肺癌发生静脉血栓栓塞的风险评估模型的研究进展
Research Progress on Risk Assessment Model for Venous Thromboembolism in Lung Cancer
摘要: 肺癌是VTE发病率最高的恶性肿瘤之一,VTE的发生是一个重要的医疗问题,具有多种不良后果,为了更有效预测血栓栓塞事件,国内外已经开发了癌症患者的风险评估工具。这些评估工具在肺癌患者VTE中有不同程度的预测价值。KRS被相关指南推荐用于评估癌症门诊患者VTE的风险,且预测价值可观。但在肺癌患者中虽然有较高特异性,却缺乏鉴别能力,对于VTE风险分层能力欠佳。新一代KRS的提出在癌症患者中在一定程度上提高了预测准确性,但在识别VTE高风险肺癌患者方面的表现较差。COMPASS-CAT不仅在实体器官恶性肿瘤验证研究中表现出色,还是肺恶性肿瘤患者VTE发病率的最精确预测因子,适用于肺癌患者VTE风险筛查及监测。ROADMAP-CAT RAM风险因子中含有不易测得的生物标志物,不适合临床应用。本综述总结既往研究,概述了肺癌发生静脉血栓栓塞的多种风险评估工具。效能好的RAM为临床医生识别患者潜在VTE风险的最佳工具,有助于识别符合血栓预防条件的高危患者,做到早预防早治疗。
Abstract: Lung cancer is one of the malignancies with the highest incidence of venous thromboembolism (VTE). The occurrence of VTE is a significant medical issue associated with a variety of adverse consequences. To more effectively predict thromboembolic events, risk assessment tools for cancer patients have been developed both domestically and internationally. These assessment tools have varying degrees of predictive value in VTE in lung cancer patients. KRS is recommended by relevant guidelines to assess the risk of VTE in cancer outpatients and has considerable predictive value. However, although it has high specificity in lung cancer patients, it lacks the ability to distinguish and has a poor ability to stratify the risk of VTE. The proposal of a new generation of KRS has improved the prediction accuracy to a certain extent in cancer patients, but it has performed poorly in identifying lung cancer patients with a high risk of VTE. COMPASS-CAT not only performs well in validation studies of solid organ malignancies, but also serves as the most accurate predictor of VTE incidence in patients with lung malignancies. COMPASS-CAT is suitable for VTE risk screening and monitoring in lung cancer patients. The ROADMAP-CAT RAM risk factor contains biomarkers that are not easily measurable and are not suitable for clinical use. This review summarizes previous studies and outlines a variety of risk assessment tools for venous thromboembolism in lung cancer. RAM is the best tool for clinicians to identify the potential risk of VTE in patients. It is also helpful to identify high-risk patients who are eligible for thromboprophylaxis so as to achieve early prevention and early treatment.
文章引用:郭佳琪, 徐磊. 肺癌发生静脉血栓栓塞的风险评估模型的研究进展[J]. 临床医学进展, 2025, 15(1): 1856-1863. https://doi.org/10.12677/acm.2025.151247

1. 引言

恶性肿瘤被认为是静脉血栓栓塞(venous thromboembolism, VTE)的“非一过性”危险因素[1]。肺癌(lung cancer) VTE是全球发病率和死亡率的主要原因,其风险比非肺癌病例高20倍。多项流行病学研究一致表明,肺癌是VTE发病率最高的恶性肿瘤之一[2] [3]。VTE包括深静脉血栓形成(deep venous thrombosis, DVT)和肺栓塞(pulmonary embolism, PE) [4]。VTE的发生是一个重要的医疗问题,具有多种不良后果,包括增加住院死亡风险、静脉血栓栓塞复发率和长期治疗性抗凝患者大出血风险,其对生活质量产生负面影响以及增加医疗资源消耗[5]-[7]。通过适当的评估和早期预防,可以降低患者血栓形成的发生率和死亡率。目前指南建议,癌症患者在化疗开始时和化疗后应定期评估VTE风险[8]。VTE的发生率在癌症患者中差异很大,为了更有效预测血栓栓塞事件,国内外已经开发了癌症患者的风险评估工具[9],本综述概述了肺癌发生静脉血栓栓塞的多种风险评估工具目前研究进展。

2. 发病原因及危险因素

VTE在肺癌患者中的发病机制很复杂,涉及与潜在合并症、原发肿瘤的性质和分期以及相关治疗干预相关的多种因素的相互作用[10]。宏观来看,与静脉血栓栓塞相关的三个典型因素是:静脉血流中断(即淤滞、湍流或粘度增加)、内皮或血管壁损伤和高凝状态,这些因素通常被称为Virchow三联征。众所周知,肺癌可导致上述所有致病性凝块形成机制。不动、功能状态下降、住院和围手术期状态都与静脉淤滞有关[11]。微观来说,白细胞、血小板、组织因子及微囊泡水平升高都是单独或联合增加肺癌相关血栓形成的潜在因素[12]。也有研究表明PDPN表达、P-选择素表达、PAI-1水平升高可能导致肺癌患者的VTE。未来的研究应测量肺癌不同分型的多种生物标志物,生物标志物的联合又是否能成为VTE的预测因子?更好地了解增加肺癌患者VTE的途径才能更好地开发新疗法以降低与血栓形成相关的发病率和死亡率[13]

VTE的发生率在肺癌患者中差异颇大。腺癌患者的血栓栓塞发生率高于其他肺癌组织学患者,腺癌患者发生VTE的风险是鳞状细胞组织学患者的3倍[14] [15]。多种临床因素会导致VTE风险。腺癌患者、晚期肺癌患者、肺癌患者行相关腹部或盆腔大手术后,以及积极全身抗癌治疗(包括激素治疗、化疗以及可能的免疫治疗和靶向治疗)患者发生VTE的风险明显更高[16]。F I Mulder等人研究发现既往VTE、诊断时的远处转移、肺癌诊断后前4个月内的手术、使用化疗、蛋白激酶抑制剂、抗血管生成治疗、免疫治疗和其他靶向治疗被确定为肺癌患者的VTE危险因素[17]。还有研究者表示肿瘤分期、D-二聚体数值、中心静脉导管置入、肺癌合并其他基础疾病也作为肺癌患者发生VTE的危险因素。Tsubata等人表示凝血酶原片段F1 + 2与D-二聚体联合使用时,作为癌症相关血栓形成的预测因子特别有用[18]。然而,不能根据单一的危险因素或生物标志物可靠地预测VTE的风险。在过去十年中,已经开发了癌症患者的风险评估模型,以更可靠地预测VTE的发生[9]

3. 风险评估模型

尽管诸多研究表明在肺癌住院患者中一级血栓预防可降低发病率,然而血栓预防仍然没有得到充分利用或应用不当。近年来研究者们已经开发了风险评估模型(risk assessment model, RAM)来帮助对住院患者的VTE风险进行分层[19]。这些模型通过患者病史和检查的临床信息筛选出最可能使用药物预防降低VTE风险的患者。但不恰当地使用静脉血栓栓塞预防可能不会降低静脉血栓栓塞的发生率,并可能造成不必要的伤害[20] [21]。目前临床上常被相关指南推荐使用的风险评估模型包括Khorana RAM、Caprini RAM及Padua RAM等。COMPASS-CAT RAM虽已被相关研究证实其可用价值但还未被指南推荐使用。尽管RAM可以提高获益与风险的比率,但尚不清楚肺癌患者更适用于哪种VTE RAM来指导临床实践中的预防决策。

3.1. Khorana风险评估模型

Khorana评分(Khorana Risk Score, KRS)是Khorana等人在2008年首次开发的一种实体瘤门诊患者血栓风险评分模型,该模型包含5个临床及实验室参数,包括癌症部位、PLT计数、血红蛋白或红细胞生成刺激剂的使用、白细胞计数和体重指数[22]。Khorana等人在一项前瞻性研究的独立队列中推导并验证了该风险模型。KRS是近年最常用的VTE风险工具,并被纳入多个国际指南,包括美国临床肿瘤学会[23]、国际血栓形成和止血学会[24]以及国际血栓形成和癌症倡议指南[25]。很多研究者使用Khorana评分对肺癌、非小细胞癌、妇科肿瘤、结直肠癌、血液系统肿瘤、肝癌患者进行回顾性验证,表明KRS对肿瘤患者VTE有一定的预测作用,并证实其有效性。但不同肿瘤类型其准确性参差不齐。目前,大量研究证实了KRS的有效性,但这些研究在癌症类型、随访时间、患者评估时间(化疗开始前或后)不同,由于这种异质性,KRS的准确性一直存在争议[26]

2019年美国临床肿瘤学会和临床实践指南推荐将KRS用于评估癌症门诊患者VTE的风险[27]。此外,也有研究表明该模型对住院癌症患者评估也具有有效性。Parker等人[28]的一项回顾性研究验证了KRS可预测住院的癌症患者在院内发生症状性VTE,可作为定制住院抗凝血栓预防的有用工具。该研究表明,区分VTE风险较高的住院患者的最佳临界点是KRS ≥ 2分,特异性高,敏感性低。同样在一项多中心回顾性研究中报告了类似结果[25]。KRS灵敏度低的一个原因可能是该量表最初是为癌症门诊患者设计的,因此它不包括住院期间可能发生的一些因素(例如手术) [29]。由于我国医疗保险政策,接受抗癌治疗患者需住院治疗,KRS可能更适用于我国的住院患者,但美国人的平均体重高于我国,KRS中的BMI阈值可能需要调整。

不少研究者使用该模型用于肺癌VTE的预测。有研究表示,KRS是原发性肺腺癌患者死亡的独立危险因素,可预测接受一线或辅助化疗的肺腺癌患者的生存率[30]。Yan等人[31]表示在肺癌患者中,KRS有较高的特异性,但临界值为2分的KRS缺乏高度的鉴别能力。一项回顾性研究分析了28名肺癌患者,发现根据KRS只有11%的患者被归类为高风险患者。Dapkeviciute等人[32]表示KRS ≥ 2分的患者生存率低于KRS为1分的患者。尽管KRS原模型高风险临界值为3分,并且分层明确,但临床数据提示临界值为2分,KRS无法区分新诊断的晚期肺癌患者VTE的高风险和中风险。其对新诊断的晚期肺癌患者VTE风险的分层能力为中等。KRS在鉴别低风险VTE肺癌患者时具有可观价值,但对于高风险患者其预测价值不佳。联合使用一种以上的风险工具可以提高预测价值。当应用特异性高但敏感性低的KRS时,应进一步对中等风险组的患者进行分层。根据KRS,所有肺癌患者至少得分为1分,并被分层为中度或更高的VTE风险。对中等风险组的患者应用第二种敏感度高的模型。由更多患者和癌症相关因素组成的风险评分(如COMPASS-CAT评分)与纯生物标志物评分(即ROADMAP)联合使用,可提高预测肺癌患者VTE的特异性,但不降低敏感性[31]

3.2. 改良后Khorana风险评估模型

改良后的KRS包括Vienna-CAT、CONKO、PROTECHT、TiCOnco和ONKOTEV RAM [26],它们是通过前瞻性观察队列研究,在原KRS基础上纳入影响癌症患者发生VTE的独立危险因素而建立的新RAM,旨在提高识别高风险患者的准确性。

Ay等人[33]提出的Vienna-CAT评分新纳入了可溶性P-选择素和D-二聚体,这是他们研究中能显著预测癌症VTE形成的2种生物标志物。与KRS相比较,其可以更精确地筛选出具有非常高VTE风险的癌症患者,并且可以更准确地预测VTE的概率。一项日本研究表示KRS和Vienna-CAT有助于日本肺癌患者发生VTE的临床评估。但可溶性P-选择素常常不作为常规住院患者化验范围,且测量方法并不容易获得[34]

PROTECHT RAM [35]是通过在KRS的预测变量中加入铂类或吉西他滨化疗而提出的RAM,CONKO RAM [36]用世界卫生组织的体能状态 ≥ 2分取代了BMI。一项回顾性研究独立评估了KRS、CONKO RAM和PROTECHT RAM对肺癌患者VTE的预测。该研究表明基于肺癌患者的KRS具有低准确性,并证实PROTECHT RAM和CONKO RAM在识别VTE高风险肺癌患者方面的表现较差[37]。Alexander等人分析研究得出相似结论。

TiCOnco和ONKOTEV RAM也是改良的KRS,但尚未在同质肺癌患者组中得到验证。

3.3. COMPASS-CAT风险评估模型

COMPASS-CAT风险评估模型(risk assessment model, RAM)是在2017年由Gerotziafas等人基于一项多中心、前瞻性、纵向、非干预性的研究中提出的新模型,适用于乳腺癌、结直肠癌、卵巢癌和肺癌的门诊患者[38]。COMPASS-CAT RAM适用于抗癌治疗开始后,包括与患者特征和合并症相关的VTE预测因子以及与癌症及其治疗相关的变量,该模型将患者分为VTE高危组(≥ 7分)和中低危组(0~6分)。有研究结果显示该模型的灵敏度较高(95%)、特异度较低(12%)、阴性预测值高(98%)、ROC曲线分析AUC为0.850,这表明COMPASS-CAT RAM可以有效地筛除VTE中低危组的肿瘤患者[38],且其对肺癌、乳腺癌和卵巢癌等常见实体肿瘤患者VTE发生风险有较好的预测效能[38]

COMPASS-CAT RAM尽管在整体实体器官恶性肿瘤验证研究中表现出色,但在肺癌中具有特定优势。COMPASS-CAT RAM是肺恶性肿瘤患者VTE发病率的最精确预测因子[39]。近年来,不少研究者基于COMPASS-CAT RAM对肺癌患者VTE进行回顾性或前瞻性评估。Rupa-Matysek等人[37]回顾性应用该模型对118例住院肺癌患者VTE的高危因素风险预测进行验证,COMPASS-CAT RAM高危评分是肺癌患者发生VTE的独立危险因素,与KRS、PROTHEC和KONKO RAM相比较,该模型对于肺癌患者VTE发生风险具有最有效的预测能力。在王延风等人的研究中,他们回顾性分析373例非小细胞肺癌患者的临床资料,这些患者住院并接受系统性抗肿瘤治疗,结果显示,COMPASS-CAT RAM高危组患者VTE的发生率(62.7%, P < 0.001)明显高于中低危组(6.2%, P < 0.001),COMPASS-CAT RAM高危评分是非小细胞肺癌患者发生VTE的独立危险因素,因此也验证了COMPASS-CAT RAM对VTE发生风险的预测价值。该研究还表明,D-二聚体和血红蛋白等变量是肺癌患者VTE发生的独立危险因素,在原模型基础上纳入上述两项变量构建新的预测概率模型,其预测价值优于原COMPASS-CAT模型[40]。Syrigos等人[41]也肯定了COMPASS-CAT RAM预测效能,并在此模型基础上研究更适合于肺腺癌患者VTE的RAM。肺癌患者常伴有基础疾病,其中心血管疾病是最常见的合并症之一[42]。有研究表明,冠心病、糖尿病、高血压病和高脂血症等是发生VTE的影响因素[43],COMPASS-CAT RAM不仅纳入肿瘤相关因素变量,也充分整合了肺癌患者伴随基础疾病或合并症,更加客观全面地反映肺癌发生VTE的风险。该模型的预测评估价值可适用于肺癌患者VTE风险筛查及监测,并应鼓励该模型的推广应用。也有研究表示该模型校准度差。Spyropoulos等人[44]表示该模型具有中等鉴别度和良好的阴性预测值,但使用0~6及7分的定义临界值进行校准不佳,特异性较差。需要进一步开展该模型的前瞻性验证工作。

由于非小细胞肺癌的临床发生率高于小细胞肺癌,且非小细胞肺癌患者的治疗方案多为化疗、放疗、免疫治疗、靶向药物和使用中心静脉置管等联合方案,以上治疗方式不同程度增加了VTE的发病风险。相关研究显示[45],肺癌的组织学类型及分期与血栓的发生密切相关,其中非小细胞肺癌患者血栓的发生率高于小细胞肺癌患者;肺腺癌患者血栓的发生率高于肺鳞状细胞癌患者。大部分研究者基于肺癌全部患者或针对肺小细胞癌患者进行临床研究,很少有研究者使用该模型对不同肺癌类型的预测效能进行比较,可能由于各类肺癌患者临床表现与化验结果没有明显差异,也可能因为该模型没有涉及到各类肺癌致病机制因子。在未来工作中,需要有这样一些研究进行预测各型肺癌发生静脉栓塞,细化预测,精化治疗。

3.4. ROADMAP-CAT风险评估模型

ROADMAP-CAT RAM是由Sangare等人[41]基于一项前瞻性研究提出的预测模型,且只适用于肺腺癌患者。该研究表明,凝血酶生成增殖阶段的平均速率指数(MRI)和促凝血磷脂依赖性凝血时间(Procoag-PPL)是将患者分为VTE高风险或中/低风险的强制性生物标志物。缩短的Procoag-PPL (< 44秒)和降低的MRI (< 125 nM/min)为高危,反之为中/低危。此模型具有较高敏感性和较低特异性,但其校准良好。在第一个化疗周期给药后1个月内测量Procoag-PPL和MRI可显着提高其评估的准确性。尽管Procoag-PPL凝血时间和MRI与VTE事件的相关性微弱,但在肺腺癌患者中,ROADMAP-CAT评分与COMPASS-CAT评分的关联有望增加识别有VTE风险的患者的阳性预测值[41]。目前鲜少研究基于此模型对肺腺癌患者发生VTE进行预测,可能由于上述两项生物标志物在临床上常规不易测得。

3.5. 其他

Caprini RAM最初是为外科和内科患者开发的[46],并且有强有力的证据表明其在外科患者中的有效性和实用性。Padua RAM适用于内科住院患者发生VTE的预测。2018年相关指南已推荐应用,且我院住院患者常规进行以上两种评估。尽管两者均不是肿瘤相关预测模型,但多项研究表明Caprini RAM和Padua RAM对恶性肿瘤患者VTE的发生具有一定预测价值,且Caprini RAM比Padua RAM更敏感,特异性更低[47]。一项研究表明Caprini RAM可作为未选择的住院患者的有效VTE RAM。在这项研究中,AUC为0.705,灵敏度高达82.35%,Caprini RAM可以将98.2%的VTE病例识别为中高风险,将82.4%的VTE病例识别为高风险,并确定哪些人应该接受VTE预防[29]。虽然Krasta等人研究证实了Caprini RAM可用于切除肺癌患者的出院后预防性抗凝治疗,但Caprini RAM暂未被用于内科肺癌患者发生VTE的预测,需要大量病例信息进行前瞻性研究以及回顾性验证。

4. 总结与展望

综上所述,肿瘤患者发生VTE的概率远比非肿瘤患者高,KRS被相关指南推荐用于评估癌症门诊患者VTE的风险,且预测价值可观。但在肺癌患者中虽然有较高特异性,但缺乏鉴别能力,对于VTE风险分层能力欠佳。新一代KRS的提出在癌症患者中在一定程度上提高了预测准确性,但在识别VTE高风险肺癌患者方面的表现较差。COMPASS-CAT不仅在实体器官恶性肿瘤验证研究中表现出色,还是肺恶性肿瘤患者VTE发病率的最精确预测因子,适用于肺癌患者VTE风险筛查及监测。ROADMAP-CAT RAM风险因子中含有不易测得的生物标志物,不适合临床应用。上述RAM各有千秋,侧重不同,效能好的RAM是临床医生识别患者潜在VTE风险的最佳工具,有助于识别符合血栓预防条件的高危患者。进一步完善当前RAM的风险分层方法,开发既涵盖疾病临床因素又满足现实可行性的新RAM,这是我们仍要继续研究的内容,旨在提高RAM预测准确性,在临床病患中做到早预防,早治疗。

基金项目

内蒙古医科大学面上项目(NO.YKD2021MS003);内蒙古自治区科技计划项目(NO.2022YFSH0092);内蒙古自治区高等学校科学研究项目(NO.NJZY23150);内蒙古自治区自然科学基金项目(NO.2023MS08014)。

NOTES

*通讯作者。

参考文献

[1] Canonico, M.E., Santoro, C., Avvedimento, M., Giugliano, G., Mandoli, G.E., Prastaro, M., et al. (2022) Venous Thromboembolism and Cancer: A Comprehensive Review from Pathophysiology to Novel Treatment. Biomolecules, 12, Article 259.
https://doi.org/10.3390/biom12020259
[2] Timp, J.F., Braekkan, S.K., Versteeg, H.H. and Cannegieter, S.C. (2013) Epidemiology of Cancer-Associated Venous Thrombosis. Blood, 122, 1712-1723.
https://doi.org/10.1182/blood-2013-04-460121
[3] 苏俐玫, 毛溪悦, 阳丽梅. 肺癌患者静脉血栓栓塞预防的疗效与安全性的meta分析(英文) [J]. 中国药学, 2023, 32(10): 852-860.
[4] Sheth, R.A., Niekamp, A., Quencer, K.B., Shamoun, F., Knuttinen, M., Naidu, S., et al. (2017) Thrombosis in Cancer Patients: Etiology, Incidence, and Management. Cardiovascular Diagnosis and Therapy, 7, S178-S185.
https://doi.org/10.21037/cdt.2017.11.02
[5] Chew, H.K., Wun, T., Harvey, D., Zhou, H. and White, R.H. (2006) Incidence of Venous Thromboembolism and Its Effect on Survival among Patients with Common Cancers. Archives of Internal Medicine, 166, 458-464.
https://doi.org/10.1001/archinte.166.4.458
[6] Patell, R., Rybicki, L., McCrae, K.R. and Khorana, A.A. (2017) Predicting Risk of Venous Thromboembolism in Hospitalized Cancer Patients: Utility of a Risk Assessment Tool. American Journal of Hematology, 92, 501-507.
https://doi.org/10.1002/ajh.24700
[7] Nijkeuter, M., Söhne, M., Tick, L.W., Kamphuisen, P.W., Kramer, M.H.H., Laterveer, L., et al. (2007) The Natural Course of Hemodynamically Stable Pulmonary Embolism. Chest, 131, 517-523.
https://doi.org/10.1378/chest.05-2799
[8] Qin, X., Gao, X., Yang, Y., Ou, S., Luo, J., Wei, H., et al. (2024) Developing a Risk Assessment Tool for Cancer-Related Venous Thrombosis in China: A Modified Delphi-Analytic Hierarchy Process Study. BMC Cancer, 24, Article No. 120.
https://doi.org/10.1186/s12885-024-11877-8
[9] Angelini, D. and Khorana, A. (2017) Risk Assessment Scores for Cancer-Associated Venous Thromboembolic Disease. Seminars in Thrombosis and Hemostasis, 43, 469-478.
https://doi.org/10.1055/s-0036-1597281
[10] Abdel-Razeq, H., Sharaf, B., Al-Jaghbeer, M.J., Abu-Fares, H., Bater, R., Shaer, M.A., et al. (2023) COMPASS-CAT versus Khorana Risk Assessment Model for Predicting Venous Thromboembolic Events in Patients with Non-Small Cell Lung Cancer on Active Treatment with Chemotherapy and/or Immunotherapy, the CK-RAM Study. Journal of Thrombosis and Thrombolysis, 56, 447-453.
https://doi.org/10.1007/s11239-023-02860-4
[11] Guntupalli, S.R., Spinosa, D., Wethington, S., Eskander, R. and Khorana, A.A. (2023) Prevention of Venous Thromboembolism in Patients with Cancer. British Medical Journal, 381, e072715.
https://doi.org/10.1136/bmj-2022-072715
[12] Tatsumi, K. (2024) The Pathogenesis of Cancer-Associated Thrombosis. International Journal of Hematology, 119, 495-504.
https://doi.org/10.1007/s12185-024-03735-x
[13] Hisada, Y. and Mackman, N. (2017) Cancer-Associated Pathways and Biomarkers of Venous Thrombosis. Blood, 130, 1499-1506.
https://doi.org/10.1182/blood-2017-03-743211
[14] Tesselaar, M.E. and Osanto, S. (2007) Risk of Venous Thromboembolism in Lung Cancer. Current Opinion in Pulmonary Medicine, 13, 362-367.
https://doi.org/10.1097/mcp.0b013e328209413c
[15] Chew, H.K., Davies, A.M., Wun, T., Harvey, D., Zhou, H. and White, R.H. (2008) The Incidence of Venous Thromboembolism among Patients with Primary Lung Cancer. Journal of Thrombosis and Haemostasis, 6, 601-608.
https://doi.org/10.1111/j.1538-7836.2008.02908.x
[16] Ay, C. and Ünal, U.K. (2016) Epidemiology and Risk Factors for Venous Thromboembolism in Lung Cancer. Current Opinion in Oncology, 28, 145-149.
https://doi.org/10.1097/cco.0000000000000262
[17] Mulder, F.I., Horváth-Puhó, E., van Es, N., van Laarhoven, H.W.M., Pedersen, L., Moik, F., et al. (2021) Venous Thromboembolism in Cancer Patients: A Population-Based Cohort Study. Blood, 137, 1959-1969.
https://doi.org/10.1182/blood.2020007338
[18] Gong, C.Y., Li, Z.W., Zhou, D.X., et al. (2016) Risk Factors of Lung Cancer Complicated with Symptomatic Venous Thromboembolism. Chinese Journal of Tuberculosis and Respiratory Diseases, 39, 454-458.
[19] National Institute for Health and Care Excellence (2019) Venous Thromboembolism in over 16s: Reducing the Risk of Hospital-Acquired Deep Vein Thrombosis or Pulmonary Embolism.
[20] Chan, N.C., Gross, P.L. and Weitz, J.I. (2018) Addressing the Burden of Hospital-Related Venous Thromboembolism: The Role of Extended Anticoagulant Prophylaxis. Journal of Thrombosis and Haemostasis, 16, 413-417.
https://doi.org/10.1111/jth.13942
[21] Pandor, A., Tonkins, M., Goodacre, S., Sworn, K., Clowes, M., Griffin, X.L., et al. (2021) Risk Assessment Models for Venous Thromboembolism in Hospitalised Adult Patients: A Systematic Review. BMJ Open, 11, e045672.
https://doi.org/10.1136/bmjopen-2020-045672
[22] Khorana, A.A., Kuderer, N.M., Culakova, E., Lyman, G.H. and Francis, C.W. (2008) Development and Validation of a Predictive Model for Chemotherapy-Associated Thrombosis. Blood, 111, 4902-4907.
https://doi.org/10.1182/blood-2007-10-116327
[23] Key, N.S., Khorana, A.A., Kuderer, N.M., Bohlke, K., Lee, A.Y.Y., Arcelus, J.I., et al. (2023) Venous Thromboembolism Prophylaxis and Treatment in Patients with Cancer: ASCO Guideline Update. Journal of Clinical Oncology, 41, 3063-3071.
https://doi.org/10.1200/jco.23.00294
[24] Wang, T., Zwicker, J.I., Ay, C., Pabinger, I., Falanga, A., Antic, D., et al. (2019) The Use of Direct Oral Anticoagulants for Primary Thromboprophylaxis in Ambulatory Cancer Patients: Guidance from the SSC of the Isth. Journal of Thrombosis and Haemostasis, 17, 1772-1778.
https://doi.org/10.1111/jth.14564
[25] Farge, D., Frere, C., Connors, J.M., Khorana, A.A., Kakkar, A., Ay, C., et al. (2022) 2022 International Clinical Practice Guidelines for the Treatment and Prophylaxis of Venous Thromboembolism in Patients with Cancer, Including Patients with Covid-19. The Lancet Oncology, 23, e334-e347.
https://doi.org/10.1016/s1470-2045(22)00160-7
[26] Gerotziafas, G.T., Mahé, I., Lefkou, E., AboElnazar, E., Abdel-Razeq, H., Taher, A., et al. (2020) Overview of Risk Assessment Models for Venous Thromboembolism in Ambulatory Patients with Cancer. Thrombosis Research, 191, S50-S57.
https://doi.org/10.1016/s0049-3848(20)30397-2
[27] Kimura, H., Ota, H., Kimura, Y. and Takasawa, S. (2020) Effects of Intermittent Hypoxia on Pulmonary Vascular and Systemic Diseases. International Journal of Environmental Research and Public Health, 16, Article 3101.
[28] Parker, A., Peterson, E., Lee, A.Y.Y., de Wit, C., Carrier, M., Polley, G., et al. (2018) Risk Stratification for the Development of Venous Thromboembolism in Hospitalized Patients with Cancer. Journal of Thrombosis and Haemostasis, 16, 1321-1326.
https://doi.org/10.1111/jth.14139
[29] Hu, Y., Li, X., Zhou, H., Lin, P., Zhang, J., Huang, D., et al. (2020) Comparison between the Khorana Prediction Score and Caprini Risk Assessment Models for Assessing the Risk of Venous Thromboembolism in Hospitalized Patients with Cancer: A Retrospective Case Control Study. Interactive Cardio Vascular and Thoracic Surgery, 31, 454-460.
https://doi.org/10.1093/icvts/ivaa137
[30] Vathiotis, I., Dimakakos, E.P., Boura, P., Ntineri, A., Charpidou, A., Gerotziafas, G., et al. (2018) Khorana Score: Νew Predictor of Early Mortality in Patients with Lung Adenocarcinoma. Clinical and Applied Thrombosis/Hemostasis, 24, 1347-1351.
https://doi.org/10.1177/1076029618777153
[31] Yan, A., Samarawickrema, I., Naunton, M., Peterson, G.M., Yip, D., Newman, P., et al. (2024) Models for Predicting Venous Thromboembolism in Ambulatory Patients with Lung Cancer: A Systematic Review and Meta-Analysis. Thrombosis Research, 234, 120-133.
https://doi.org/10.1016/j.thromres.2024.01.003
[32] Dapkevičiūtė, A., Daškevičiūtė, A., Zablockis, R., Kuzaitė, A., Jonušienė, G., Diktanas, S., et al. (2019) Association between the Khorana Score and Pulmonary Embolism Risk in Patients with Advanced Stage Lung Cancer. The Clinical Respiratory Journal, 14, 3-8.
https://doi.org/10.1111/crj.13092
[33] Ay, C., Dunkler, D., Marosi, C., Chiriac, A., Vormittag, R., Simanek, R., et al. (2010) Prediction of Venous Thromboembolism in Cancer Patients. Blood, 116, 5377-5382.
https://doi.org/10.1182/blood-2010-02-270116
[34] Pabinger, I., van Es, N., Heinze, G., Posch, F., Riedl, J., Reitter, E., et al. (2018) A Clinical Prediction Model for Cancer-Associated Venous Thromboembolism: A Development and Validation Study in Two Independent Prospective Cohorts. The Lancet Haematology, 5, e289-e298.
https://doi.org/10.1016/s2352-3026(18)30063-2
[35] Verso, M., Agnelli, G., Barni, S., Gasparini, G. and LaBianca, R. (2012) A Modified Khorana Risk Assessment Score for Venous Thromboembolism in Cancer Patients Receiving Chemotherapy: The Protecht Score. Internal and Emergency Medicine, 7, 291-292.
https://doi.org/10.1007/s11739-012-0784-y
[36] Pelzer, U., Sinn, M., Stieler, J. and Riess, H. (2013) Primäre medikamentöse Thromboembolieprophylaxe bei ambulanten Patienten mit fortgeschrittenem Pankreaskarzinom unter Chemotherapie? Deutsche Medizinische Wochenschrift, 138, 2084-2088.
https://doi.org/10.1055/s-0033-1349608
[37] Rupa-Matysek, J., Lembicz, M., Rogowska, E.K., Gil, L., Komarnicki, M. and Batura-Gabryel, H. (2018) Evaluation of Risk Factors and Assessment Models for Predicting Venous Thromboembolism in Lung Cancer Patients. Medical Oncology, 35, Article No. 63.
https://doi.org/10.1007/s12032-018-1120-9
[38] Gerotziafas, G.T., Taher, A., Abdel-Razeq, H., AboElnazar, E., Spyropoulos, A.C., El Shemmari, S., et al. (2017) A Predictive Score for Thrombosis Associated with Breast, Colorectal, Lung, or Ovarian Cancer: The Prospective Compass-Cancer-Associated Thrombosis Study. The Oncologist, 22, 1222-1231.
https://doi.org/10.1634/theoncologist.2016-0414
[39] Mosaad, M., Elnaem, M.H., Cheema, E., Ibrahim, I., Ab Rahman, J., Kori, A.N., et al. (2021) Cancer-Associated Thrombosis: A Clinical Scoping Review of the Risk Assessment Models across Solid Tumours and Haematological Malignancies. International Journal of General Medicine, 14, 3881-3897.
https://doi.org/10.2147/ijgm.s320492
[40] Wang, Y.F., Ma, F., Liu, B.L., et al. (2020) Risk Prediction of Venous Thromboembolism in Non-Small Cell Lung Cancer Patients Based on COMPASS-CAT Risk Assessment Model. Chinese Journal of Oncology, 42, 340-345.
[41] Syrigos, K., Grapsa, D., Sangare, R., Evmorfiadis, I., Larsen, A.K., Van Dreden, P., et al. (2018) Prospective Assessment of Clinical Risk Factors and Biomarkers of Hypercoagulability for the Identification of Patients with Lung Adenocarcinoma at Risk for Cancer-Associated Thrombosis: The Observational ROADMAP-CAT Study. The Oncologist, 23, 1372-1381.
https://doi.org/10.1634/theoncologist.2017-0530
[42] Kravchenko, J., Berry, M., Arbeev, K., Lyerly, H.K., Yashin, A. and Akushevich, I. (2015) Cardiovascular Comorbidities and Survival of Lung Cancer Patients: Medicare Data Based Analysis. Lung Cancer, 88, 85-93.
https://doi.org/10.1016/j.lungcan.2015.01.006
[43] Rinde, L.B., Lind, C., Småbrekke, B., Njølstad, I., Mathiesen, E.B., Wilsgaard, T., et al. (2016) Impact of Incident Myocardial Infarction on the Risk of Venous Thromboembolism: The Tromsø Study. Journal of Thrombosis and Haemostasis, 14, 1183-1191.
https://doi.org/10.1111/jth.13329
[44] Spyropoulos, A.C., Eldredge, J.B., Anand, L.N., Zhang, M., Qiu, M., Nourabadi, S., et al. (2020) External Validation of a Venous Thromboembolic Risk Score for Cancer Outpatients with Solid Tumors: The COMPASS-CAT Venous Thromboembolism Risk Assessment Model. The Oncologist, 25, e1083-e1090.
https://doi.org/10.1634/theoncologist.2019-0482
[45] Howard, L. (2019) Acute Pulmonary Embolism. Clinical Medicine, 19, 243-247.
https://doi.org/10.7861/clinmedicine.19-3-247
[46] Caprini, J.A. (2005) Thrombosis Risk Assessment as a Guide to Quality Patient Care. Disease-a-Month, 51, 70-78.
https://doi.org/10.1016/j.disamonth.2005.02.003
[47] Chen, X., Pan, L., Deng, H., Zhang, J., Tong, X., Huang, H., et al. (2018) Risk Assessment in Chinese Hospitalized Patients Comparing the Padua and Caprini Scoring Algorithms. Clinical and Applied Thrombosis/Hemostasis, 24, 127S-135S.
https://doi.org/10.1177/1076029618797465