关于miR-335-5p靶向调控MAPK10的表达促进结直肠癌进展的初步探讨
Preliminary Exploration of miR-335-5p Targeting MAPK10 to Promote the Progression of Colorectal Cancer
DOI: 10.12677/acm.2025.151244, PDF, HTML, XML,   
作者: 覃 凯, 黄婉英, 陈 罡:广西医科大学第一附属医院病理科,广西 南宁;张 旭, 唐瑞雪:山东第一医科大学第一附属医院(山东省千佛山医院),山东省医药卫生临床病理学重点实验室,山东省肺癌研究所,山东省肾脏病研究所,山东 济南
关键词: 结直肠癌丝裂原活化蛋白激酶10miR-335-5p逆转录定量聚合酶链反应双荧光素酶实验Colorectal Cancer MAPK10 miR-335-5p Reverse Transcription Quantitative Polymerase Chain Reaction Dual-Luciferase Reporter Assay
摘要: 目的:探究丝裂原活化蛋白激酶10 (mitogen-activated protein kinase 10, MAPK10)和miR-335-5p在结直肠癌(colorectal cancer, CRC)中的表达及其两者之间的靶向结合关系。方法:本研究通过TCGA数据库分析CRC与正常结直肠组织中MAPK10和miR-335-5p的转录水平表达差异,并在SW480和Caco2细胞系中提取RNA进行逆转录定量聚合酶链反应。此外,采用双荧光素酶实验验证miR-335-5p与MAPK10的靶向结合关系。结果:TCGA数据分析显示,CRC组织中MAPK10显著低表达(P < 0.05),miR-335-5p显著高表达(P < 0.001),且二者表达呈负相关(R = −0.246, P < 0.001)。细胞系实验验证了MAPK10低表达和miR-335-5p高表达的现象。双荧光素酶实验显示miR-335-5p与MAPK10的3'非翻译区存在显著结合(P < 0.05)。结论:miR-335-5p通过与MAPK10的3'UTR结合抑制其表达,提示其在CRC中的潜在调控作用。
Abstract: Objective: To investigate the expression of mitogen-activated protein kinase 10 (MAPK10) and miR-335-5p in colorectal cancer (CRC) and their targeted binding relationship. Methods: In this study, the transcriptional level expression differences of MAPK10 and miR-335-5p between CRC and normal colorectal tissues were analyzed through the TCGA database. RNA was extracted from SW480 and Caco2 cell lines for reverse transcription quantitative polymerase chain reaction (RT-qPCR). Additionally, a dual-luciferase reporter assay was employed to verify the targeted binding relationship between miR-335-5p and MAPK10. Results: TCGA data analysis revealed that MAPK10 was significantly downregulated in CRC tissues (P < 0.05), while miR-335-5p was significantly upregulated (P < 0.001), and their expressions were negatively correlated (R = −0.246, P < 0.001). Cell line experiments confirmed the phenomena of low MAPK10 expression and high miR-335-5p expression. The dual-luciferase reporter assay demonstrated significant binding between miR-335-5p and the 3'untranslated region (3'UTR) of MAPK10 (P < 0.05). Conclusion: miR-335-5p inhibits the expression of MAPK10 by binding to its 3'UTR, suggesting its potential regulatory role in CRC.
文章引用:覃凯, 张旭, 黄婉英, 陈罡, 唐瑞雪. 关于miR-335-5p靶向调控MAPK10的表达促进结直肠癌进展的初步探讨[J]. 临床医学进展, 2025, 15(1): 1832-1841. https://doi.org/10.12677/acm.2025.151244

1. 引言

结直肠癌(colorectal cancer, CRC)作为全球常见的恶性肿瘤之一,其发病率与死亡率持续居高不下。据统计,CRC在全球癌症发病率和死亡率中均排名第三位,对公共卫生构成严重威胁[1]。CRC的发生与多种因素密切相关,包括不健康的饮食习惯、遗传倾向、慢性炎症疾病以及生活方式等[2]-[5]。随着医学研究的深入,靶向治疗逐渐成为提高CRC患者生存率的关键策略之一。识别和验证具有潜在治疗价值的分子靶点,对于开发新的治疗方法和提高疗效具有重要意义。因此,对CRC的深入研究不仅能促进疾病机制的理解,还能为临床治疗提供更有效的靶向策略。

丝裂原活化蛋白激酶10 (mitogen-activated protein kinase 10, MAPK10)和miR-335-5p是两种在细胞信号传导中具有重要作用的生物分子。MAPK10位于人类第4号染色体,主要在神经系统中表达,调控细胞的生长、分化及凋亡[6]-[8]。消化系统肿瘤中,MAPK10的表达模式显示出明显差异,可能与这些疾病的发展和进程密切相关[9] [10]。针对来自国际IDEA研究的237例III期CRC患者分子特征的报道发现,MAPK10基因突变是无病生存期降低的独立预后因素[11];卵巢癌中,MAPK10的表达上调同样与疾病的侵袭性增加有关[12] [13];综上,MAPK10在不同肿瘤中的作用显示出复杂性和不一致性,表明其在疾病机制中可能具有多重调控功能。然而,目前MAPK10在CRC中的作用机制尚未明确。

miR-335-5p是一种非编码小RNA,主要通过抑制特定mRNA的翻译或稳定性来发挥作用,调节包括肿瘤发生在内的多种生物过程[14]-[16]。消化系统中,miR-335-5p在胰腺癌和肝细胞癌中均表达下调,且可作为lncRNA或circ-RNA的调控基因,参与胰腺癌和肝细胞癌的进展[17] [18]。CRC的现有报道中,miR-335-5p也呈现低表达,过表达后可降低结肠癌细胞增殖,抑制迁移能力和侵袭能力,显现出其抑癌作用[19]。这与本研究结果相反。此外,miR-335-5p在肺腺癌中作为肿瘤抑制因子的作用也得到了研究支持[14]。然而,关于miR-335-5p在不同类型肿瘤中的具体功能与作用机制,现有文献结果显示出明显的不一致性,这表明miR-335-5p在不同类型肿瘤中可能发挥着差异性的作用。

尽管MAPK10和miR-335-5p在其他类型肿瘤中的研究较多,CRC中的作用及机制尚未被充分揭示,且两者的关系也尚未有文献报道。因此本研究首先利用癌症基因组图谱(The Cancer Genome Atlas, TCGA)数据库探讨MAPK10和miR-335-5p在CRC中的表达模式、相互关系及与临床病理特征的差异。通过逆转录定量聚合酶链反应(Reverse transcription quantitative polymerase chain reaction, RT-qPCR)技术对CRC细胞系和正常细胞系中MAPK10和miR-335-5p的表达水平进行比较。通过双荧光素酶报告基因实验进一步探讨miR-335-5p与MAPK10之间的潜在靶向关系。这为理解MAPK10和miR-335-5p在CRC中的作用提供新的视角,为发展新的治疗策略奠定了基础。

2. 材料与方法

2.1. 生物信息分析及靶点预测

利用TCGA数据库(https://cancergenome.nih.gov/)验证MAPK10和miR-335-5p在CRC与正常结直肠组织中的表达差异,本研究利用TCGA数据库(https://cancergenome.nih.gov/)检索相关的mRNA表达数据。检索关键词为“((colon) OR (rectal) OR (colorectal)) AND ((carcinoma) OR (cancer) OR (malignant) OR (tumor))”,纳入条件包括:① 数据来源于人类组织,并且包含mRNA表达数据,非来源于细胞系;② 包含CRC样本和非癌肠组织对照样本,且样本数量均大于3;③ 样本未经过药物、放疗、基因干扰或过表达等人为处理。对纳入的CRC表达矩阵数据进行log2 (x + 1)转换,并分析MAPK10和miR-335-5p的表达与相关临床病理参数是否存在显著差异。

利用miRanda (https://www.cs.kent.ac.uk/people/staff/dat/miranda/)数据库预测MAPK10和miR-335-5p的靶向结合位点。

2.2. qRT-PCR

通过qRT-PCR检测方法分别在SW480和Caco2细胞系中检测MAPK10和miR-335-5p的表达水平。

2.2.1. 总RNA提取

当使用6孔板培养细胞至80%密度时,采集细胞并以2000 rpm条件下离心5分钟,丢弃上清液。随后,向细胞沉淀中添加1 mL Trizol,充分混合后在室温下静置5分钟以提取RNA。将提取物转移至新的1.5 mL离心管中,加入200 μL氯仿,并快速颠倒离心管15秒,室温静置8分钟以分层。随后在4℃条件下以1,2800 rpm离心15分钟,轻取上层透明液体至新的1.5 mL离心管中,加入等体积的预冷异丙醇,充分混合后在4℃下静置10分钟。再以1,2800 rpm离心12分钟,丢弃上清,加入1 mL 75%乙醇洗涤RNA沉淀。继续在4℃和1,1800 rpm条件下离心5分钟,吸弃绝大部分上清。重复洗涤步骤后,在室温下风干RNA沉淀至透明,随后用无酶水重悬RNA。最终,使用Nanodrop2000/2000 C分光光度计评估RNA的浓度与质量。

2.2.2. cDNA合成

使用Promega M-MLV试剂盒,反应体系按照43.5℃ 60 min,73.5℃ 3 min逆转录,−20℃保存。反应体系如表1

Table 1. Reverse transcription system for miR-335-5p and MAPK10

1. miR-335-5p和MAPK10反转录体系

试剂

miR-335-5p反转录体系

MAPK10反转录体系

5 × RT buffer

5 μl

4 μl

10 mM dNTPs

2 μl

2 μl

Rnasin (40 U/μL)

0.5 μl

0.4 μl

M-MLV-RTase (200 U/μl)

0.5 μl

1 μl

RNase-Free H2O

6 μl

2.6 μl

2.2.3. qRT-PCR检测

使用广州市锐博生物科技有限公司提供的试剂盒,设置12 μL的反应体系,具体反应条件详见表1表2。MAPK10和miR-335-5p的引物序列分别为上游5′-ACTCTTCCCAGATTCCCT-3′和下游5′-ATGTAGGGATGCTGTAAGG-3′;以及上游5′-CGGGCTCAAGAGCAATAACGA-3′,下游5′-CAGCCACAAAAGAGCACAAT-3′。反应体系见表2表3

Table 2. PCR system for miR-335-5p

2. miR-335-5p的PCR体系

试剂

miR-335-5p PCR

SYBR premix ex taq

6.0 μl

上游引物(5 μM)

0.5 μl

下游引物(5 μM)

0.5 μl

模板(反转录产物)

1.0 μl

RNase-Free H2O

4.0 μl

Table 3. PCR system for MAPK10

3. MAPK10的PCR体系

试剂

MAPK10 PCR

SYBR premix ex taq

6.0 μl

引物mix (5 μM)

0.3 μl

模板(反转录产物)

0.6 μl

RNase-Free H2O

5.1 μl

2.3. 双荧光素酶报告基因实验

双荧光素酶报告基因实验验证MAPK10和miR-335-5p的关系。在24孔板中种植细胞至每孔1 × 105个细胞,细胞密度达到60%后,使用MAPK10 3′-UTR野生型和miR-335-5p载体进行共转染。转染48小时后,收集细胞,并使用Dula荧光素酶报告试剂盒测定相对荧光素酶活性。

2.4. 统计学分析

本实验采用计算2ΔΔCt值的方法来进行各标本的相对定量检测[20]。利用GraphPad Prism8.0.2软件进行T检验统计组间差异,以P < 0.05为差异有统计学意义。

3. 结果

3.1. TCGA中MAPK10和miR-335-5p在CRC的表达

初步探讨MAPK10和miR-335-5p在CRC中的表达,本研究利用TCGA RNA测序数据统计发现:MAPK10在CRC中显著低表达(P < 0.05),其受试者工作特征曲线(receiver operating characteristic, ROC)下面积为0.968 (95% CI: 0.954~0.983, P < 0.001),但在淋巴结转移统计中,其高表达却与淋巴结转移呈正相关(P = 0.027) (图1);miR-335-5p在CRC中呈显著高表达(P < 0.001),与MAPK10表达呈负相关(R = −0.246, P < 0.001),但在转移相关统计中,miR-335-5p与淋巴管浸润(P = 0.015)和血管浸润(P = 0.019)呈负相关(图2)。

Figure 1. Expression of MAPK10 in CRC tissues and its clinical pathological significance. A: Expression of MAPK10 (red bars represent COAD, gray bars represent normal tissues); B: ROC curve of MAPK10 (AUC = 0.968, 95% CI: 0.954-0.983, P < 0.001); C: MAPK10 expression is relatively higher in the lymph node metastasis group

1. MAPK10在CRC组织中的表达及临床病理意义。A:MAPK10的表达(红色柱为COAD,灰色柱为正常组织);B:MAPK10的ROC曲线(AUC = 0.968, 95% CI: 0.954-0.983, P < 0.001);C:MAPK10在淋巴结转移组表达水平相对较高

Figure 2. Expression of miR-335-5p in CRC tissues, its clinical pathological significance, and correlation with MAPK10 expression. A: miR-335-5p expression is significantly different between CRC and control tissues (P < 0.001); B: miR-335-5p expression is lower in the lymphatic invasion group (P = 0.015); C: miR-335-5p expression is lower in the vascular invasion group (P = 0.019); D: miR-335-5p expression is negatively correlated with MAPK10 expression in CRC (R = −0.246, P < 0.001)

2. miR-335-5p在CRC组织中的表达、临床病理意义及与MAPK10的表达相关性。A:miR-335-5p在CRC与对照组织中表达具有统计学差异(P < 0.001);B:miR-335-5p在淋巴管浸润的表达,且在浸润组中表达较低(P = 0.015);C:miR-335在血管浸润的表达,且在浸润组中表达较低(P = 0.019);D:miR-335与MAPK10在CRC中的表达呈负相关(R = −0.246, P < 0.001)

3.2. CRC细胞系中MAPK10和miR-335-5p的表达

检测MAPK10和miR-335-5p在结肠癌细胞系(SW480、Caco2)中的表达,结果显示MAPK10在CRC细胞系中呈低表达(P < 0.001) (图3A),miR-335在CRC细胞系中呈高表达(P < 0.001) (图3B)。

Figure 3. Expression of MAPK10 and miR-335-5p in CRC Cell lines (SW480, Caco2) and normal cell line (FHC). A: MAPK10 expression is low in cancer cell lines (P < 0.001); B: miR-335-5p expression is high in cancer cell lines (P < 0.001)

3. MAPK10、miR-335-5p在CRC细胞系(SW480、Caco2)和正常细胞系(FHC)中的表达。A:MAPK10在癌细胞中呈低表达(P < 0.001);B:miR-335-5p在癌细胞系中呈高表达(P < 0.001)

3.3. miR-335-5p与MAPK10存在靶向结合位点

为明确miR-335-5p和MAPK10是否存在靶向结合关系,本研究利用miRanda数据库预测其靶向位点,并通过双荧光素酶报告基因实验验证。miRanda数据库显示miR-335-5p与MAPK10的互补结合位点(图4A),双荧光素酶实验表明,MAPK10-3′ UTR + miR-335-5p组和MAPK10-3′ UTR-NC + miR-33-5p组相比显著性降低(P < 0.05),对比阳参miRNA NC组,阳参miRNA组相对luciferase的表达量显著性下降(P < 0.05),说明转染检测体系可靠,miR-335-5p与MAPK10的3′非翻译区结合,抑制其表达(图4B)。由此提示miR-335-5p与MAPK10存在较好的靶向结合关系。

Figure 4. Target binding relationship between miR-335-5p and MAPK10. A. Predicted complementary binding sites and scores for miR-335-5p and MAPK10; B. Dual-luciferase assay validation of the target binding relationship between miR-335-5p and MAPK10

4. miR-335-5p与MAPK10靶向结合关系。A:预测的miR-335-5p与MAPK10的互补位点及评分;B:双荧光素酶实验验证miR-335-5p与MAPK10存在靶向结合关系

4. 讨论

CRC因其高发病率及高致死率在全球范围内对经济和社会构成重大负担,对患者的生存质量造成严重威胁。本研究利用TCGA数据库详细分析了MAPK10和miR-335-5p在CRC中的表达情况,发现其表达与脉管转移(血管浸润和淋巴管浸润)具有显著相关性。RT-qPCR检测进一步验证了这一结果。MAPK10是一种调节多种生物学过程的激酶,涉及细胞的生长、迁移和存活[6],并在多种肿瘤中发挥作用。散发性甲状旁腺腺瘤中通过激活MAPK信号通路增强了肿瘤细胞的侵袭性和迁移能力[21]。在腺样囊性癌中,高表达的MAPK10与细胞抗凋亡能力的增强相关,可能是通过激活PI3K/Akt信号通路实现的,从而促进肿瘤细胞的存活和转移[22]

miR-335-5p在多种肿瘤中也表现出对细胞生长和迁移的调节作用[23]。CRC中,高表达的miR-335-5p可能通过增强细胞间的粘附力和黏附分子的表达,促进肿瘤细胞的侵袭和转移[19]。肾上腺皮质癌中,miR-335-5p的高表达与患者的较差预后相关,通过参与P53信号通路调控肿瘤的生物行为[24]。此外,尽管其他研究中有多个miRNA与MAPK10结合的报道[6] [25] [26],但miR-335-5p与MAPK10在CRC中的分子机制尚未阐明。本研究结果表明,miR-335-5p和MAPK10在CRC中表达异常,这种表达模式与肿瘤的侵袭性和转移能力密切相关。通过双荧光素酶报告基因实验,本研究验证了miR-335-5p与MAPK10的结合位点,揭示了MAPK10是miR-335-5p的靶基因。这一新发现为理解miR-335-5p和MAPK10在CRC发展中,尤其是在转移过程中的分子机制提供了新的视角,也为未来针对这两个分子的潜在治疗策略的开发提供了科学依据。

双荧光素酶报告基因实验是一个至关重要的工具,用于验证microRNA与其靶基因之间的相互作用[27] [28]。双荧光素酶实验利用萤火虫萤光素酶和海肾荧光素酶的比值来评估microRNA对靶基因的调控作用,以反映microRNA对靶基因的抑制效应[29] [30]。在肿瘤研究中,双荧光素酶实验被广泛应用于探索microRNA与靶基因之间的功能关系,该技术可以确定microRNA是否通过结合特定的靶位点来调控目标基因的表达,从而影响肿瘤细胞的恶性生物学行为[31]-[33]。这种应用对于理解肿瘤的分子机制、发现潜在的治疗靶点以及开发新的治疗策略具有重要意义。本研究结果表明,miR-335-5p通过特定的互补结合位点来调控MAPK10的表达。这一发现不仅证实了miR-335-5p作为MAPK10负调控因子的作用,也揭示了miR-335-5p在CRC中的潜在调控机制。MAPK10是一个与细胞应激反应和凋亡相关的重要信号通路蛋白,其表达水平的降低可能会影响CRC细胞的生物学行为,因此miR-335-5p可能在CRC发生和发展中发挥关键作用。

在本研究中通过分析TCGA数据库和RT-qPCR技术,揭示了MAPK10和miR-335-5p在CRC中的表达差异。这些发现为探索它们的生物学功能提供了初步依据。然而本研究存在一些不足。本研究仅初步验证了miR-335-5p与MAPK10之间的靶向关系,尚未详细探讨miR-335-5p调控MAPK10后如何影响CRC细胞的增殖、迁移、侵袭等生物学行为,未来的研究将通过过表达或敲低miR-335-5p或MAPK10,并观察这些变化对CRC细胞生物学行为的影响;此外,MAPK10的高表达与淋巴结转移呈正相关的发现与总体低表达的结论之间存在矛盾。这种差异可能与肿瘤的异质性有关,即不同肿瘤亚群可能表现出不同的MAPK10表达模式。具体来说,某些亚型的肿瘤可能因为特定的遗传或表观遗传变化而表现出MAPK10的高表达。未来的研究需要通过深入分析不同CRC亚型中MAPK10的表达模式,并探索其与淋巴结转移的相关性,来进一步验证这一假设。

综上所述,未来将通过一系列体内外实验来进一步确认MAPK10和miR-335-5p在CRC中的具体作用,并验证这些发现的临床相关性和应用价值。

参考文献

[1] Siegel, R.L., Giaquinto, A.N. and Jemal, A. (2024) Cancer Statistics, 2024. CA: A Cancer Journal for Clinicians, 74, 12-49.
https://doi.org/10.3322/caac.21820
[2] Mohammad, N.M.A.B., Shahril, M.R., Shahar, S., Fenech, M. and Sharif, R. (2022) Association between Diet-Related Behaviour and Risk of Colorectal Cancer: A Scoping Review. Journal of Cancer Prevention, 27, 208-220.
https://doi.org/10.15430/jcp.2022.27.4.208
[3] Shah, S.C. and Itzkowitz, S.H. (2022) Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms and Management. Gastroenterology, 162, 715-730.e3.
https://doi.org/10.1053/j.gastro.2021.10.035
[4] Myrhøj, T., Blsgaard, M.L., Bernstein, I., Svendsen, L.B., Søndergaard, J.O. and Bulow, S. (1997) Hereditary Non-Polyposis Colorectal Cancer: Clinical Features and Survival Results from the Danish HNPCC Register. Scandinavian Journal of Gastroenterology, 32, 572-576.
https://doi.org/10.3109/00365529709025102
[5] Hermelink, R., Leitzmann, M.F., Markozannes, G., Tsilidis, K., Pukrop, T., Berger, F., et al. (2022) Sedentary Behavior and Cancer—An Umbrella Review and Meta-Analysis. European Journal of Epidemiology, 37, 447-460.
https://doi.org/10.1007/s10654-022-00873-6
[6] Cheng, C., Zhang, Z., Wang, J., Wang, C., Liu, T., Yang, C., et al. (2024) CircPGM5 Regulates Foxo3a Phosphorylation via MiR-21-5p/MAPK10 Axis to Inhibit Bladder Cancer Progression. Cellular Signalling, 121, Article ID: 111297.
https://doi.org/10.1016/j.cellsig.2024.111297
[7] Tsai, Y., Huang, C., Hsueh, Y., Fan, Y., Fong, Y., Huang, S., et al. (2021) Genetic Variants in MAPK10 Modify Renal Cell Carcinoma Susceptibility and Clinical Outcomes. Life Sciences, 275, Article ID: 119396.
https://doi.org/10.1016/j.lfs.2021.119396
[8] Liu, F., Deng, Y., Zhao, Y., Li, Z., Gao, J., Zhang, Y., et al. (2022) Time Series RNA-Seq Analysis Identifies MAPK10 as a Critical Gene in Diabetes Mellitus-Induced Atrial Fibrillation in Mice. Journal of Molecular and Cellular Cardiology, 168, 70-82.
https://doi.org/10.1016/j.yjmcc.2022.04.013
[9] Zhang, X., Zhang, H., Fan, C., Hildesjö, C., Shen, B. and Sun, X. (2022) Loss of CHGA Protein as a Potential Biomarker for Colon Cancer Diagnosis: A Study on Biomarker Discovery by Machine Learning and Confirmation by Immunohistochemistry in Colorectal Cancer Tissue Microarrays. Cancers, 14, Article 2664.
https://doi.org/10.3390/cancers14112664
[10] Gao, Y., Wang, Y., Wang, X., Zhao, C., Wang, F., Du, J., et al. (2021) miR-335-5p Suppresses Gastric Cancer Progression by Targeting MAPK10. Cancer Cell International, 21, Article No. 71.
https://doi.org/10.1186/s12935-020-01684-z
[11] Messaritakis, I., Psaroudaki, E., Vogiatzoglou, K., Sfakianaki, M., Topalis, P., Iliopoulos, I., et al. (2023) Unraveling the Role of Molecular Profiling in Predicting Treatment Response in Stage III Colorectal Cancer Patients: Insights from the IDEA International Study. Cancers, 15, Article 4819.
https://doi.org/10.3390/cancers15194819
[12] Qiao, B., Wang, Q., Zhao, Y. and Wu, J. (2020) miR-205-3p Functions as a Tumor Suppressor in Ovarian Carcinoma. Reproductive Sciences, 27, 380-388.
https://doi.org/10.1007/s43032-019-00047-y
[13] Dai, F., Zhang, Y. and Chen, Y. (2014) Involvement of miR-29b Signaling in the Sensitivity to Chemotherapy in Patients with Ovarian Carcinoma. Human Pathology, 45, 1285-1293.
https://doi.org/10.1016/j.humpath.2014.02.008
[14] Wang, X., Xiao, H., Wu, D., Zhang, D. and Zhang, Z. (2020) miR-335-5p Regulates Cell Cycle and Metastasis in Lung Adenocarcinoma by Targeting CCNB2. OncoTargets and Therapy, 13, 6255-6263.
https://doi.org/10.2147/ott.s245136
[15] Zhang, S., Liu, Y., Wang, M., Ponikwicka-Tyszko, D., Ma, W., Krentowska, A., et al. (2023) Role and Mechanism of miR-335-5p in the Pathogenesis and Treatment of Polycystic Ovary Syndrome. Translational Research, 252, 64-78.
https://doi.org/10.1016/j.trsl.2022.07.007
[16] Kamdar, R.D., Harrington, B.S., Attar, E., Korrapati, S., Shetty, J., Zhao, Y., et al. (2023) NF-κB Signaling Modulates miR-452-5p and miR-335-5p Expression to Functionally Decrease Epithelial Ovarian Cancer Progression in Tumor-Initiating Cells. International Journal of Molecular Sciences, 24, Article 7826.
https://doi.org/10.3390/ijms24097826
[17] Wang, J., He, Z., Xu, J., Chen, P. and Jiang, J. (2021) Long Noncoding RNA LINC00941 Promotes Pancreatic Cancer Progression by Competitively Binding miR-335-5p to Regulate ROCK1-Mediated LIMK1/Cofilin-1 Signaling. Cell Death & Disease, 12, Article No. 36.
https://doi.org/10.1038/s41419-020-03316-w
[18] Nie, Y., Zhu, X., Bu, N., Jiang, Y., Su, Y., Pan, K., et al. (2022) Circ_0064288 Acts as an Oncogene of Hepatocellular Carcinoma Cells by Inhibiting miR-335-5p Expression and Promoting ROCK1 Expression. BMC Cancer, 22, Article No. 265.
https://doi.org/10.1186/s12885-022-09323-8
[19] Zhang, D. and Yang, N. (2019) MiR-335-5p Inhibits Cell Proliferation, Migration and Invasion in Colorectal Cancer through Down-Regulating LDHB. Journal of B.U.ON.: Official Journal of the Balkan Union of Oncology, 24, 1128-1136.
[20] Bengtsson, M., Hemberg, M., Rorsman, P. and Ståhlberg, A. (2008) Quantification of mRNA in Single Cells and Modelling of RT-qPCR Induced Noise. BMC Molecular Biology, 9, Article No. 63.
https://doi.org/10.1186/1471-2199-9-63
[21] Arya, A.K., Singh, P., Saikia, U.N., Sachdeva, N., Dahiya, D., Behera, A., et al. (2019) Dysregulated Mitogen-Activated Protein Kinase Pathway Mediated Cell Cycle Disruption in Sporadic Parathyroid Tumors. Journal of Endocrinological Investigation, 43, 247-253.
https://doi.org/10.1007/s40618-019-01098-3
[22] Li, P., Wang, D., Yang, X., Liu, C., Li, X., Zhang, X., et al. (2024) Anti-Tumor Activity and Mechanism of Silibinin Based on Network Pharmacology and Experimental Verification. Molecules, 29, Article 1901.
https://doi.org/10.3390/molecules29081901
[23] Yu, C., Ying, J., Yu, K., Shen, W. and Jiang, M. (2022) Circ_0074027 Contributes to Non-Small Cell Lung Cancer Progression by Upregulating cul4b Expression through miR-335-5p. Cancer Biotherapy and Radiopharmaceuticals, 37, 73-83.
https://doi.org/10.1089/cbr.2020.3579
[24] Subramanian, C., McCallister, R. and Cohen, M.S. (2023) Multi-genomic Analysis of 260 Adrenocortical Cancer Patient Tumors Identifies Novel Network BIRC5-hsa-miR-335-5p-PAX8-AS1 Strongly Associated with Poor Survival. Surgery, 173, 43-51.
https://doi.org/10.1016/j.surg.2022.08.025
[25] Liu, X., Jin, S., Liu, J. and Xu, X. (2023) miR-223-3p Overexpressed Adipose Mesenchymal Stem Cell-Derived Exosomes Promote Wound Healing via Targeting MAPK10. Acta Histochemica, 125, Article ID: 152102.
https://doi.org/10.1016/j.acthis.2023.152102
[26] Wei, T., Qian, N., Yang, W., Yang, Y., Liu, J., Hao, W., et al. (2022) Construction of a Novel circRNA/miRNA/mRNA Regulatory Network to Explore the Potential Pathogenesis of Wilson’s Disease. Frontiers in Pharmacology, 13, Article 905513.
https://doi.org/10.3389/fphar.2022.905513
[27] Liang, B. and Wu, Y. (2023) Hsa-miR-26a-5p Improves OSCC Sensitivity to Ferroptosis by Inhibiting SLC7A11. Archives of Oral Biology, 156, Article ID: 105807.
https://doi.org/10.1016/j.archoralbio.2023.105807
[28] Yang, X. and Sun, P. (2023) Circ_0088212 Targeting miR-576-5p/FKBP1A Axis Inhibits Osteosarcoma Progression. Annals of Clinical and Laboratory Science, 53, 548-561.
[29] Zhao, Y., Ye, G., Wang, Y. and Luo, D. (2022) miR-4461 Inhibits Tumorigenesis of Renal Cell Carcinoma by Targeting PPP1R3C. Cancer Biotherapy and Radiopharmaceuticals, 37, 503-514.
https://doi.org/10.1089/cbr.2020.3846
[30] Feng, H., Deng, Z., Peng, W., Wei, X., Liu, J. and Wang, T. (2023) Circular RNA EPHA3 Suppresses Progression and Metastasis in Prostate Cancer through the miR-513a-3p/BMP2 Axis. Journal of Translational Medicine, 21, Article No. 288.
https://doi.org/10.1186/s12967-023-04132-4
[31] Cao, S., Yin, Y., Hu, H., Hong, S., He, W., Lv, W., et al. (2023) CircGLIS3 Inhibits Thyroid Cancer Invasion and Metastasis through miR-146b-3p/AIF1L Axis. Cellular Oncology, 46, 1777-1789.
https://doi.org/10.1007/s13402-023-00845-2
[32] Li, L., Gao, J., Li, J. and Wang, J. (2022) miR-711 Regulates Gastric Cancer Progression by Targeting CD44. Cancer Biomarkers, 35, 71-81.
https://doi.org/10.3233/cbm-210213
[33] Wei, B., Wang, Z., Lian, Q., Chi, B. and Ma, S. (2022) Hsa_circ_0139402 Promotes Bladder Cancer Progression by Regulating Hsa-miR-326/PAX8 Signaling. Disease Markers, 2022, Article ID: 9899548.
https://doi.org/10.1155/2022/9899548