chemotherapy with FOLFIRINOX and Preoperative Chemoradiotherapy for Patients with Locally Advanced Rectal Cancer (UNICANCER-PRODIGE 23): A Multicentre, Randomised, Open-Label, Phase 3 Trial. The Lancet Oncology, 22, 702-715.
https://doi.org/10.1016/s1470-2045(21)00079-6
[8] Li, Y., Wang, J., Ma, X., Tan, L., Yan, Y., Xue, C., et al. (2016) A Review of Neoadjuvant Chemoradiotherapy for Locally Advanced Rectal Cancer. International Journal of Biological Sciences, 12, 1022-1031.
https://doi.org/10.7150/ijbs.15438
[9] Zou, H., Yu, J., Wei, Y., Wu, J. and Xu, Q. (2018) Response to Neoadjuvant Chemoradiotherapy for Locally Advanced Rectum Cancer: Texture Analysis of Dynamic Contrast‐Enhanced MRI. Journal of Magnetic Resonance Imaging, 49, 885-893.
https://doi.org/10.1002/jmri.26254
[10] Vandendorpe, B., Durot, C., Lebellec, L., Le Deley, M., Sylla, D., Bimbai, A., et al. (2019) Prognostic Value of the Texture Analysis Parameters of the Initial Computed Tomographic Scan for Response to Neoadjuvant Chemoradiation Therapy in Patients with Locally Advanced Rectal Cancer. Radiotherapy and Oncology, 135, 153-160.
https://doi.org/10.1016/j.radonc.2019.03.011
[11] Dilek, O., Akkaya, H., Parlatan, C., Koseci, T., Tas, Z.A., Soker, G., et al. (2021) Can the Mesorectal Fat Tissue Volume Be Used as a Predictive Factor in Foreseeing the Response to Neoadjuvant Chemoradiotherapy in Rectum Cancer? A CT-Based Preliminary Study. Abdominal Radiology, 46, 2415-2422.
https://doi.org/10.1007/s00261-021-02951-x
[12] Olsen, A.S.F., Gundestrup, A.K., Kleif, J., Thanon, T. and Bertelsen, C.A. (2020) Accuracy of Preoperative Staging with Multidetector Computed Tomography in Colon Cancer. Colorectal Disease, 23, 680-688.
https://doi.org/10.1111/codi.15415
[13] Joye, I., Deroose, C.M., Vandecaveye, V. and Haustermans, K. (2014) The Role of Diffusion-Weighted MRI and 18F-FDG PET/CT in the Prediction of Pathologic Complete Response after Radiochemotherapy for Rectal Cancer: A Systematic Review. Radiotherapy and Oncology, 113, 158-165.
https://doi.org/10.1016/j.radonc.2014.11.026
[14] Patel, U.B., Brown, G., Machado, I., Santos-Cores, J., Pericay, C., Ballesteros, E., et al. (2017) MRI Assessment and Outcomes in Patients Receiving Neoadjuvant Chemotherapy Only for Primary Rectal Cancer: Long-Term Results from the GEMCAD 0801 Trial. Annals of Oncology, 28, 344-353.
https://doi.org/10.1093/annonc/mdw616
[15] Beets-Tan, R., Beets, G., Vliegen, R., Kessels, A., Boven, H.V., Bruine, A.D., et al. (2001) Accuracy of Magnetic Resonance Imaging in Prediction of Tumour-Free Resection Margin in Rectal Cancer Surgery. The Lancet, 357, 497-504.
https://doi.org/10.1016/s0140-6736(00)04040-x
[16] Gollub, M.J., Schwartz, L.H. and Akhurst, T. (2007) Update on Colorectal Cancer Imaging. Radiologic Clinics of North America, 45, 85-118.
https://doi.org/10.1016/j.rcl.2006.10.003
[17] Xiao, Y., Xu, D., Ju, H., Yang, C., Wang, L., Wang, J., et al. (2018) Application Value of Biplane Transrectal Ultrasonography Plus Ultrasonic Elastosonography and Contrast-Enhanced Ultrasonography in Preoperative T Staging after Neoadjuvant Chemoradiotherapy for Rectal Cancer. European Journal of Radiology, 104, 20-25.
https://doi.org/10.1016/j.ejrad.2018.04.027
[18] Crimì, F., Capelli, G., Spolverato, G., Bao, Q.R., Florio, A., Milite Rossi, S., et al. (2020) MRI T2-Weighted Sequences-Based Texture Analysis (TA) as a Predictor of Response to Neoadjuvant Chemo-Radiotherapy (nCRT) in Patients with Locally Advanced Rectal Cancer (LARC). La Radiologia Medica, 125, 1216-1224.
https://doi.org/10.1007/s11547-020-01215-w
[19] Bakke, K.M., Hole, K.H., Dueland, S., Grøholt, K.K., Flatmark, K., Ree, A.H., et al. (2017) Diffusion-Weighted Magnetic Resonance Imaging of Rectal Cancer: Tumour Volume and Perfusion Fraction Predict Chemoradiotherapy Response and Survival. Acta Oncologica, 56, 813-818.
https://doi.org/10.1080/0284186x.2017.1287951
[20] Cao, W., Li, B., Gong, J., Hu, M., Li, W., Pan, X., et al. (2020) Diffusion-Weighted Magnetic Resonance Imaging of Mucin Pools in Locally Advanced Rectal Mucinous Adenocarcinoma Predicts Tumor Response to Neoadjuvant Therapy. European Journal of Radiology, 125, Article 108890.
https://doi.org/10.1016/j.ejrad.2020.108890
[21] Napoletano, M., Mazzucca, D., Prosperi, E., Aisa, M.C., Lupattelli, M., Aristei, C., et al. (2019) Locally Advanced Rectal Cancer: Qualitative and Quantitative Evaluation of Diffusion-Weighted Magnetic Resonance Imaging in Restaging after Neoadjuvant Chemo-Radiotherapy. Abdominal Radiology, 44, 3664-3673.
https://doi.org/10.1007/s00261-019-02012-4
[22] Liang, C., Chen, M., Zhao, X., Yan, C., Mei, Y. and Xu, Y. (2019) Multiple Mathematical Models of Diffusion-Weighted Magnetic Resonance Imaging Combined with Prognostic Factors for Assessing the Response to Neoadjuvant Chemotherapy and Radiation Therapy in Locally Advanced Rectal Cancer. European Journal of Radiology, 110, 249-255.
https://doi.org/10.1016/j.ejrad.2018.12.005
[23] Yang, L., Xia, C., Zhao, J., Zhou, X. and Wu, B. (2021) The Value of Intravoxel Incoherent Motion and Diffusion Kurtosis Imaging in the Assessment of Tumor Regression Grade and T Stages after Neoadjuvant Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer. European Journal of Radiology, 136, Article 109504.
https://doi.org/10.1016/j.ejrad.2020.109504
[24] Uutela, A., Ovissi, A., Hakkarainen, A., Ristimäki, A., Lundbom, N., Kallio, R., et al. (2021) Treatment Response of Colorectal Cancer Liver Metastases to Neoadjuvant or Conversion Therapy: A Prospective Multicentre Follow-Up Study Using MRI, Diffusion-Weighted Imaging and 1H-MR Spectroscopy Compared with Histology (Subgroup in the RAXO Trial). ESMO Open, 6, Article 100208.
https://doi.org/10.1016/j.esmoop.2021.100208
[25] Nishie, A., Asayama, Y., Ishigami, K., Ushijima, Y., Takayama, Y., Okamoto, D., et al. (2018) Amide Proton Transfer Imaging to Predict Tumor Response to Neoadjuvant Chemotherapy in Locally Advanced Rectal Cancer. Journal of Gastroenterology and Hepatology, 34, 140-146.
https://doi.org/10.1111/jgh.14315
[26] Li, N., Dou, L., Zhang, Y., Jin, J., Wang, G., Xiao, Q., et al. (2017) Use of Sequential Endorectal US to Predict the Tumor Response of Preoperative Chemoradiotherapy in Rectal Cancer. Gastrointestinal Endoscopy, 85, 669-674.
https://doi.org/10.1016/j.gie.2016.06.042
[27] Maas, M., Lambregts, D.M.J., Nelemans, P.J., Heijnen, L.A., Martens, M.H., Leijtens, J.W.A., et al. (2015) Assessment of Clinical Complete Response after Chemoradiation for Rectal Cancer with Digital Rectal Examination, Endoscopy, and MRI: Selection for Organ-Saving Treatment. Annals of Surgical Oncology, 22, 3873-3880.
https://doi.org/10.1245/s10434-015-4687-9
[28] Tjalma, J.J.J., Koller, M., Linssen, M.D., Hartmans, E., de Jongh, S., Jorritsma-Smit, A., et al. (2019) Quantitative Fluorescence Endoscopy: An Innovative Endoscopy Approach to Evaluate Neoadjuvant Treatment Response in Locally Advanced Rectal Cancer. Gut, 69, 406-410.
https://doi.org/10.1136/gutjnl-2019-319755
[29] Zhou, J., Zhan, W., Chang, C., Zhang, X., Jia, Y., Dong, Y., et al. (2014) Breast Lesions: Evaluation with Shear Wave Elastography, with Special Emphasis on the “Stiff Rim” Sign. Radiology, 272, 63-72.
https://doi.org/10.1148/radiol.14130818
[30] Cong, Y., Fan, Z., Dai, Y., Zhang, Z. and Yan, K. (2020) Application Value of Shear Wave Elastography in the Evaluation of Tumor Downstaging for Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy. Journal of Ultrasound in Medicine, 40, 81-89.
https://doi.org/10.1002/jum.15378
[31] Martin-Gonzalez, P., de Mariscal, E.G., Martino, M.E., Gordaliza, P.M., Peligros, I., Carreras, J.L., et al. (2020) Association of Visual and Quantitative Heterogeneity of 18F-FDG PET Images with Treatment Response in Locally Advanced Rectal Cancer: A Feasibility Study. PLOS ONE, 15, e0242597.
https://doi.org/10.1371/journal.pone.0242597
[32] Karahan Şen, N.P., Aksu, A. and Kaya, G.Ç. (2020) Value of Volumetric and Textural Analysis in Predicting the Treatment Response in Patients with Locally Advanced Rectal Cancer. Annals of Nuclear Medicine, 34, 960-967.
https://doi.org/10.1007/s12149-020-01527-x
[33] Kong, J.C., Ryan, J., Akhurst, T., Ngan, S.Y., Michael, M., Tie, J., et al. (2021) The Predictive Value of PET/CT for Distant Recurrences in Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy. Journal of Medical Imaging and Radiation Oncology, 65, 917-924.
https://doi.org/10.1111/1754-9485.13315
[34] Schurink, N.W., van Kranen, S.R., Berbee, M., van Elmpt, W., Bakers, F.C.H., Roberti, S., et al. (2021) Studying Local Tumour Heterogeneity on MRI and FDG-PET/CT to Predict Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer. European Radiology, 31, 7031-7038.
https://doi.org/10.1007/s00330-021-07724-0
[35] Sauer, R., Becker, H., Hohenberger, W., Rödel, C., Wittekind, C., Fietkau, R., et al. (2004) Preoperative versus Postoperative Chemoradiotherapy for Rectal Cancer. New England Journal of Medicine, 351, 1731-1740.
https://doi.org/10.1056/nejmoa040694
[36] Rödel, C., Martus, P., Papadoupolos, T., Füzesi, L., Klimpfinger, M., Fietkau, R., et al. (2005) Prognostic Significance of Tumor Regression after Preoperative Chemoradiotherapy for Rectal Cancer. Journal of Clinical Oncology, 23, 8688-8696.
https://doi.org/10.1200/jco.2005.02.1329
[37] Zhang, Z., Jiang, X., Zhang, R., Yu, T., Liu, S. and Luo, Y. (2021) Radiomics Signature as a New Biomarker for Preoperative Prediction of Neoadjuvant Chemoradiotherapy Response in Locally Advanced Rectal Cancer. Diagnostic and Interventional Radiology, 27, 308-314.
https://doi.org/10.5152/dir.2021.19677
[38] Wan, L., Peng, W., Zou, S., Ye, F., Geng, Y., Ouyang, H., et al. (2021) MRI-Based Delta-Radiomics Are Predictive of Pathological Complete Response after Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Academic Radiology, 28, S95-S104.
https://doi.org/10.1016/j.acra.2020.10.026
[39] Horvat, N., Veeraraghavan, H., Khan, M., Blazic, I., Zheng, J., Capanu, M., et al. (2018) MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy. Radiology, 287, 833-843.
https://doi.org/10.1148/radiol.2018172300
[40] Li, Z., Ma, X., Shen, F., Lu, H., Xia, Y. and Lu, J. (2021) Evaluating Treatment Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer Using Various MRI-Based Radiomics Models. BMC Medical Imaging, 21, Article No. 30.
https://doi.org/10.1186/s12880-021-00560-0
[41] Giannini, V., Mazzetti, S., Bertotto, I., Chiarenza, C., Cauda, S., Delmastro, E., et al. (2019) Predicting Locally Advanced Rectal Cancer Response to Neoadjuvant Therapy with 18F-FDG PET and MRI Radiomics Features. European Journal of Nuclear Medicine and Molecular Imaging, 46, 878-888.
https://doi.org/10.1007/s00259-018-4250-6
[42] Shaish, H., Aukerman, A., Vanguri, R., Spinelli, A., Armenta, P., Jambawalikar, S., et al. (2020) Radiomics of MRI for Pretreatment Prediction of Pathologic Complete Response, Tumor Regression Grade, and Neoadjuvant Rectal Score in Patients with Locally Advanced Rectal Cancer Undergoing Neoadjuvant Chemoradiation: An International Multicenter Study. European Radiology, 30, 6263-6273.
https://doi.org/10.1007/s00330-020-06968-6
[43] Liu, X., Zhang, D., Liu, Z., Li, Z., Xie, P., Sun, K., et al. (2021) Deep Learning Radiomics-Based Prediction of Distant Metastasis in Patients with Locally Advanced Rectal Cancer after Neoadjuvant Chemoradiotherapy: A Multicentre Study. eBioMedicine, 69, Article 103442.
https://doi.org/10.1016/j.ebiom.2021.103442
[44] Zhang, X., Wang, L., Zhu, H., Li, Z., Ye, M., Li, X., et al. (2020) Predicting Rectal Cancer Response to Neoadjuvant Chemoradiotherapy Using Deep Learning of Diffusion Kurtosis MRI. Radiology, 296, 56-64.
https://doi.org/10.1148/radiol.2020190936
[45] Jin, C., Yu, H., Ke, J., Ding, P., Yi, Y., Jiang, X., et al. (2021) Predicting Treatment Response from Longitudinal Images Using Multi-Task Deep Learning. Nature Communications, 12, Article No. 1851.
https://doi.org/10.1038/s41467-021-22188-y
[46] Nie, K., Shi, L., Chen, Q., Hu, X., Jabbour, S.K., Yue, N., et al. (2016) Rectal Cancer: Assessment of Neoadjuvant Chemoradiation Outcome Based on Radiomics of Multiparametric MRI. Clinical Cancer Research, 22, 5256-5264.
https://doi.org/10.1158/1078-0432.ccr-15-2997
[47] Feng, L., Liu, Z., Li, C., Li, Z., Lou, X., Shao, L., et al. (2022) Development and Validation of a Radiopathomics Model to Predict Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer: A Multicentre Observational Study. The Lancet Digital Health, 4, e8-e17.
https://doi.org/10.1016/s2589-7500(21)00215-6