[1]
|
Siegel, R.L., Giaquinto, A.N. and Jemal, A. (2024) Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12-49. https://doi.org/10.3322/caac.21820
|
[2]
|
Mohammad, N.M.A.B., Shahril, M.R., Shahar, S., Fenech, M. and Sharif, R. (2022) Association between Diet-Related Behaviour and Risk of Colorectal Cancer: A Scoping Review. Journal of Cancer Prevention, 27, 208-220. https://doi.org/10.15430/jcp.2022.27.4.208
|
[3]
|
Shah, S.C. and Itzkowitz, S.H. (2022) Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology, 162, 715-730.e3. https://doi.org/10.1053/j.gastro.2021.10.035
|
[4]
|
Myrhøj, T., Blsgaard, M.L., Bernstein, I., Svendsen, L.B., Søndergaard, J.O. and Bulow, S. (1997) Hereditary Non-Polyposis Colorectal Cancer: Clinical Features and Survival Results from the Danish HNPCC Register. Scandinavian Journal of Gastroenterology, 32, 572-576. https://doi.org/10.3109/00365529709025102
|
[5]
|
Hermelink, R., Leitzmann, M.F., Markozannes, G., Tsilidis, K., Pukrop, T., Berger, F., et al. (2022) Sedentary Behavior and Cancer—An Umbrella Review and Meta-Analysis. European Journal of Epidemiology, 37, 447-460. https://doi.org/10.1007/s10654-022-00873-6
|
[6]
|
Cheng, C., Zhang, Z., Wang, J., Wang, C., Liu, T., Yang, C., et al. (2024) CircPGM5 Regulates Foxo3a Phosphorylation via MiR-21-5p/MAPK10 Axis to Inhibit Bladder Cancer Progression. Cellular Signalling, 121, Article ID: 111297. https://doi.org/10.1016/j.cellsig.2024.111297
|
[7]
|
Tsai, Y., Huang, C., Hsueh, Y., Fan, Y., Fong, Y., Huang, S., et al. (2021) Genetic Variants in MAPK10 Modify Renal Cell Carcinoma Susceptibility and Clinical Outcomes. Life Sciences, 275, Article ID: 119396. https://doi.org/10.1016/j.lfs.2021.119396
|
[8]
|
Liu, F., Deng, Y., Zhao, Y., Li, Z., Gao, J., Zhang, Y., et al. (2022) Time Series RNA-Seq Analysis Identifies MAPK10 as a Critical Gene in Diabetes Mellitus-Induced Atrial Fibrillation in Mice. Journal of Molecular and Cellular Cardiology, 168, 70-82. https://doi.org/10.1016/j.yjmcc.2022.04.013
|
[9]
|
Zhang, X., Zhang, H., Fan, C., Hildesjö, C., Shen, B. and Sun, X. (2022) Loss of CHGA Protein as a Potential Biomarker for Colon Cancer Diagnosis: A Study on Biomarker Discovery by Machine Learning and Confirmation by Immunohistochemistry in Colorectal Cancer Tissue Microarrays. Cancers, 14, Article 2664. https://doi.org/10.3390/cancers14112664
|
[10]
|
Gao, Y., Wang, Y., Wang, X., Zhao, C., Wang, F., Du, J., et al. (2021) miR-335-5p Suppresses Gastric Cancer Progression by Targeting MAPK10. Cancer Cell International, 21, Article No. 71. https://doi.org/10.1186/s12935-020-01684-z
|
[11]
|
Messaritakis, I., Psaroudaki, E., Vogiatzoglou, K., Sfakianaki, M., Topalis, P., Iliopoulos, I., et al. (2023) Unraveling the Role of Molecular Profiling in Predicting Treatment Response in Stage III Colorectal Cancer Patients: Insights from the IDEA International Study. Cancers, 15, Article 4819. https://doi.org/10.3390/cancers15194819
|
[12]
|
Qiao, B., Wang, Q., Zhao, Y. and Wu, J. (2020) miR-205-3p Functions as a Tumor Suppressor in Ovarian Carcinoma. Reproductive Sciences, 27, 380-388. https://doi.org/10.1007/s43032-019-00047-y
|
[13]
|
Dai, F., Zhang, Y. and Chen, Y. (2014) Involvement of miR-29b Signaling in the Sensitivity to Chemotherapy in Patients with Ovarian Carcinoma. Human Pathology, 45, 1285-1293. https://doi.org/10.1016/j.humpath.2014.02.008
|
[14]
|
Wang, X., Xiao, H., Wu, D., Zhang, D. and Zhang, Z. (2020) miR-335-5p Regulates Cell Cycle and Metastasis in Lung Adenocarcinoma by Targeting CCNB2. OncoTargets and Therapy, 13, 6255-6263. https://doi.org/10.2147/ott.s245136
|
[15]
|
Zhang, S., Liu, Y., Wang, M., Ponikwicka-Tyszko, D., Ma, W., Krentowska, A., et al. (2023) Role and Mechanism of miR-335-5p in the Pathogenesis and Treatment of Polycystic Ovary Syndrome. Translational Research, 252, 64-78. https://doi.org/10.1016/j.trsl.2022.07.007
|
[16]
|
Kamdar, R.D., Harrington, B.S., Attar, E., Korrapati, S., Shetty, J., Zhao, Y., et al. (2023) NF-κB Signaling Modulates miR-452-5p and miR-335-5p Expression to Functionally Decrease Epithelial Ovarian Cancer Progression in Tumor-Initiating Cells. International Journal of Molecular Sciences, 24, Article 7826. https://doi.org/10.3390/ijms24097826
|
[17]
|
Wang, J., He, Z., Xu, J., Chen, P. and Jiang, J. (2021) Long Noncoding RNA LINC00941 Promotes Pancreatic Cancer Progression by Competitively Binding miR-335-5p to Regulate ROCK1-Mediated LIMK1/Cofilin-1 Signaling. Cell Death & Disease, 12, Article No. 36. https://doi.org/10.1038/s41419-020-03316-w
|
[18]
|
Nie, Y., Zhu, X., Bu, N., Jiang, Y., Su, Y., Pan, K., et al. (2022) Circ_0064288 Acts as an Oncogene of Hepatocellular Carcinoma Cells by Inhibiting miR-335-5p Expression and Promoting ROCK1 Expression. BMC Cancer, 22, Article No. 265. https://doi.org/10.1186/s12885-022-09323-8
|
[19]
|
Zhang, D. and Yang, N. (2019) MiR-335-5p Inhibits Cell Proliferation, Migration and Invasion in Colorectal Cancer through Down-Regulating LDHB. Journal of B.U.ON.: Official Journal of the Balkan Union of Oncology, 24, 1128-1136.
|
[20]
|
Bengtsson, M., Hemberg, M., Rorsman, P. and Ståhlberg, A. (2008) Quantification of mRNA in Single Cells and Modelling of RT-qPCR Induced Noise. BMC Molecular Biology, 9, Article No. 63. https://doi.org/10.1186/1471-2199-9-63
|
[21]
|
Arya, A.K., Singh, P., Saikia, U.N., Sachdeva, N., Dahiya, D., Behera, A., et al. (2019) Dysregulated Mitogen-Activated Protein Kinase Pathway Mediated Cell Cycle Disruption in Sporadic Parathyroid Tumors. Journal of Endocrinological Investigation, 43, 247-253. https://doi.org/10.1007/s40618-019-01098-3
|
[22]
|
Li, P., Wang, D., Yang, X., Liu, C., Li, X., Zhang, X., et al. (2024) Anti-Tumor Activity and Mechanism of Silibinin Based on Network Pharmacology and Experimental Verification. Molecules, 29, Article 1901. https://doi.org/10.3390/molecules29081901
|
[23]
|
Yu, C., Ying, J., Yu, K., Shen, W. and Jiang, M. (2022) Circ_0074027 Contributes to Non-Small Cell Lung Cancer Progression by Upregulating cul4b Expression through miR-335-5p. Cancer Biotherapy and Radiopharmaceuticals, 37, 73-83. https://doi.org/10.1089/cbr.2020.3579
|
[24]
|
Subramanian, C., McCallister, R. and Cohen, M.S. (2023) Multi-genomic Analysis of 260 Adrenocortical Cancer Patient Tumors Identifies Novel Network BIRC5-hsa-miR-335-5p-PAX8-AS1 Strongly Associated with Poor Survival. Surgery, 173, 43-51. https://doi.org/10.1016/j.surg.2022.08.025
|
[25]
|
Liu, X., Jin, S., Liu, J. and Xu, X. (2023) miR-223-3p Overexpressed Adipose Mesenchymal Stem Cell-Derived Exosomes Promote Wound Healing via Targeting MAPK10. Acta Histochemica, 125, Article ID: 152102. https://doi.org/10.1016/j.acthis.2023.152102
|
[26]
|
Wei, T., Qian, N., Yang, W., Yang, Y., Liu, J., Hao, W., et al. (2022) Construction of a Novel circRNA/miRNA/mRNA Regulatory Network to Explore the Potential Pathogenesis of Wilson’s Disease. Frontiers in Pharmacology, 13, Article 905513. https://doi.org/10.3389/fphar.2022.905513
|
[27]
|
Liang, B. and Wu, Y. (2023) Hsa-miR-26a-5p Improves OSCC Sensitivity to Ferroptosis by Inhibiting SLC7A11. Archives of Oral Biology, 156, Article ID: 105807. https://doi.org/10.1016/j.archoralbio.2023.105807
|
[28]
|
Yang, X. and Sun, P. (2023) Circ_0088212 Targeting miR-576-5p/FKBP1A Axis Inhibits Osteosarcoma Progression. Annals of Clinical and Laboratory Science, 53, 548-561.
|
[29]
|
Zhao, Y., Ye, G., Wang, Y. and Luo, D. (2022) miR-4461 Inhibits Tumorigenesis of Renal Cell Carcinoma by Targeting PPP1R3C. Cancer Biotherapy and Radiopharmaceuticals, 37, 503-514. https://doi.org/10.1089/cbr.2020.3846
|
[30]
|
Feng, H., Deng, Z., Peng, W., Wei, X., Liu, J. and Wang, T. (2023) Circular RNA EPHA3 Suppresses Progression and Metastasis in Prostate Cancer through the miR-513a-3p/BMP2 Axis. Journal of Translational Medicine, 21, Article No. 288. https://doi.org/10.1186/s12967-023-04132-4
|
[31]
|
Cao, S., Yin, Y., Hu, H., Hong, S., He, W., Lv, W., et al. (2023) CircGLIS3 Inhibits Thyroid Cancer Invasion and Metastasis through miR-146b-3p/AIF1L Axis. Cellular Oncology, 46, 1777-1789. https://doi.org/10.1007/s13402-023-00845-2
|
[32]
|
Li, L., Gao, J., Li, J. and Wang, J. (2022) miR-711 Regulates Gastric Cancer Progression by Targeting CD44. Cancer Biomarkers, 35, 71-81. https://doi.org/10.3233/cbm-210213
|
[33]
|
Wei, B., Wang, Z., Lian, Q., Chi, B. and Ma, S. (2022) Hsa_circ_0139402 Promotes Bladder Cancer Progression by Regulating Hsa-miR-326/PAX8 Signaling. Disease Markers, 2022, Article ID: 9899548. https://doi.org/10.1155/2022/9899548
|