[1]
|
姜宁, 曹玮, 宋超, 郭晶晶, 刘洪涛, 张勇(2012). 早期运动训练对帕金森小鼠中脑和纹状体的影响: 自噬与线粒体动力学关系的研究. 中国运动医学杂志, (2), 134-139.
|
[2]
|
薛宏斌, 张勇, 刘洪涛, 马强(2007). 早期运动训练通过增强小鼠脑线粒体呼吸功能预防MPTP神经毒性作用. 中国运动医学杂志, (4), 402-406.
|
[3]
|
张丽娟, 邵海涛, 王跃秀, 王晓民(2014). 帕金森病研究进展. 生命科学, (6), 560-570.
|
[4]
|
Alomar, S., King, N. K. K., Tam, J., Bari, A. A., Hamani, C., & Lozano, A. M. (2017). Speech and Language Adverse Effects after Thalamotomy and Deep Brain Stimulation in Patients with Movement Disorders: A Meta-Analysis. Movement Disorders, 32, 53-63. https://doi.org/10.1002/mds.26924
|
[5]
|
Altmann, L. J. P., Stegemöller, E., Hazamy, A. A., Wilson, J. P., Bowers, D., Okun, M. S. et al. (2016). Aerobic Exercise Improves Mood, Cognition, and Language Function in Parkinson’s Disease: Results of a Controlled Study. Journal of the International Neuropsychological Society, 22, 878-889. https://doi.org/10.1017/s135561771600076x
|
[6]
|
Baddeley, A. (2012). Working Memory: Theories, Models, and Controversies. Annual Review of Psychology, 63, 1-29. https://doi.org/10.1146/annurev-psych-120710-100422
|
[7]
|
Brown, R. G., & Marsden, C. D. (1986). Visuospatial Function in Parkinson’s Disease. Brain, 109, 987-1002. https://doi.org/10.1093/brain/109.5.987
|
[8]
|
Calabresi, P., Castrioto, A., Di Filippo, M., & Picconi, B. (2013). New Experimental and Clinical Links between the Hippocampus and the Dopaminergic System in Parkinson’s Disease. The Lancet Neurology, 12, 811-821. https://doi.org/10.1016/s1474-4422(13)70118-2
|
[9]
|
Chang, H., Lu, C., Chiou, W., Chen, C., Weng, Y., & Chang, Y. (2018). An 8-Week Low-Intensity Progressive Cycling Training Improves Motor Functions in Patients with Early-Stage Parkinson’s Disease. Journal of Clinical Neurology, 14, 225-233. https://doi.org/10.3988/jcn.2018.14.2.225
|
[10]
|
Chodzko-Zajko, W. J., & Moore, K. A. (1994). Physical Fitness and Cognitive Functioning in Aging. Exercise and Sport Sciences Reviews, 22, 195-220. https://doi.org/10.1249/00003677-199401000-00009
|
[11]
|
Cruise, K. E., Bucks, R. S., Loftus, A. M., Newton, R. U., Pegoraro, R., & Thomas, M. G. (2011). Exercise and Parkinson’s: Benefits for Cognition and Quality of Life. Acta Neurologica Scandinavica, 123, 13-19. https://doi.org/10.1111/j.1600-0404.2010.01338.x
|
[12]
|
Dadgar, H., Khatoonabadi, A. R., & Bakhtiyari, J. (2013). Verbal Fluency Performance in Patients with Non-Demented Parkinson’s Disease. Iranian Journal of Psychiatry, 8, 55-58.
|
[13]
|
Daniels, C., Krack, P., Volkmann, J., Pinsker, M. O., Krause, M., Tronnier, V. et al. (2010). Risk Factors for Executive Dysfunction after Subthalamic Nucleus Stimulation in Parkinson’s Disease. Movement Disorders, 25, 1583-1589. https://doi.org/10.1002/mds.23078
|
[14]
|
de la Riva, P., Smith, K., Xie, S. X., & Weintraub, D. (2014). Course of Psychiatric Symptoms and Global Cognition in Early Parkinson Disease. Neurology, 83, 1096-1103. https://doi.org/10.1212/wnl.0000000000000801
|
[15]
|
Duchesne, C., Gheysen, F., Bore, A., Albouy, G., Nadeau, A., Robillard, M. E. et al. (2016). Influence of Aerobic Exercise Training on the Neural Correlates of Motor Learning in Parkinson's Disease Individuals. NeuroImage: Clinical, 12, 559-569. https://doi.org/10.1016/j.nicl.2016.09.011
|
[16]
|
Duchesne, C., Lungu, O., Nadeau, A., Robillard, M. E., Boré, A., Bobeuf, F. et al. (2015). Enhancing Both Motor and Cognitive Functioning in Parkinson’s Disease: Aerobic Exercise as a Rehabilitative Intervention. Brain and Cognition, 99, 68-77. https://doi.org/10.1016/j.bandc.2015.07.005
|
[17]
|
Emre, M., Aarsland, D., Brown, R., Burn, D. J., Duyckaerts, C., Mizuno, Y. et al. (2007). Clinical Diagnostic Criteria for Dementia Associated with Parkinson’s Disease. Movement Disorders, 22, 1689-1707. https://doi.org/10.1002/mds.21507
|
[18]
|
Fiorelli, C. M., Ciolac, E. G., Simieli, L., Silva, F. A., Fernandes, B., Christofoletti, G. et al. (2019). Differential Acute Effect of High-Intensity Interval or Continuous Moderate Exercise on Cognition in Individuals with Parkinson’s Disease. Journal of Physical Activity and Health, 16, 157-164. https://doi.org/10.1123/jpah.2018-0189
|
[19]
|
Fisher, B. E., Li, Q., Nacca, A., Salem, G. J., Song, J., Yip, J. et al. (2013). Treadmill Exercise Elevates Striatal Dopamine D2 Receptor Binding Potential in Patients with Early Parkinson’s Disease. NeuroReport, 24, 509-514. https://doi.org/10.1097/wnr.0b013e328361dc13
|
[20]
|
Fisher, B. E., Petzinger, G. M., Nixon, K., Hogg, E., Bremmer, S., Meshul, C. K. et al. (2004). Exercise-Induced Behavioral Recovery and Neuroplasticity in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Mouse Basal Ganglia. Journal of Neuroscience Research, 77, 378-390. https://doi.org/10.1002/jnr.20162
|
[21]
|
Foltynie, T., Brayne, C. E. G., Robbins, T. W., & Barker, R. A. (2004). The Cognitive Ability of an Incident Cohort of Parkinson’s Patients in the UK. The Campaign Study. Brain, 127, 550-560. https://doi.org/10.1093/brain/awh067
|
[22]
|
Frazzitta, G., Maestri, R., Ghilardi, M. F., Riboldazzi, G., Perini, M., Bertotti, G. et al. (2014). Intensive Rehabilitation Increases BDNF Serum Levels in Parkinsonian Patients. Neurorehabilitation and Neural Repair, 28, 163-168. https://doi.org/10.1177/1545968313508474
|
[23]
|
Garcia, P. C., Real, C. C., & Britto, L. R. (2017). The Impact of Short and Long-Term Exercise on the Expression of Arc and Ampars during Evolution of the 6-Hydroxy-Dopamine Animal Model of Parkinson’s Disease. Journal of Molecular Neuroscience, 61, 542-552. https://doi.org/10.1007/s12031-017-0896-y
|
[24]
|
Goldman, J. G., & Weintraub, D. (2015). Advances in the Treatment of Cognitive Impairment Inparkinson’s Disease. Movement Disorders, 30, 1471-1489. https://doi.org/10.1002/mds.26352
|
[25]
|
Halon-Golabek, M., Borkowska, A., Herman-Antosiewicz, A., & Antosiewicz, J. (2019). Iron Metabolism of the Skeletal Muscle and Neurodegeneration. Frontiers in Neuroscience, 13, Article 165. https://doi.org/10.3389/fnins.2019.00165
|
[26]
|
Hely, M. A., Reid, W. G. J., Adena, M. A., Halliday, G. M., & Morris, J. G. L. (2008). The Sydney Multicenter Study of Parkinson’s Disease: The Inevitability of Dementia at 20 Years. Movement Disorders, 23, 837-844. https://doi.org/10.1002/mds.21956
|
[27]
|
Henley, J. M., & Wilkinson, K. A. (2013). AMPA Receptor Trafficking and the Mechanisms Underlying Synaptic Plasticity and Cognitive Aging. Dialogues in Clinical Neuroscience, 15, 11-27. https://doi.org/10.31887/dcns.2013.15.1/jhenley
|
[28]
|
Hyman, C., Hofer, M., Barde, Y., Juhasz, M., Yancopoulos, G. D., Squinto, S. P. et al. (1991). BDNF Is a Neurotrophic Factor for Dopaminergic Neurons of the Substantia Nigra. Nature, 350, 230-232. https://doi.org/10.1038/350230a0
|
[29]
|
Jokinen, P., Brück, A., Aalto, S., Forsback, S., Parkkola, R., & Rinne, J. O. (2009). Impaired Cognitive Performance in Parkinson’s Disease Is Related to Caudate Dopaminergic Hypofunction and Hippocampal Atrophy. Parkinsonism & Related Disorders, 15, 88-93. https://doi.org/10.1016/j.parkreldis.2008.03.005
|
[30]
|
Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2010). Neuropsychological and Clinical Heterogeneity of Cognitive Impairment and Dementia in Patients with Parkinson’s Disease. The Lancet Neurology, 9, 1200-1213. https://doi.org/10.1016/s1474-4422(10)70212-x
|
[31]
|
Kudlicka, A., Clare, L., & Hindle, J. V. (2011). Executive Functions in Parkinson's Disease: Systematic Review and Meta-Analysis. Movement Disorders, 26, 2305-2315. https://doi.org/10.1002/mds.23868
|
[32]
|
Levin, B. E., Llabre, M. M., Reisman, S., Weiner, W. J., Sanchez-Ramos, J., Singer, C. et al. (1991). Visuospatial Impairment in Parkinson’s Disease. Neurology, 41, 365-365. https://doi.org/10.1212/wnl.41.3.365
|
[33]
|
Lewis, F. M., Lapointe, L. L., Murdoch, B. E., & Chenery, H. J. (1998). Language Impairment in Parkinson’s Disease. Aphasiology, 12, 193-206. https://doi.org/10.1080/02687039808249446
|
[34]
|
Li, F., Harmer, P., Fitzgerald, K., Eckstrom, E., Stock, R., Galver, J. et al. (2012). Tai Chi and Postural Stability in Patients with Parkinson’s Disease. New England Journal of Medicine, 366, 511-519. https://doi.org/10.1056/nejmoa1107911
|
[35]
|
Lin, L. H., Doherty, D. H., Lile, J. D., Bektesh, S., & Collins, F. (1993). GDNF: A Glial Cell Line-Derived Neurotrophic Factor for Midbrain Dopaminergic Neurons. Science, 260, 1130-1132. https://doi.org/10.1126/science.8493557
|
[36]
|
Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C. et al. (2012). Diagnostic Criteria for Mild Cognitive Impairment in Parkinson’s Disease: movement Disorder Society Task Force Guidelines. Movement Disorders, 27, 349-356. https://doi.org/10.1002/mds.24893
|
[37]
|
Lynch, G. (2004). AMPA Receptor Modulators as Cognitive Enhancers. Current Opinion in Pharmacology, 4, 4-11. https://doi.org/10.1016/j.coph.2003.09.009
|
[38]
|
Ma, S., Zhang, Y., Liu, N., Xiao, W., Li, S., Zhang, G. et al. (2019). Altered Transposition Asymmetry in Serial Ordering in Early Parkinson’s Disease. Parkinsonism & Related Disorders, 62, 62-67. https://doi.org/10.1016/j.parkreldis.2019.01.028
|
[39]
|
Marusiak, J., Żeligowska, E., Mencel, J., Kisiel-Sajewicz, K., Majerczak, J., Zoladz, J. et al. (2015). Interval Training-Induced Alleviation of Rigidity and Hypertonia in Patients with Parkinson’s Disease Is Accompanied by Increased Basal Serum Brain-Derived Neurotrophic Factor. Journal of Rehabilitation Medicine, 47, 372-375. https://doi.org/10.2340/16501977-1931
|
[40]
|
Mastroberardino, P. G., Hoffman, E. K., Horowitz, M. P., Betarbet, R., Taylor, G., Cheng, D. et al. (2009). A Novel Transferrin/TfR2-Mediated Mitochondrial Iron Transport System Is Disrupted in Parkinson’s Disease. Neurobiology of Disease, 34, 417-431. https://doi.org/10.1016/j.nbd.2009.02.009
|
[41]
|
McKee, K. E., & Hackney, M. E. (2013). The Effects of Adapted Tango on Spatial Cognition and Disease Severity in Parkinson’s Disease. Journal of Motor Behavior, 45, 519-529. https://doi.org/10.1080/00222895.2013.834288
|
[42]
|
Mirelman, A., Maidan, I., Herman, T., Deutsch, J. E., Giladi, N., & Hausdorff, J. M. (2011). Virtual Reality for Gait Training: Can It Induce Motor Learning to Enhance Complex Walking and Reduce Fall Risk in Patients with Parkinson’s Disease? The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66, 234-240. https://doi.org/10.1093/gerona/glq201
|
[43]
|
Molteni, R., Wu, A., Vaynman, S., Ying, Z., Barnard, R. J., & Gómez-Pinilla, F. (2004). Exercise Reverses the Harmful Effects of Consumption of a High-Fat Diet on Synaptic and Behavioral Plasticity Associated to the Action of Brain-Derived Neurotrophic Factor. Neuroscience, 123, 429-440. https://doi.org/10.1016/j.neuroscience.2003.09.020
|
[44]
|
Murray, D. K., Sacheli, M. A., Eng, J. J., & Stoessl, A. J. (2014). The Effects of Exercise on Cognition in Parkinson’s Disease: A Systematic Review. Translational Neurodegeneration, 3, 1-13. https://doi.org/10.1186/2047-9158-3-5
|
[45]
|
Nelson, M. E., Rejeski, W. J., Blair, S. N., Duncan, P. W., Judge, J. O., King, A. C. et al. (2007). Physical Activity and Public Health in Older Adults. Medicine & Science in Sports & Exercise, 39, 1435-1445. https://doi.org/10.1249/mss.0b013e3180616aa2
|
[46]
|
Nocera, J. R., Altmann, L. J. P., Sapienza, C., Okun, M. S., & Hass, C. J. (2010). Can Exercise Improve Language and Cognition in Parkinson’s Disease? A Case Report. Neurocase, 16, 301-306. https://doi.org/10.1080/13554790903559663
|
[47]
|
Nocera, J. R., Amano, S., Vallabhajosula, S., & Hass, C. J. (2013). Tai Chi Exercise to Improve Non-Motor Symptoms of Parkinson’s Disease. Journal of Yoga & Physical Therapy, 3, Article No. 10.
|
[48]
|
Olde Dubbelink, K. T. E., Schoonheim, M. M., Deijen, J. B., Twisk, J. W. R., Barkhof, F., & Berendse, H. W. (2014). Functional Connectivity and Cognitive Decline over 3 Years in Parkinson Disease. Neurology, 83, 2046-2053. https://doi.org/10.1212/wnl.0000000000001020
|
[49]
|
Owen, A. M., James, M., Leigh, P. N., Summers, B. A., Marsden, C. D., Quinn, N. P. Et al. (1992). Fronto-Striatal Cognitive Deficits at Different Stages of Parkinson’s Disease. Brain, 115, 1727-1751. https://doi.org/10.1093/brain/115.6.1727
|
[50]
|
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D. et al. (2021). The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. British Medical Journal, 372, n71. https://doi.org/10.1136/bmj.n71
|
[51]
|
Petzinger, G. M., Holschneider, D. P., Fisher, B. E., McEwen, S., Kintz, N., Halliday, M. et al. (2015). The Effects of Exercise on Dopamine Neurotransmission in Parkinson’s Disease: Targeting Neuroplasticity to Modulate Basal Ganglia Circuitry. Brain Plasticity, 1, 29-39. https://doi.org/10.3233/bpl-150021
|
[52]
|
Petzinger, G. M., Walsh, J. P., Akopian, G., Hogg, E., Abernathy, A., Arevalo, P. et al. (2007). Effects of Treadmill Exercise on Dopaminergic Transmission in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Mouse Model of Basal Ganglia Injury. The Journal of Neuroscience, 27, 5291-5300. https://doi.org/10.1523/jneurosci.1069-07.2007
|
[53]
|
Picelli, A., Varalta, V., Melotti, C., Zatezalo, V., Fonte, C., Amato, S., & Smania, N. (2016). Effects of Treadmill Training on Cognitive and Motor Features of Patients with Mild to Moderate Parkinson’s Disease: A Pilot, Single-Blind, Randomized Controlled Trial. Functional Neurology, 31, 25-31.
|
[54]
|
Pigott, K., Rick, J., Xie, S. X., Hurtig, H., Chen-Plotkin, A., Duda, J. E. et al. (2015). Longitudinal Study of Normal Cognition in Parkinson Disease. Neurology, 85, 1276-1282. https://doi.org/10.1212/wnl.0000000000002001
|
[55]
|
Pompeu, J. E., Mendes, F. A. d. S., Silva, K. G. d., Lobo, A. M., Oliveira, T. d. P., Zomignani, A. P. et al. (2012). Effect of Nintendo WII-Based Motor and Cognitive Training on Activities of Daily Living in Patients with Parkinson’s Disease: A Randomised Clinical Trial. Physiotherapy, 98, 196-204. https://doi.org/10.1016/j.physio.2012.06.004
|
[56]
|
Postuma, R. B., Aarsland, D., Barone, P., Burn, D. J., Hawkes, C. H., Oertel, W. et al. (2012). Identifying Prodromal Parkinson’s Disease: Pre-Motor Disorders in Parkinson’s Disease. Movement Disorders, 27, 617-626. https://doi.org/10.1002/mds.24996
|
[57]
|
Poulton, N. P., & Muir, G. D. (2005). Treadmill Training Ameliorates Dopamine Loss but Not Behavioral Deficits in Hemi-Parkinsonian Rats. Experimental Neurology, 193, 181-197. https://doi.org/10.1016/j.expneurol.2004.12.006
|
[58]
|
Radák, Z., Kaneko, T., Tahara, S., Nakamoto, H., Pucsok, J., Sasvári, M. et al. (2001). Regular Exercise Improves Cognitive Function and Decreases Oxidative Damage in Rat Brain. Neurochemistry International, 38, 17-23. https://doi.org/10.1016/s0197-0186(00)00063-2
|
[59]
|
Ramel, A., Wagner, K., & Elmadfa, I. (2004). Correlations between Plasma Noradrenaline Concentrations, Antioxidants, and Neutrophil Counts after Submaximal Resistance Exercise in Men. British Journal of Sports Medicine, 38, e22. https://doi.org/10.1136/bjsm.2003.007666
|
[60]
|
Reuter, I., Mehnert, S., Sammer, G., Oechsner, M., & Engelhardt, M. (2012). Efficacy of a Multimodal Cognitive Rehabilitation Including Psychomotor and Endurance Training in Parkinson’s Disease. Journal of Aging Research, 2012, 1-15. https://doi.org/10.1155/2012/235765
|
[61]
|
Ridgel, A. L., Kim, C., Fickes, E. J., Muller, M. D., & Alberts, J. L. (2011). Changes in Executive Function after Acute Bouts of Passive Cycling in Parkinson’s Disease. Journal of Aging and Physical Activity, 19, 87-98. https://doi.org/10.1123/japa.19.2.87
|
[62]
|
Ross, R., Blair, S. N., Arena, R., Church, T. S., Després, J., Franklin, B. A. et al. (2016). Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation, 134, e653-e699. https://doi.org/10.1161/cir.0000000000000461
|
[63]
|
Schaeffer, E., Roeben, B., Granert, O., Hanert, A., Liepelt-Scarfone, I., Leks, E. et al. (2022). Effects of Exergaming on Hippocampal Volume and Brain-Derived Neurotrophic Factor Levels in Parkinson’s Disease. European Journal of Neurology, 29, 441-449. https://doi.org/10.1111/ene.15165
|
[64]
|
Shah, C., Beall, E. B., Frankemolle, A. M. M., Penko, A., Phillips, M. D., Lowe, M. J. et al. (2016). Exercise Therapy for Parkinson’s Disease: Pedaling Rate Is Related to Changes in Motor Connectivity. Brain Connectivity, 6, 25-36. https://doi.org/10.1089/brain.2014.0328
|
[65]
|
Shin, M., Kim, T., Lee, J., Sung, Y., & Lim, B. (2017). Treadmill Exercise Alleviates Depressive Symptoms in Rotenone-Induced Parkinson Disease Rats. Journal of Exercise Rehabilitation, 13, 124-129. https://doi.org/10.12965/jer.1734966.483
|
[66]
|
Silva-Batista, C., Corcos, D. M., Roschel, H., Kanegusuku, H., Gobbi, L. T. B., Piemonte, M. E. P. et al. (2016). Resistance Training with Instability for Patients with Parkinson’s Disease. Medicine & Science in Sports & Exercise, 48, 1678-1687. https://doi.org/10.1249/mss.0000000000000945
|
[67]
|
Silveira, C. R. A., Roy, E. A., Intzandt, B. N., & Almeida, Q. J. (2018). Aerobic Exercise Is More Effective than Goal-Based Exercise for the Treatment of Cognition in Parkinson’s Disease. Brain and Cognition, 122, 1-8. https://doi.org/10.1016/j.bandc.2018.01.002
|
[68]
|
Sinforiani, E., Banchieri, L., Zucchella, C., Pacchetti, C., & Sandrini, G. (2014). Cognitive Rehabilitation in Parkinson’s Disease. Archives of Gerontology and Geriatrics, 38, 387-391. https://doi.org/10.1016/j.archger.2004.04.049
|
[69]
|
Solla, P., Cugusi, L., Bertoli, M., Cereatti, A., Della Croce, U., Pani, D. et al. (2019). Sardinian Folk Dance for Individuals with Parkinson’s Disease: A Randomized Controlled Pilot Trial. The Journal of Alternative and Complementary Medicine, 25, 305-316. https://doi.org/10.1089/acm.2018.0413
|
[70]
|
Tajiri, N., Yasuhara, T., Shingo, T., Kondo, A., Yuan, W., Kadota, T. et al. (2010). Exercise Exerts Neuroprotective Effects on Parkinson’s Disease Model of Rats. Brain Research, 1310, 200-207. https://doi.org/10.1016/j.brainres.2009.10.075
|
[71]
|
Tanaka, K., Quadros, A. C. d., Santos, R. F., Stella, F., Gobbi, L. T. B., & Gobbi, S. (2009). Benefits of Physical Exercise on Executive Functions in Older People with Parkinson’s Disease. Brain and Cognition, 69, 435-441. https://doi.org/10.1016/j.bandc.2008.09.008
|
[72]
|
Tierney, M. C., Nores, A., Snow, W. G., Fisher, R. H., Zorzitto, M. L., & Reid, D. W. (1994). Use of the Rey Auditory Verbal Learning Test in Differentiating Normal Aging from Alzheimer’s and Parkinson’s Dementia. Psychological Assessment, 6, 129-134. https://doi.org/10.1037/1040-3590.6.2.129
|
[73]
|
Tillerson, J. L., Cohen, A. D., Caudle, W. M., Zigmond, M. J., Schallert, T., & Miller, G. W. (2002). Forced Nonuse in Unilateral Parkinsonian Rats Exacerbates Injury. The Journal of Neuroscience, 22, 6790-6799. https://doi.org/10.1523/jneurosci.22-15-06790.2002
|
[74]
|
Torikoshi, S., Morizane, A., Shimogawa, T., Samata, B., Miyamoto, S., & Takahashi, J. (2020). Exercise Promotes Neurite Extensions from Grafted Dopaminergic Neurons in the Direction of the Dorsolateral Striatum in Parkinson’s Disease Model Rats. Journal of Parkinson’s Disease, 10, 511-521. https://doi.org/10.3233/jpd-191755
|
[75]
|
Uc, E. Y., Doerschug, K. C., Magnotta, V., Dawson, J. D., Thomsen, T. R., Kline, J. N. et al. (2014). Phase I/II Randomized Trial of Aerobic Exercise in Parkinson Disease in a Community Setting. Neurology, 83, 413-425. https://doi.org/10.1212/wnl.0000000000000644
|
[76]
|
van der Kolk, N. M., de Vries, N. M., Penko, A. L., van der Vlugt, M., Mulder, A. A., Post, B. et al. (2018). A Remotely Supervised Home-Based Aerobic Exercise Programme Is Feasible for Patients with Parkinson’s Disease: Results of a Small Randomised Feasibility Trial. Journal of Neurology, Neurosurgery & Psychiatry, 89, 1003-1005. https://doi.org/10.1136/jnnp-2017-315728
|
[77]
|
Vučcković, M. G., Li, Q., Fisher, B., Nacca, A., Leahy, R. M., Walsh, J. P. et al. (2010). Exercise Elevates Dopamine D2 Receptor in a Mouse Model of Parkinson’s Disease: In Vivo Imaging with [18F] fallypride. Movement Disorders, 25, 2777-2784. https://doi.org/10.1002/mds.23407
|
[78]
|
Wang, Y., Liu, H., Zhang, B., Soares, J. C., & Zhang, X. Y. (2016). Low BDNF Is Associated with Cognitive Impairments in Patients with Parkinson’s Disease. Parkinsonism & Related Disorders, 29, 66-71. https://doi.org/10.1016/j.parkreldis.2016.05.023
|
[79]
|
Whittington, C. J., Podd, J., & Stewart-Williams, S. (2006). Memory Deficits in Parkinson’s Disease. Journal of Clinical and Experimental Neuropsychology, 28, 738-754. https://doi.org/10.1080/13803390590954236
|
[80]
|
Williams-Gray, C. H., Mason, S. L., Evans, J. R., Foltynie, T., Brayne, C., Robbins, T. W. et al. (2013). The Campaign Study of Parkinson’s Disease: 10-Year Outlook in an Incident Population-Based Cohort. Journal of Neurology, Neurosurgery & Psychiatry, 84, 1258-1264. https://doi.org/10.1136/jnnp-2013-305277
|
[81]
|
Witt, K., Daniels, C., Reiff, J., Krack, P., Volkmann, J., Pinsker, M. O. et al. (2008). Neuropsychological and Psychiatric Changes after Deep Brain Stimulation for Parkinson’s Disease: A Randomized, Multicentre Study. The Lancet Neurology, 7, 605-614. https://doi.org/10.1016/s1474-4422(08)70114-5
|
[82]
|
Ye, Z., Altena, E., Nombela, C., Housden, C. R., Maxwell, H., Rittman, T. et al. (2014). Selective Serotonin Reuptake Inhibition Modulates Response Inhibition in Parkinson’s Disease. Brain, 137, 1145-1155. https://doi.org/10.1093/brain/awu032
|
[83]
|
Ye, Z., Hanssen, H., Steinhardt, J., Tronnier, V., Rasche, D., Brüggemann, N. et al. (2021a). Subthalamic Nucleus Stimulation Impairs Sequence Processing in Patients with Parkinson’s Disease. Journal of Parkinson's Disease, 11, 1869-1879. https://doi.org/10.3233/jpd-212778
|
[84]
|
Ye, Z., Rae, C. L., Nombela, C., Ham, T., Rittman, T., Jones, P. S. et al. (2016). Predicting Beneficial Effects of Atomoxetine and Citalopram on Response Inhibition in Parkinson’s Disease with Clinical and Neuroimaging Measures. Human Brain Mapping, 37, 1026-1037. https://doi.org/10.1002/hbm.23087
|
[85]
|
Ye, Z., Zhang, G., Zhang, Y., Li, S., Liu, N., Zhou, X. et al. (2021b). The Role of the Subthalamic Nucleus in Sequential Working Memory in de Novo Parkinson’s Disease. Movement Disorders, 36, 87-95. https://doi.org/10.1002/mds.28344
|
[86]
|
Zhang, G., Hou, Y., Wang, Z., & Ye, Z. (2020). Cognitive Profile of Patients with Mitochondrial Chronic Progressive External Ophthalmoplegia. Frontiers in Neurology, 11, Article 36. https://doi.org/10.3389/fneur.2020.00036
|
[87]
|
Zigmond, M. J., Cameron, J. L., Hoffer, B. J., & Smeyne, R. J. (2012). Neurorestoration by Physical Exercise: Moving Forward. Parkinsonism & Related Disorders, 18, S147-S150. https://doi.org/10.1016/s1353-8020(11)70046-3
|
[88]
|
Zoladz, J. A., Majerczak, J., Zeligowska, E., Mencel, J., Jaskolski, A., Jaskolska, A., & Marusiak, J. (2014). Moderate-Intensity Interval Training Increases Serum Brain-Derived Neurotrophic Factor Level and Decreases Inflammation in Parkinson’s Disease Patients. Journal of Physiology and Pharmacology, 65, 441-448.
|