运动干预帕金森病患者认知障碍的系统综述
A Systematic Review of Exercise Interventions for Cognitive Impairment in Patients with Parkinson’s Disease
DOI: 10.12677/ap.2025.151034, PDF, HTML, XML,    科研立项经费支持
作者: 张冠宇:国家体育总局体育科学研究所,运动心理与生物力学研究中心,北京;马敬红:首都医科大学宣武医院神经内科,北京;钊 岩:济南市第三人民医院康复医学科,山东 济南
关键词: 帕金森病认知障碍运动干预生物学机制Parkinson’s Disease Cognitive Impairment Exercise Intervention Biological Mechanism
摘要: 背景:帕金森病(Parkinson’s Disease, PD)是继阿尔茨海默病之后第二大神经退行性疾病。随着我国社会老龄化的加剧,帕金森病患者数量激增。认知障碍等非运动症状是帕金森病患者日常生活的主要影响因素,而临床上常规治疗帕金森病的方式对认知障碍几乎无效,其生物学相关机制也尚不明确。目的:总结归纳运动了干预对帕金森病患者认知障碍的作用以及潜在的生物学机制。方法:遵循系统综述和荟萃分析指南(Preferred Reporting Items for Systematic Reviews and Meta-Analysis, PRISMA),共纳入42篇文献。结果:这些研究是根据整体认知和特定认知域(执行功能、工作记忆、语言、记忆和视觉空间功能)进行分类的。并且,运动干预帕金森患者认知的生物学机制非常复杂。在分子水平上,有氧运动可增加血清神经营养因子水平、促进AMPA型谷氨酸受体表达和多巴胺分泌。在细胞水平上,对多巴胺能神经元有保护作用。在组织水平上,可增大海马体积和增强功能连接。结论:持续数月的有氧运动训练对帕金森病患者的认知有有益,但确切的生物学机制尚不清楚。未来的研究应探索帕金森病患者的个性化运动方案。
Abstract: Background: Parkinson’s disease (PD) is the second most common neurodegenerative disease following Alzheimer’s disease. As the population aging increases, the number of patients with PD is growing rapidly. Cognitive impairment and other non-motor symptoms have become a main factor in decline of quality of life in patients with PD. However, the current clinical treatments for PD have poor effectiveness on cognitive impairment, and the underlying biological mechanism is still unclear. Objectives: This study conducts a systematic review of the effects of exercise intervention on cognitive impairment in PD, and potential biological mechanism. Methods: Adhering to Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines, a total of forty-two studies were included. Results: These studies were classified based on whether they evaluated global cognition or specific cognitive domains such as executive functions, working memory, language, memory, and visuospatial function. Moreover, molecular, cellular, and systemic changes occur under the effect of exercise. At the molecular level, aerobic exercise is found to increase the serum level of neurotrophic factors, the expression of AMPA-type glutamate receptor, and the secretion of dopamine. At the cellular level, it offers a protective effect on dopaminergic neurons. At the systemic level, it is associated with enhanced hippocampus volume and functional connectivity. Conclusion: Several-month aerobic exercise training has benefit effect on cognition in patients with PD. The precise biological mechanisms remain undefined. Future studies should explore the personalized exercise regimens tailored to the needs of PD patients.
文章引用:张冠宇, 马敬红, 钊岩 (2025). 运动干预帕金森病患者认知障碍的系统综述. 心理学进展, 15(1), 275-287. https://doi.org/10.12677/ap.2025.151034

1. 引言

帕金森病(Parkinson’s Disease, PD)是中老年人中常见的神经退行性疾病,中国现有270多万名PD患者,预计到2050年将会增长至800多万,占全世界的一半以上(张丽娟等,2014)。这对社会和家庭来说是一个极大的负担。PD不是简单的运动障碍病,而是既有运动症状又有非运动症状的多系统功能障碍病。认知障碍、精神症状、睡眠障碍、自主神经功能障碍、嗅觉减退、便秘等非运动症状可能比运动症状更早出现(Postuma et al., 2012),这些非运动症状对患者日常生活的影响更大。

PD涉及到多种认知功能损伤,包括整体认知功能、执行功能、工作记忆、语言、记忆和视觉空间功能。根据严重程度分为PD痴呆和PD轻度认知障碍,具体可参考国际帕金森病和运动障碍病协会发布的诊断标准(Emre et al., 2007; Litvan et al., 2012)。追踪研究表明,有36%新发PD患者存在认知障碍,46%的PD患者会在10年内出现痴呆,83%的PD患者会在20年内出现痴呆(Foltynie et al., 2004; Williams-Gray et al., 2013; Hely et al., 2008)。而确诊时认知功能正常的PD患者在6年内约有一半会发展为不同程度的认知障碍,确诊时轻度认知障碍的PD患者在5年内全部发展为痴呆(Pigott et al., 2015)。

无论是整体认知及五大认知域受损程度,还是从认知正常到轻度认知障碍再到痴呆的进展速度,PD患者都存在很大的个体差异。造成这种异质性的生物学机制尚不清楚,可能是多巴胺、去甲肾上腺素、乙酰胆碱等多个神经化学系统以及大脑皮层和皮层下的损伤累加造成的。早期认知障碍,尤其是执行功能障碍,主要表现为额叶–纹状体的病理改变,可能源于黑质纹状体和中脑皮层多巴胺能神经元去神经化,以及去甲肾上腺素能缺陷。路易体堆积导致皮质和皮质下神经元变性和严重的胆碱能缺乏,是PD患者发展为痴呆的可能诱因(Kehagia et al., 2010)。此外,患者的年龄、运动症状的严重程度、服用抗PD药物的剂量等也都是影响因素(Daniels et al., 2010)。

目前,PD的常用治疗手段是用药和手术,主要用以改善患者的运动症状,针对认知障碍的治疗方法十分有限,部分治疗方法甚至可能加重认知功能损伤。药物治疗是应用最广泛的治疗方式,通过补偿基底神经节和纹状体多巴胺来达到治疗目的。在现有抗PD药物中,除了发现多巴胺D2/3受体激动剂普拉克索的服用剂量与工作记忆表现呈显著正相关外(Ma et al., 2019; Zhang et al., 2020),没有发现可治疗PD痴呆的新药,治疗PD轻度认知障碍的新药均在临床试验中宣告失败(Goldman & Weintraub, 2015),说明药物治疗PD认知障碍缺乏充分的证据。

PD的手术治疗主要是深度脑刺激疗法(大多以丘脑底核为靶点)以及丘脑切开术。但是由于价格昂贵、不同人的术后反应差异大等原因,在我国并没有广泛应用。一项前后对照研究表明PD患者在经过电刺激丘脑底核后,语言和执行功能会下降(Witt et al., 2008)。另一项综合了九个数据库的元分析研究指出,有19.4%的运动障碍患者在深度脑刺激疗法后出现语言障碍,19.8%的运动障碍患者在丘脑切除术后出现语言障碍(Alomar et al., 2017)。还有研究发现,经过电刺激丘脑底核后,会损害PD患者的工作记忆和语言能力(Ye et al., 2021a)。

经济成本低、操作方便并具有无创性的运动训练作为PD辅助治疗手段成为近年来的研究热点。考虑到PD患者存在步态障碍等运动症状,无法进行剧烈的运动,比如无氧运动、力量训练等,因此有氧运动(太极拳、跳舞等)成为主要的运动干预方式。临床研究表明,运动训练除了可以改善PD患者的运动症状(动作迟缓,姿势不稳定等)外(Li et al., 2012),也可以提升PD患者的认知能力(Murray et al., 2014)。中共中央国务院印发的《“健康中国2030”规划纲要》中也提及,当前需加强体医融合与非医疗健康干预协同推进。本文总结归纳了运动干预对PD患者认知障碍的作用与可能的生物学机制。

2. 方法

Figure 1. PRISMA flow diagram of paper selection process

1. PRISMA文献选择流程图

除整体认知功能之外,在国际帕金森病和运动障碍病协会发布的PD轻度认知障碍诊断标准中,明确划分了执行功能、工作记忆、语言、记忆和视觉空间功能五大认知域,并列举了相关的神经心理学测验用于客观测评。评估患者整体认知情况的神经心理学测验有蒙特利尔认知评估量表、简易精神状态检查等,执行功能有威斯康星卡片分类测验、连线测验、伦敦塔测验等,工作记忆有数字广度测验、数字排序测验等,语言有语言流畅性测验、波士顿命名测验等,记忆有听觉语言学习测验、延迟回忆测验等,视觉空间功能有画钟测验、积木测验等(Litvan et al., 2012; Zhang et al., 2020)。

根据系统综述和荟萃分析指南(Preferred Reporting Items for Systematic Reviews and Meta-analysis, PRISMA) (Page et al., 2021),我们在2024年检索了中国知网、PubMed、Web of Science、Wiley Online Library和Springer这几个数据库,搜索关键词包括“运动干预”、“认知功能”、“帕金森病”和“生物学机制”。纳入标准为:1) 发表日期在1990年至2024年之间;2) 在同行评审的学术期刊上发表;3) 客观评估认知功能。排除标准为:1) 不合适的文献(例如,与本综述无关的研究);2) 重复文献;3) 没有明确描述运动干预方案。详细的论文选择过程见PRISMA流程图(见图1)。最终纳入了20篇关于运动对PD患者认知作用的文献和22篇关于潜在生物学机制的文献。提取的数据包括PD患者人数、年龄、受教育程度、左旋多巴每日剂量、认知域、运动干预的类型和持续时间、干预结果,以及潜在的生物学机制。

3. 结果

3.1. 运动干预对PD患者认知的作用

根据整体认知功能和五大认知域分类,分别阐述了运动干预对它们的作用。由于采用的神经心理学测验和运动方式的不同,干预效果也有所差异。

3.1.1. 运动干预对PD患者整体认知功能的作用

整体认知功能综合了五大认知域,可以简单快速判定患者的认知情况。一项横断研究显示,新发未治疗的PD患者的整体认知有损伤(de la Riva et al., 2014)。Pompeu等(Pompeu et al., 2012)招募了32名PD患者,分为两组,实验组进行系统的运动–认知训练(每周2次,每次1小时,共计7周),控制组进行简单的平衡训练,发现训练后两组在蒙特利尔认知评估量表上的得分差异显著,说明系统运动–认知训练可以有效提高PD患者整体认知能力。Picelli等(Picelli et al., 2016)招募了9名PD患者进行跑步机训练(每周3次,每次45分钟,共计4周),发现训练后比训练前PD患者在蒙特利尔认知评估量表上的得分显著提高。Chang等(Chang et al., 2018)采用渐进式自行车训练(每周2次,每次30分钟,共计8周),发现PD患者训练后的蒙特利尔认知评估量表得分显著高于训练前。Solla等(Solla et al., 2019)发现跳舞(每周2次,每次90分钟,共计12周)可以显著改善PD患者的整体认知能力。Silva-Batista等(Silva-Batista et al., 2016)将抗阻与不稳定性训练结合(每周2次,每次50分钟,共计12周),得到了类似的结果。但是,也有研究采用简易精神状态检查,结果表明经过认知和运动训练后,PD患者的整体认知能力没有明显改善(Sinforiani et al., 2014)。

3.1.2. 运动干预对PD患者执行功能的作用

执行功能是指设定目标、确定实现目标的策略、监控进度以及根据变化的环境调整计划所需的能力,核心要素包括意志,计划,有目的的行动和有效的表现(Kudlicka et al., 2011)。Owen等(Owen et al., 1992)采用伦敦塔测验发现,PD患者在解决问题时要比健康对照者花费更多的思考时间,临床症状更严重的PD患者正确率也更低。Tanaka等(Tanaka et al., 2009)招募了20名PD患者,其中训练组进行多种中等强度有氧运动训练(抗阻,协调和平衡) (每周3次,每次60分钟,共计24周),控制组不进行任何干预,发现训练组比控制组在威斯康星卡片分类测验中表现更好。Ridgel等(Ridgel et al., 2011)招募了19名PD患者进行低强度的自行车运动(每周1次,每次30分钟,共计4周),发现与训练前相比,他们完成连线测验的时间明显缩短。Picelli等(Picelli et al., 2016)招募了9名PD患者进行跑步机训练(每周3次,每次45分钟,共计4周),发现训练后比训练前执行功能得到明显改善(连线测验的完成时间显著下降)。Altmann等(Altmann et al., 2016)同样采用了跑步机训练(每周3次,每次45分钟,共计16周),也得到了相似的结果。Mirelman等(Mirelman et al., 2011)将跑步机训练与虚拟现实结合起来(每周3次,每次45分钟,共计6周),结果显示,经过训练后PD患者的执行功能也有所改善(连线测验的错误率显著下降)。但是,也有研究呈现了不同的结果。Nocera等(Nocera et al., 2013)采用连线测验,发现经过太极拳训练(每周3次,每次1小时,共计16周)的PD患者与控制组的表现无显著差异。Duchesne等(Duchesne et al., 2015)也发现经过高强度固定自行车训练后(每周3次,每次40分钟,共计12周)的PD患者在连线测验中的表现与训练前无显著差异。van der Kolk等(van der Kolk et al., 2018)将自行车训练与虚拟现实结合(每周3~5次,每次45分钟,共计24周),并未发现训练后PD患者执行功能有所改善。

3.1.3. 运动干预对PD患者工作记忆的作用

工作记忆开始的定义是信息短时存储和加工的记忆系统,而随着其概念的发展,它还代表短时间内根据行为目标加工和操作信息的能力(Baddeley, 2012)。Ye等(Ye et al., 2021b)发现,PD患者在数字排序测验中的正确率低于健康对照者,而且反应时间更长,并指出丘脑底核激活和功能连接异常是工作记忆受损的关键。Nocera等(Nocera et al., 2013)采用数字广度测验,发现与训练前相比,经过太极拳训练(每周3次,每次1小时,共计16周)后的PD患者得分提升,说明太极拳对工作记忆有积极作用。Nocera等(Nocera et al., 2010)在单个PD病例报告中,采用同样的神经心理学测验也证明了自行车训练(每周3次,每次20分钟,共计8周)可以有效地改善PD患者的工作记忆。但是,也有研究采用相同的测验,结果表明经过认知和运动训练后,PD患者的工作记忆没有明显改善(Sinforiani et al., 2014)。

3.1.4. 运动干预对PD患者语言的作用

语言障碍包括命名、定义和多重定义能力损伤,以及在歧义和修辞、句子结构和语言流畅性方面的问题(Lewis et al., 1998)。Dadgar等(Dadgar et al., 2013)发现非痴呆PD患者在语言流畅性测验中比健康对照者说出的正确词语更少。Nocera等(Nocera et al., 2010)在单个PD病例报告中指出,经过自行车训练(每周3次,每次20分钟,共计8周)后比训练前PD患者在语言流畅性测验和图片描述测验中的表现更好,说明有氧训练有效地改善了PD患者的语言功能。Cruise等(Cruise et al., 2011)招募了28名PD患者,其中训练组进行力量和心血管训练(每周2次,每次60分钟,共计12周),控制组不进行任何干预,发现训练组在语言流畅性测试中的得分显著高于控制组。但是,也有研究有不同结论。Nocera等(Nocera et al., 2013)发现与训练前相比,经过太极拳训练(每周3次,每次1小时,共计16周)的PD患者语言流畅性测验的得分没有提升。

3.1.5. 运动干预对PD患者记忆的作用

记忆的基本过程是由识别、保持、回忆和再认三个环节组成的(Whittington et al., 2006)。Tierney等(Tierney et al., 1994)采用听觉语言学习测验发现,PD伴痴呆患者即时回忆和延时回忆出的正确词语数量都少于健康对照者,说明他们的短时记忆和长时记忆均受损,其受损程度甚至超过了轻度阿尔茨海默症患者。Reuter等(Reuter et al., 2012)在一项大样本量研究中(240名PD患者)比较了3种干预措施的效果(A组PD患者仅接受认知训练;B组接受认知训练和迁移训练(日常活动);C组接受认知训练、迁移训练和运动训练(有氧运动)) (每周3次,每次210分钟,共计24周)。A组和B组以放松训练来弥补训练时间。发现C组在延迟回忆任务中的表现明显优于A组和B组。Fiorelli等(Fiorelli et al., 2019)也指出自行车训练(每周3次,每次55分钟,共计3周)能够明显改善PD患者的记忆力。但是,也有研究发现运动干预对记忆没有改善作用。Cruise等(Cruise et al., 2011)招募了28名PD患者,其中训练组进行渐进式有氧运动(每周2次,每次60分钟,共计12周),控制组不进行任何干预,发现训练组和控制组在模式识别任务中的表现没有显著差异。Uc等(Uc et al., 2014)采用步行训练(每周3次,每次45分钟,共计24周),得到了类似的结果。

3.1.6. 运动干预对PD患者视觉空间功能的作用

视觉空间功能是指对客体的视空间特征(大小、颜色、位置等)进行表征和操作的能力(Brown & Marsden, 1986)。Levin等(Levin et al., 1991)采用积木测验等6个相关测验,发现PD患者在这些测验中的得分低于健康对照者,并且,这种损伤与PD患者的认知障碍程度和疾病进展相关,而与年龄和药物无关。Cruise等(Cruise et al., 2011)招募了28名PD患者,其中训练组进行渐进式有氧运动(每周2次,每次60分钟,共计12周),控制组不进行任何干预,发现训练组在视空间测验中的错误数显著低于控制组。McKee和Hackney (McKee & Hackney, 2013)发现,与普通教学组相比,经过探戈舞训练(每周2次,每次90分钟,共计10周)的PD患者在布鲁克斯空间任务中的表现更好。Sinforiani等(Sinforiani et al., 2014)发现,PD患者经过认知(注意力和视觉空间能力)和运动训练(每周2次,每次1小时,共计7周)后,视觉空间能力(瑞文矩阵测验)的改善可以保持6个月以上。但是,也有研究得到了不同的结果。Silveira等(Silveira et al., 2018)进行了自行车训练(每周3次,每次60分钟,共计12周),并未发现PD患者的视觉空间功能获得提升。

3.2. 运动干预对PD患者认知作用的潜在机制

运动在多大程度上影响PD患者的认知能力,以及如何影响,目前还不清楚。大量动物研究和人类研究的结果表明运动可以通过分子–细胞–组织这三个层面产生作用(见图2)。在分子层面上,有氧运动促进了神经营养因子的表达;提高了多巴胺的分泌和利用率;增加了AMPA型谷氨酸受体通道。在细胞层面上,有氧运动对多巴胺能神经元有保护作用。并且,分子层面上的神经营养因子也能起到对多巴胺能神经元的营养作用,而多巴胺能神经元对多巴胺分泌也有促进作用。在组织层面上,有氧运动可以促进大脑组织体积增大(海马体)和大脑功能连接。并且,细胞层面上的多巴胺能神经元分泌的多巴胺(分子层面)对额叶–纹状体、皮质–纹状体神经环路有重要的调节作用(Petzinger et al., 2015),它与海马体在突触可塑性、记忆等方面存在相互作用。海马体对多巴胺和其他递质系统(如谷氨酸)之间有重要的调节作用。此外,神经营养因子可能与海马体–多巴胺能系统相互作用,影响PD患者的认知功能(Calabresi et al., 2013)。综上,其机制可能是多级联合作用,而不是某个单一作用。

注:红色箭头代表促进或保护作用,粉色交互作用,紫色调节作用。

Figure 2. Potential biological mechanism of effect of exercise intervention on cognition in patients with PD

2. 运动干预对PD患者认知作用可能的生物学机制

3.2.1. 增加神经营养因子含量

脑源性神经营养因子是神经营养因子中非常常见的,在成人中枢神经系统中以微小的数量存在,可以促进树突和轴突的生长,在神经元的形成、维持和修复过程中起着重要作用。它能够促进中脑黑质多巴胺能神经元(包括在PD中退化的多巴胺能神经元细胞)的生长和发育,使受损的神经元再生(Hyman et al., 1991)。研究也已经证实,PD患者低血清脑源性神经营养因子浓度与认知评分下降显著相关(Wang et al., 2016)。神经胶质细胞源性神经营养因子是另一种常见的神经营养因子,除营养神经胶质细胞外,它还可以在体外促进多巴胺能神经元的存活和分化(Lin et al., 1993)。

动物研究发现,跑步机运动增加了PD大鼠纹状体中脑源性神经营养因子和神经胶质细胞源性神经营养因子的含量(Tajiri et al., 2010)。人类研究发现,在经过1个月中等强度的平板运动后,PD患者的血清脑源性神经营养因子水平显著升高,而未锻炼的PD患者没有变化(Frazzitta et al., 2014)。另外两项人类研究也指出,8周的中等强度有氧运动可以显著提高PD患者的血清脑源性神经营养因子水平(Marusiak et al., 2015; Zoladz et al., 2014)。有氧运动有效增加脑源性神经营养因子含量可能的机制是运动能够诱导脑源性神经营养因子基因表达,促进脑源性神经营养因子的合成(Molteni et al., 2004)。此外,有研究指出运动可以通过激活神经营养因子信号级联来促进神经元恢复(Zigmond et al., 2012)。

3.2.2. 增加AMPA型谷氨酸受体通道

AMPA型谷氨酸受体通道为大脑中的快速兴奋性神经传递提供保证,成为认知过程的实现不可或缺的一部分(Henley & Wilkinson, 2013)。人类实验和动物实验均表明选择性增强大脑中AMPA受体的小分子可加速记忆编码,对认知功能有积极作用。其机制可能是:调节突触强度和促进突触可塑性;对海马体的长时程增强作用(涉及到学习和记忆)有重大影响;增加神经营养因子的产生(Lynch, 2004)。而PD动物模型研究已经表明跑步机运动可以调节AMPA型谷氨酸受体的表达(Garcia et al., 2017)。

3.2.3. 提高多巴胺和多巴胺受体含量

多巴胺和多巴胺受体激动剂对PD患者的执行功能、工作记忆等有重要的促进作用(Ma et al., 2019; Zhang et al., 2020)。运动对多巴胺的合成具有促进作用。动物实验表明,对PD大鼠进行早期的运动干预能够使其纹状体多巴胺含量提高,反之减少运动,则多巴胺水平下降(Tillerson et al., 2002)。此外,一定的低强度运动刺激可以使多巴胺能神经元释放更多的多巴胺,并使多巴胺代谢速度降低(Petzinger et al., 2007)。与未经过训练的PD小鼠相比,经过跑步台训练的PD小鼠纹状体多巴胺消耗量会下降(Poulton & Muir, 2005)

平板运动可以促进PD小鼠多巴胺D2受体mRNA的转录和表达,并降低多巴胺转运体数量(Fisher et al., 2004),跑步台运动可以促进PD小鼠基底神经节多巴胺D2受体的表达,同时降低多巴胺转运蛋白的表达(Petzinger et al., 2007; Vučković et al., 2010)。一项PET研究发现,相较于没有经过运动的早期PD患者,经过低强度跑步机运动的PD患者多巴胺D2受体表达量明显提升(Fisher et al., 2013)。

3.2.4. 保护多巴胺能神经元

多巴胺能神经元含有并负责释放多巴胺。薛宏斌等(薛宏斌等,2007)发现,对PD小鼠进行运动干预,可以提高PD小鼠脑线粒体的功能,减缓或者降低由于氧化应激作用而导致的多巴胺能神经元凋亡。姜宁等(姜宁等,2012)指出其机制可能是运动使中脑以及纹状体自噬功能启动,脑神经元中线粒体分裂水平上调,并阻断多巴胺能神经元线粒体的凋亡,进而改善线粒体的呼吸功能,ATP合成加强,使神经元对能量的需求得以满足,实现对神经元的保护作用。并且,Torikoshi等(Torikoshi et al., 2020)将胚胎期大鼠中脑腹侧神经元移植到PD大鼠纹状体中,随后,PD大鼠进行6周跑步机训练,结果发现移植存活的多巴胺能神经元数量显著增加,它的神经轴突向纹状体背外侧延伸。

此外,由于PD患者黑质中铁代谢发生了改变,使得二价铁离子浓度增高,铁离子与脑中的过氧化物反应,生成氧化性更强的氧自由基,从而使多巴胺能神经元氧化应激增加,不仅如此,游离的铁离子还影响线粒体内钙离子存在状态,使多巴胺神经细胞受到损害,导致其死亡(Mastroberardino et al., 2009)。而运动已被证明可以通过减少体内铁储存的方式调节铁代谢,这可能是另一种神经保护机制(Halon-Golabek et al., 2019)。

3.2.5. 增加大脑组织体积和功能连接

磁共振成像研究发现,PD患者的认知障碍与海马萎缩有关(Jokinen et al., 2009)。有研究采用一项为期6周的运动训练计划,将视觉刺激的电脑游戏与有氧运动结合起来应用到PD患者中,发现干预后PD患者的海马体积增大至与健康对照者无异(Schaeffer et al., 2022)。

功能磁共振成像研究指出,PD患者的大脑功能连接水平随着疾病的发展而下降,并与认知能力下降相关(Olde Dubbelink et al., 2014)。一项在PD患者中进行的为期3个月的高强度、固定卧式自行车训练研究结果显示,与运动前相比,运动后海马、纹状体等脑区(涉及到运动学习记忆功能)的激活水平增加,并且增加水平与有氧适能变化量呈正相关(Duchesne et al., 2016)。另一项针对PD患者的功能磁共振成像研究发现,高强度的自行车运动与丘脑–皮质功能连接水平(涉及到运动视空间功能)增强关系密切(Shah et al., 2016)。

此外,运动提升脑血流量、抗氧化酶含量(Chodzko-Zajko & Moore, 1994; Radák et al., 2001)等对认知具有的普遍积极作用在此不再赘述了。

4. 研究展望

总而言之,许多小型研究均表明PD患者经过1至6个月的有氧运动,可以明显改善认知功能。然而,这些研究结果还存在不一致的地方,因此推广是受限的。并且,针对PD患者认知损伤的明确的生物学机制尚不清楚,针对每种认知域损伤的最佳运动方式、持续时间、运动强度、频率等目前也莫衷一是。因此,在今后的研究中,应从以下3个方面着手进行深入探索。

4.1. 开展运动干预PD患者认知功能的系统研究

考虑到PD患者存在步态障碍等运动症状,大多数研究采用的都是有氧运动(太极拳、舞蹈等),但是,目前还没有研究能提供理想的锻炼时长和锻炼频率。美国心脏协会的运动指南建议病人每周运动5天,每天进行至少30分钟的中等强度有氧运动或每周运动3天,每天进行至少20分钟的高强度有氧运动,以及抗阻力练习(伸膝、屈肘等),并且在运动过程中,患者应逐渐增加运动强度和持续时间(Ross et al., 2016; Nelson et al., 2007)。未来研究可以以此为基础,进行不同有氧运动方式、不同运动时间、不同强度、不同频率对PD患者整体认知功能和其它认知域影响的系统研究,并借助影像学、药物学等研究手段,找到相对应的神经化学基础。

4.2. 加强运动干预PD认知的人体生物学机制研究

运动对PD认知作用的生物学机制的人类研究太过缺乏,而本文中涉及的PD啮齿类动物模型研究的成果还不能直接应用于人类。目前人类研究在组织水平上可以借助磁共振等影像学手段进行结构和功能的研究,但是分子和细胞水平上的研究成果还远远达不到现有动物模型研究的深度,未来可以通过分析血液、脑脊液中的相关成分变动来补足短板,切实勾画出运动干预对PD患者的生物学机制,为之后的认知障碍治疗打下坚实的基础。

4.3. 关注去甲肾上腺素系统和五羟色胺系统在运动干预PD认知中的作用

现有的分子和细胞水平生物学机制大多围绕着多巴胺能系统,因为这是PD典型运动症状的致病机理。但是PD患者的去甲肾上腺素系统和五羟色胺系统比多巴胺能系统更早地出现损伤,而这可能是造成认知、情绪等非运动症状比运动症状更早出现的主要原因。人类药物学研究已经证明去甲肾上腺素和五羟色胺在PD患者执行功能中发挥重要作用(Ye et al., 2014; Ye et al., 2016),人体研究证实抗阻力训练可以增加血浆中去甲肾上素含量(Ramel et al., 2004),PD动物模型研究也表明有氧运动可以能够提高五羟色胺受体表达量(Shin et al., 2017)。今后,关于PD去甲肾上腺素系统和五羟色胺系统在运动干预PD患者认知功能中发挥作用的相关生物学机制应该纳入研究范畴,以期实现PD患者早期非运动症状的早发现、早诊断、早治疗。

5. 局限性

本文有一定的局限性。首先,纳入文献的研究结果有矛盾点,很难得出统一的结论。其次,所采用的搜索策略和纳入排除标准可能会遗失某些相关研究。第三,每个实证研究都包括检测风险、人员流失和选择性报告偏差。

6. 结论

本文通过梳理相关动物和人类研究发现,1~6个月的有氧运动对PD患者认知有明显的改善作用。其中的生物学机制很可能是一个分子–细胞–组织水平的三级级联系统。随着锻炼不仅可以改善PD患者的运动症状,还可以改善认知障碍等非运动症状这一事实被人们广泛地接受,卫生保健提供者和政策制定者应该将运动锻炼纳入患者日常的一部分,也可以进一步作为物理治疗方案实施。并且,有针对性的个性化运动处方作为新的代替性治疗方案也必将成为未来的发展趋势。期待心理学、体育学和神经病学等多个领域专家的跨界合作创造更多兼具科学意义和临床价值的研究成果。

致 谢

感谢赵杰修研究员对本文的意见和建议。

基金项目

国家体育总局体育科学研究所基本科研业务费资助项目24-48。

参考文献

[1] 姜宁, 曹玮, 宋超, 郭晶晶, 刘洪涛, 张勇(2012). 早期运动训练对帕金森小鼠中脑和纹状体的影响: 自噬与线粒体动力学关系的研究. 中国运动医学杂志, (2), 134-139.
[2] 薛宏斌, 张勇, 刘洪涛, 马强(2007). 早期运动训练通过增强小鼠脑线粒体呼吸功能预防MPTP神经毒性作用. 中国运动医学杂志, (4), 402-406.
[3] 张丽娟, 邵海涛, 王跃秀, 王晓民(2014). 帕金森病研究进展. 生命科学, (6), 560-570.
[4] Alomar, S., King, N. K. K., Tam, J., Bari, A. A., Hamani, C., & Lozano, A. M. (2017). Speech and Language Adverse Effects after Thalamotomy and Deep Brain Stimulation in Patients with Movement Disorders: A Meta-Analysis. Movement Disorders, 32, 53-63.
https://doi.org/10.1002/mds.26924
[5] Altmann, L. J. P., Stegemöller, E., Hazamy, A. A., Wilson, J. P., Bowers, D., Okun, M. S. et al. (2016). Aerobic Exercise Improves Mood, Cognition, and Language Function in Parkinson’s Disease: Results of a Controlled Study. Journal of the International Neuropsychological Society, 22, 878-889.
https://doi.org/10.1017/s135561771600076x
[6] Baddeley, A. (2012). Working Memory: Theories, Models, and Controversies. Annual Review of Psychology, 63, 1-29.
https://doi.org/10.1146/annurev-psych-120710-100422
[7] Brown, R. G., & Marsden, C. D. (1986). Visuospatial Function in Parkinson’s Disease. Brain, 109, 987-1002.
https://doi.org/10.1093/brain/109.5.987
[8] Calabresi, P., Castrioto, A., Di Filippo, M., & Picconi, B. (2013). New Experimental and Clinical Links between the Hippocampus and the Dopaminergic System in Parkinson’s Disease. The Lancet Neurology, 12, 811-821.
https://doi.org/10.1016/s1474-4422(13)70118-2
[9] Chang, H., Lu, C., Chiou, W., Chen, C., Weng, Y., & Chang, Y. (2018). An 8-Week Low-Intensity Progressive Cycling Training Improves Motor Functions in Patients with Early-Stage Parkinson’s Disease. Journal of Clinical Neurology, 14, 225-233.
https://doi.org/10.3988/jcn.2018.14.2.225
[10] Chodzko-Zajko, W. J., & Moore, K. A. (1994). Physical Fitness and Cognitive Functioning in Aging. Exercise and Sport Sciences Reviews, 22, 195-220.
https://doi.org/10.1249/00003677-199401000-00009
[11] Cruise, K. E., Bucks, R. S., Loftus, A. M., Newton, R. U., Pegoraro, R., & Thomas, M. G. (2011). Exercise and Parkinson’s: Benefits for Cognition and Quality of Life. Acta Neurologica Scandinavica, 123, 13-19.
https://doi.org/10.1111/j.1600-0404.2010.01338.x
[12] Dadgar, H., Khatoonabadi, A. R., & Bakhtiyari, J. (2013). Verbal Fluency Performance in Patients with Non-Demented Parkinson’s Disease. Iranian Journal of Psychiatry, 8, 55-58.
[13] Daniels, C., Krack, P., Volkmann, J., Pinsker, M. O., Krause, M., Tronnier, V. et al. (2010). Risk Factors for Executive Dysfunction after Subthalamic Nucleus Stimulation in Parkinson’s Disease. Movement Disorders, 25, 1583-1589.
https://doi.org/10.1002/mds.23078
[14] de la Riva, P., Smith, K., Xie, S. X., & Weintraub, D. (2014). Course of Psychiatric Symptoms and Global Cognition in Early Parkinson Disease. Neurology, 83, 1096-1103.
https://doi.org/10.1212/wnl.0000000000000801
[15] Duchesne, C., Gheysen, F., Bore, A., Albouy, G., Nadeau, A., Robillard, M. E. et al. (2016). Influence of Aerobic Exercise Training on the Neural Correlates of Motor Learning in Parkinson's Disease Individuals. NeuroImage: Clinical, 12, 559-569.
https://doi.org/10.1016/j.nicl.2016.09.011
[16] Duchesne, C., Lungu, O., Nadeau, A., Robillard, M. E., Boré, A., Bobeuf, F. et al. (2015). Enhancing Both Motor and Cognitive Functioning in Parkinson’s Disease: Aerobic Exercise as a Rehabilitative Intervention. Brain and Cognition, 99, 68-77.
https://doi.org/10.1016/j.bandc.2015.07.005
[17] Emre, M., Aarsland, D., Brown, R., Burn, D. J., Duyckaerts, C., Mizuno, Y. et al. (2007). Clinical Diagnostic Criteria for Dementia Associated with Parkinson’s Disease. Movement Disorders, 22, 1689-1707.
https://doi.org/10.1002/mds.21507
[18] Fiorelli, C. M., Ciolac, E. G., Simieli, L., Silva, F. A., Fernandes, B., Christofoletti, G. et al. (2019). Differential Acute Effect of High-Intensity Interval or Continuous Moderate Exercise on Cognition in Individuals with Parkinson’s Disease. Journal of Physical Activity and Health, 16, 157-164.
https://doi.org/10.1123/jpah.2018-0189
[19] Fisher, B. E., Li, Q., Nacca, A., Salem, G. J., Song, J., Yip, J. et al. (2013). Treadmill Exercise Elevates Striatal Dopamine D2 Receptor Binding Potential in Patients with Early Parkinson’s Disease. NeuroReport, 24, 509-514.
https://doi.org/10.1097/wnr.0b013e328361dc13
[20] Fisher, B. E., Petzinger, G. M., Nixon, K., Hogg, E., Bremmer, S., Meshul, C. K. et al. (2004). Exercise-Induced Behavioral Recovery and Neuroplasticity in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Mouse Basal Ganglia. Journal of Neuroscience Research, 77, 378-390.
https://doi.org/10.1002/jnr.20162
[21] Foltynie, T., Brayne, C. E. G., Robbins, T. W., & Barker, R. A. (2004). The Cognitive Ability of an Incident Cohort of Parkinson’s Patients in the UK. The Campaign Study. Brain, 127, 550-560.
https://doi.org/10.1093/brain/awh067
[22] Frazzitta, G., Maestri, R., Ghilardi, M. F., Riboldazzi, G., Perini, M., Bertotti, G. et al. (2014). Intensive Rehabilitation Increases BDNF Serum Levels in Parkinsonian Patients. Neurorehabilitation and Neural Repair, 28, 163-168.
https://doi.org/10.1177/1545968313508474
[23] Garcia, P. C., Real, C. C., & Britto, L. R. (2017). The Impact of Short and Long-Term Exercise on the Expression of Arc and Ampars during Evolution of the 6-Hydroxy-Dopamine Animal Model of Parkinson’s Disease. Journal of Molecular Neuroscience, 61, 542-552.
https://doi.org/10.1007/s12031-017-0896-y
[24] Goldman, J. G., & Weintraub, D. (2015). Advances in the Treatment of Cognitive Impairment Inparkinson’s Disease. Movement Disorders, 30, 1471-1489.
https://doi.org/10.1002/mds.26352
[25] Halon-Golabek, M., Borkowska, A., Herman-Antosiewicz, A., & Antosiewicz, J. (2019). Iron Metabolism of the Skeletal Muscle and Neurodegeneration. Frontiers in Neuroscience, 13, Article 165.
https://doi.org/10.3389/fnins.2019.00165
[26] Hely, M. A., Reid, W. G. J., Adena, M. A., Halliday, G. M., & Morris, J. G. L. (2008). The Sydney Multicenter Study of Parkinson’s Disease: The Inevitability of Dementia at 20 Years. Movement Disorders, 23, 837-844.
https://doi.org/10.1002/mds.21956
[27] Henley, J. M., & Wilkinson, K. A. (2013). AMPA Receptor Trafficking and the Mechanisms Underlying Synaptic Plasticity and Cognitive Aging. Dialogues in Clinical Neuroscience, 15, 11-27.
https://doi.org/10.31887/dcns.2013.15.1/jhenley
[28] Hyman, C., Hofer, M., Barde, Y., Juhasz, M., Yancopoulos, G. D., Squinto, S. P. et al. (1991). BDNF Is a Neurotrophic Factor for Dopaminergic Neurons of the Substantia Nigra. Nature, 350, 230-232.
https://doi.org/10.1038/350230a0
[29] Jokinen, P., Brück, A., Aalto, S., Forsback, S., Parkkola, R., & Rinne, J. O. (2009). Impaired Cognitive Performance in Parkinson’s Disease Is Related to Caudate Dopaminergic Hypofunction and Hippocampal Atrophy. Parkinsonism & Related Disorders, 15, 88-93.
https://doi.org/10.1016/j.parkreldis.2008.03.005
[30] Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2010). Neuropsychological and Clinical Heterogeneity of Cognitive Impairment and Dementia in Patients with Parkinson’s Disease. The Lancet Neurology, 9, 1200-1213.
https://doi.org/10.1016/s1474-4422(10)70212-x
[31] Kudlicka, A., Clare, L., & Hindle, J. V. (2011). Executive Functions in Parkinson's Disease: Systematic Review and Meta-Analysis. Movement Disorders, 26, 2305-2315.
https://doi.org/10.1002/mds.23868
[32] Levin, B. E., Llabre, M. M., Reisman, S., Weiner, W. J., Sanchez-Ramos, J., Singer, C. et al. (1991). Visuospatial Impairment in Parkinson’s Disease. Neurology, 41, 365-365.
https://doi.org/10.1212/wnl.41.3.365
[33] Lewis, F. M., Lapointe, L. L., Murdoch, B. E., & Chenery, H. J. (1998). Language Impairment in Parkinson’s Disease. Aphasiology, 12, 193-206.
https://doi.org/10.1080/02687039808249446
[34] Li, F., Harmer, P., Fitzgerald, K., Eckstrom, E., Stock, R., Galver, J. et al. (2012). Tai Chi and Postural Stability in Patients with Parkinson’s Disease. New England Journal of Medicine, 366, 511-519.
https://doi.org/10.1056/nejmoa1107911
[35] Lin, L. H., Doherty, D. H., Lile, J. D., Bektesh, S., & Collins, F. (1993). GDNF: A Glial Cell Line-Derived Neurotrophic Factor for Midbrain Dopaminergic Neurons. Science, 260, 1130-1132.
https://doi.org/10.1126/science.8493557
[36] Litvan, I., Goldman, J. G., Tröster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C. et al. (2012). Diagnostic Criteria for Mild Cognitive Impairment in Parkinson’s Disease: movement Disorder Society Task Force Guidelines. Movement Disorders, 27, 349-356.
https://doi.org/10.1002/mds.24893
[37] Lynch, G. (2004). AMPA Receptor Modulators as Cognitive Enhancers. Current Opinion in Pharmacology, 4, 4-11.
https://doi.org/10.1016/j.coph.2003.09.009
[38] Ma, S., Zhang, Y., Liu, N., Xiao, W., Li, S., Zhang, G. et al. (2019). Altered Transposition Asymmetry in Serial Ordering in Early Parkinson’s Disease. Parkinsonism & Related Disorders, 62, 62-67.
https://doi.org/10.1016/j.parkreldis.2019.01.028
[39] Marusiak, J., Żeligowska, E., Mencel, J., Kisiel-Sajewicz, K., Majerczak, J., Zoladz, J. et al. (2015). Interval Training-Induced Alleviation of Rigidity and Hypertonia in Patients with Parkinson’s Disease Is Accompanied by Increased Basal Serum Brain-Derived Neurotrophic Factor. Journal of Rehabilitation Medicine, 47, 372-375.
https://doi.org/10.2340/16501977-1931
[40] Mastroberardino, P. G., Hoffman, E. K., Horowitz, M. P., Betarbet, R., Taylor, G., Cheng, D. et al. (2009). A Novel Transferrin/TfR2-Mediated Mitochondrial Iron Transport System Is Disrupted in Parkinson’s Disease. Neurobiology of Disease, 34, 417-431.
https://doi.org/10.1016/j.nbd.2009.02.009
[41] McKee, K. E., & Hackney, M. E. (2013). The Effects of Adapted Tango on Spatial Cognition and Disease Severity in Parkinson’s Disease. Journal of Motor Behavior, 45, 519-529.
https://doi.org/10.1080/00222895.2013.834288
[42] Mirelman, A., Maidan, I., Herman, T., Deutsch, J. E., Giladi, N., & Hausdorff, J. M. (2011). Virtual Reality for Gait Training: Can It Induce Motor Learning to Enhance Complex Walking and Reduce Fall Risk in Patients with Parkinson’s Disease? The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 66, 234-240.
https://doi.org/10.1093/gerona/glq201
[43] Molteni, R., Wu, A., Vaynman, S., Ying, Z., Barnard, R. J., & Gómez-Pinilla, F. (2004). Exercise Reverses the Harmful Effects of Consumption of a High-Fat Diet on Synaptic and Behavioral Plasticity Associated to the Action of Brain-Derived Neurotrophic Factor. Neuroscience, 123, 429-440.
https://doi.org/10.1016/j.neuroscience.2003.09.020
[44] Murray, D. K., Sacheli, M. A., Eng, J. J., & Stoessl, A. J. (2014). The Effects of Exercise on Cognition in Parkinson’s Disease: A Systematic Review. Translational Neurodegeneration, 3, 1-13.
https://doi.org/10.1186/2047-9158-3-5
[45] Nelson, M. E., Rejeski, W. J., Blair, S. N., Duncan, P. W., Judge, J. O., King, A. C. et al. (2007). Physical Activity and Public Health in Older Adults. Medicine & Science in Sports & Exercise, 39, 1435-1445.
https://doi.org/10.1249/mss.0b013e3180616aa2
[46] Nocera, J. R., Altmann, L. J. P., Sapienza, C., Okun, M. S., & Hass, C. J. (2010). Can Exercise Improve Language and Cognition in Parkinson’s Disease? A Case Report. Neurocase, 16, 301-306.
https://doi.org/10.1080/13554790903559663
[47] Nocera, J. R., Amano, S., Vallabhajosula, S., & Hass, C. J. (2013). Tai Chi Exercise to Improve Non-Motor Symptoms of Parkinson’s Disease. Journal of Yoga & Physical Therapy, 3, Article No. 10.
[48] Olde Dubbelink, K. T. E., Schoonheim, M. M., Deijen, J. B., Twisk, J. W. R., Barkhof, F., & Berendse, H. W. (2014). Functional Connectivity and Cognitive Decline over 3 Years in Parkinson Disease. Neurology, 83, 2046-2053.
https://doi.org/10.1212/wnl.0000000000001020
[49] Owen, A. M., James, M., Leigh, P. N., Summers, B. A., Marsden, C. D., Quinn, N. P. Et al. (1992). Fronto-Striatal Cognitive Deficits at Different Stages of Parkinson’s Disease. Brain, 115, 1727-1751.
https://doi.org/10.1093/brain/115.6.1727
[50] Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D. et al. (2021). The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. British Medical Journal, 372, n71.
https://doi.org/10.1136/bmj.n71
[51] Petzinger, G. M., Holschneider, D. P., Fisher, B. E., McEwen, S., Kintz, N., Halliday, M. et al. (2015). The Effects of Exercise on Dopamine Neurotransmission in Parkinson’s Disease: Targeting Neuroplasticity to Modulate Basal Ganglia Circuitry. Brain Plasticity, 1, 29-39.
https://doi.org/10.3233/bpl-150021
[52] Petzinger, G. M., Walsh, J. P., Akopian, G., Hogg, E., Abernathy, A., Arevalo, P. et al. (2007). Effects of Treadmill Exercise on Dopaminergic Transmission in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Lesioned Mouse Model of Basal Ganglia Injury. The Journal of Neuroscience, 27, 5291-5300.
https://doi.org/10.1523/jneurosci.1069-07.2007
[53] Picelli, A., Varalta, V., Melotti, C., Zatezalo, V., Fonte, C., Amato, S., & Smania, N. (2016). Effects of Treadmill Training on Cognitive and Motor Features of Patients with Mild to Moderate Parkinson’s Disease: A Pilot, Single-Blind, Randomized Controlled Trial. Functional Neurology, 31, 25-31.
[54] Pigott, K., Rick, J., Xie, S. X., Hurtig, H., Chen-Plotkin, A., Duda, J. E. et al. (2015). Longitudinal Study of Normal Cognition in Parkinson Disease. Neurology, 85, 1276-1282.
https://doi.org/10.1212/wnl.0000000000002001
[55] Pompeu, J. E., Mendes, F. A. d. S., Silva, K. G. d., Lobo, A. M., Oliveira, T. d. P., Zomignani, A. P. et al. (2012). Effect of Nintendo WII-Based Motor and Cognitive Training on Activities of Daily Living in Patients with Parkinson’s Disease: A Randomised Clinical Trial. Physiotherapy, 98, 196-204.
https://doi.org/10.1016/j.physio.2012.06.004
[56] Postuma, R. B., Aarsland, D., Barone, P., Burn, D. J., Hawkes, C. H., Oertel, W. et al. (2012). Identifying Prodromal Parkinson’s Disease: Pre-Motor Disorders in Parkinson’s Disease. Movement Disorders, 27, 617-626.
https://doi.org/10.1002/mds.24996
[57] Poulton, N. P., & Muir, G. D. (2005). Treadmill Training Ameliorates Dopamine Loss but Not Behavioral Deficits in Hemi-Parkinsonian Rats. Experimental Neurology, 193, 181-197.
https://doi.org/10.1016/j.expneurol.2004.12.006
[58] Radák, Z., Kaneko, T., Tahara, S., Nakamoto, H., Pucsok, J., Sasvári, M. et al. (2001). Regular Exercise Improves Cognitive Function and Decreases Oxidative Damage in Rat Brain. Neurochemistry International, 38, 17-23.
https://doi.org/10.1016/s0197-0186(00)00063-2
[59] Ramel, A., Wagner, K., & Elmadfa, I. (2004). Correlations between Plasma Noradrenaline Concentrations, Antioxidants, and Neutrophil Counts after Submaximal Resistance Exercise in Men. British Journal of Sports Medicine, 38, e22.
https://doi.org/10.1136/bjsm.2003.007666
[60] Reuter, I., Mehnert, S., Sammer, G., Oechsner, M., & Engelhardt, M. (2012). Efficacy of a Multimodal Cognitive Rehabilitation Including Psychomotor and Endurance Training in Parkinson’s Disease. Journal of Aging Research, 2012, 1-15.
https://doi.org/10.1155/2012/235765
[61] Ridgel, A. L., Kim, C., Fickes, E. J., Muller, M. D., & Alberts, J. L. (2011). Changes in Executive Function after Acute Bouts of Passive Cycling in Parkinson’s Disease. Journal of Aging and Physical Activity, 19, 87-98.
https://doi.org/10.1123/japa.19.2.87
[62] Ross, R., Blair, S. N., Arena, R., Church, T. S., Després, J., Franklin, B. A. et al. (2016). Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement from the American Heart Association. Circulation, 134, e653-e699.
https://doi.org/10.1161/cir.0000000000000461
[63] Schaeffer, E., Roeben, B., Granert, O., Hanert, A., Liepelt-Scarfone, I., Leks, E. et al. (2022). Effects of Exergaming on Hippocampal Volume and Brain-Derived Neurotrophic Factor Levels in Parkinson’s Disease. European Journal of Neurology, 29, 441-449.
https://doi.org/10.1111/ene.15165
[64] Shah, C., Beall, E. B., Frankemolle, A. M. M., Penko, A., Phillips, M. D., Lowe, M. J. et al. (2016). Exercise Therapy for Parkinson’s Disease: Pedaling Rate Is Related to Changes in Motor Connectivity. Brain Connectivity, 6, 25-36.
https://doi.org/10.1089/brain.2014.0328
[65] Shin, M., Kim, T., Lee, J., Sung, Y., & Lim, B. (2017). Treadmill Exercise Alleviates Depressive Symptoms in Rotenone-Induced Parkinson Disease Rats. Journal of Exercise Rehabilitation, 13, 124-129.
https://doi.org/10.12965/jer.1734966.483
[66] Silva-Batista, C., Corcos, D. M., Roschel, H., Kanegusuku, H., Gobbi, L. T. B., Piemonte, M. E. P. et al. (2016). Resistance Training with Instability for Patients with Parkinson’s Disease. Medicine & Science in Sports & Exercise, 48, 1678-1687.
https://doi.org/10.1249/mss.0000000000000945
[67] Silveira, C. R. A., Roy, E. A., Intzandt, B. N., & Almeida, Q. J. (2018). Aerobic Exercise Is More Effective than Goal-Based Exercise for the Treatment of Cognition in Parkinson’s Disease. Brain and Cognition, 122, 1-8.
https://doi.org/10.1016/j.bandc.2018.01.002
[68] Sinforiani, E., Banchieri, L., Zucchella, C., Pacchetti, C., & Sandrini, G. (2014). Cognitive Rehabilitation in Parkinson’s Disease. Archives of Gerontology and Geriatrics, 38, 387-391.
https://doi.org/10.1016/j.archger.2004.04.049
[69] Solla, P., Cugusi, L., Bertoli, M., Cereatti, A., Della Croce, U., Pani, D. et al. (2019). Sardinian Folk Dance for Individuals with Parkinson’s Disease: A Randomized Controlled Pilot Trial. The Journal of Alternative and Complementary Medicine, 25, 305-316.
https://doi.org/10.1089/acm.2018.0413
[70] Tajiri, N., Yasuhara, T., Shingo, T., Kondo, A., Yuan, W., Kadota, T. et al. (2010). Exercise Exerts Neuroprotective Effects on Parkinson’s Disease Model of Rats. Brain Research, 1310, 200-207.
https://doi.org/10.1016/j.brainres.2009.10.075
[71] Tanaka, K., Quadros, A. C. d., Santos, R. F., Stella, F., Gobbi, L. T. B., & Gobbi, S. (2009). Benefits of Physical Exercise on Executive Functions in Older People with Parkinson’s Disease. Brain and Cognition, 69, 435-441.
https://doi.org/10.1016/j.bandc.2008.09.008
[72] Tierney, M. C., Nores, A., Snow, W. G., Fisher, R. H., Zorzitto, M. L., & Reid, D. W. (1994). Use of the Rey Auditory Verbal Learning Test in Differentiating Normal Aging from Alzheimer’s and Parkinson’s Dementia. Psychological Assessment, 6, 129-134.
https://doi.org/10.1037/1040-3590.6.2.129
[73] Tillerson, J. L., Cohen, A. D., Caudle, W. M., Zigmond, M. J., Schallert, T., & Miller, G. W. (2002). Forced Nonuse in Unilateral Parkinsonian Rats Exacerbates Injury. The Journal of Neuroscience, 22, 6790-6799.
https://doi.org/10.1523/jneurosci.22-15-06790.2002
[74] Torikoshi, S., Morizane, A., Shimogawa, T., Samata, B., Miyamoto, S., & Takahashi, J. (2020). Exercise Promotes Neurite Extensions from Grafted Dopaminergic Neurons in the Direction of the Dorsolateral Striatum in Parkinson’s Disease Model Rats. Journal of Parkinson’s Disease, 10, 511-521.
https://doi.org/10.3233/jpd-191755
[75] Uc, E. Y., Doerschug, K. C., Magnotta, V., Dawson, J. D., Thomsen, T. R., Kline, J. N. et al. (2014). Phase I/II Randomized Trial of Aerobic Exercise in Parkinson Disease in a Community Setting. Neurology, 83, 413-425.
https://doi.org/10.1212/wnl.0000000000000644
[76] van der Kolk, N. M., de Vries, N. M., Penko, A. L., van der Vlugt, M., Mulder, A. A., Post, B. et al. (2018). A Remotely Supervised Home-Based Aerobic Exercise Programme Is Feasible for Patients with Parkinson’s Disease: Results of a Small Randomised Feasibility Trial. Journal of Neurology, Neurosurgery & Psychiatry, 89, 1003-1005.
https://doi.org/10.1136/jnnp-2017-315728
[77] Vučcković, M. G., Li, Q., Fisher, B., Nacca, A., Leahy, R. M., Walsh, J. P. et al. (2010). Exercise Elevates Dopamine D2 Receptor in a Mouse Model of Parkinson’s Disease: In Vivo Imaging with [18F] fallypride. Movement Disorders, 25, 2777-2784.
https://doi.org/10.1002/mds.23407
[78] Wang, Y., Liu, H., Zhang, B., Soares, J. C., & Zhang, X. Y. (2016). Low BDNF Is Associated with Cognitive Impairments in Patients with Parkinson’s Disease. Parkinsonism & Related Disorders, 29, 66-71.
https://doi.org/10.1016/j.parkreldis.2016.05.023
[79] Whittington, C. J., Podd, J., & Stewart-Williams, S. (2006). Memory Deficits in Parkinson’s Disease. Journal of Clinical and Experimental Neuropsychology, 28, 738-754.
https://doi.org/10.1080/13803390590954236
[80] Williams-Gray, C. H., Mason, S. L., Evans, J. R., Foltynie, T., Brayne, C., Robbins, T. W. et al. (2013). The Campaign Study of Parkinson’s Disease: 10-Year Outlook in an Incident Population-Based Cohort. Journal of Neurology, Neurosurgery & Psychiatry, 84, 1258-1264.
https://doi.org/10.1136/jnnp-2013-305277
[81] Witt, K., Daniels, C., Reiff, J., Krack, P., Volkmann, J., Pinsker, M. O. et al. (2008). Neuropsychological and Psychiatric Changes after Deep Brain Stimulation for Parkinson’s Disease: A Randomized, Multicentre Study. The Lancet Neurology, 7, 605-614.
https://doi.org/10.1016/s1474-4422(08)70114-5
[82] Ye, Z., Altena, E., Nombela, C., Housden, C. R., Maxwell, H., Rittman, T. et al. (2014). Selective Serotonin Reuptake Inhibition Modulates Response Inhibition in Parkinson’s Disease. Brain, 137, 1145-1155.
https://doi.org/10.1093/brain/awu032
[83] Ye, Z., Hanssen, H., Steinhardt, J., Tronnier, V., Rasche, D., Brüggemann, N. et al. (2021a). Subthalamic Nucleus Stimulation Impairs Sequence Processing in Patients with Parkinson’s Disease. Journal of Parkinson's Disease, 11, 1869-1879.
https://doi.org/10.3233/jpd-212778
[84] Ye, Z., Rae, C. L., Nombela, C., Ham, T., Rittman, T., Jones, P. S. et al. (2016). Predicting Beneficial Effects of Atomoxetine and Citalopram on Response Inhibition in Parkinson’s Disease with Clinical and Neuroimaging Measures. Human Brain Mapping, 37, 1026-1037.
https://doi.org/10.1002/hbm.23087
[85] Ye, Z., Zhang, G., Zhang, Y., Li, S., Liu, N., Zhou, X. et al. (2021b). The Role of the Subthalamic Nucleus in Sequential Working Memory in de Novo Parkinson’s Disease. Movement Disorders, 36, 87-95.
https://doi.org/10.1002/mds.28344
[86] Zhang, G., Hou, Y., Wang, Z., & Ye, Z. (2020). Cognitive Profile of Patients with Mitochondrial Chronic Progressive External Ophthalmoplegia. Frontiers in Neurology, 11, Article 36.
https://doi.org/10.3389/fneur.2020.00036
[87] Zigmond, M. J., Cameron, J. L., Hoffer, B. J., & Smeyne, R. J. (2012). Neurorestoration by Physical Exercise: Moving Forward. Parkinsonism & Related Disorders, 18, S147-S150.
https://doi.org/10.1016/s1353-8020(11)70046-3
[88] Zoladz, J. A., Majerczak, J., Zeligowska, E., Mencel, J., Jaskolski, A., Jaskolska, A., & Marusiak, J. (2014). Moderate-Intensity Interval Training Increases Serum Brain-Derived Neurotrophic Factor Level and Decreases Inflammation in Parkinson’s Disease Patients. Journal of Physiology and Pharmacology, 65, 441-448.