[1]
|
Ong, T.K. and Franklin, C.D. (1996) A Clinical and Histopathological Study of Osteoarthrosis of the Temporomandibular Joint. British Journal of Oral and Maxillofacial Surgery, 34, 186-192.
https://doi.org/10.1016/s0266-4356(96)90375-7
|
[2]
|
Jayachandran, S. (2017) Efficacy of Bromelain along with Trypsin, Ru-toside Trihydrate Enzymes and Diclofenac Sodium Combination Therapy for the Treatment of TMJ Osteoarthritis—A Randomised Clinical Trial. Journal of Clinical and Diagnostic Research, 11, ZC09-ZC11. https://doi.org/10.7860/jcdr/2017/25771.9964
|
[3]
|
Lee, Y., Park, H., Auh, Q., Nah, H., Lee, J.S., Moon, H., et al. (2020) Emerging Potential of Exosomes in Regenerative Medicine for Temporomandibular Joint Osteoarthritis. International Journal of Mo-lecular Sciences, 21, Article 1541.
https://doi.org/10.3390/ijms21041541
|
[4]
|
Li, C. and Zhang, Q. (2022) Comparison of Magnetic Resonance Imaging Findings in 880 Temporomandibular Disorder Patients of Different Age Groups: A Retrospective Study. BMC Oral Health, 22, Article No. 651.
https://doi.org/10.1186/s12903-022-02666-5
|
[5]
|
傅开元, 胡敏, 余强, 等. 颞下颌关节紊乱病锥形束CT检查规范及诊断标准的专家共识[J]. 中华口腔医学杂志, 2020, 55(9): 613-616.
|
[6]
|
Jiang, T. (2021) Relationship between Temporomandibular Disorders and Malocclusions: From History to Present. Chinese Journal of Stomatology, 56, 734-739.
|
[7]
|
Hu, H., Liu, W., Sun, C., Wang, Q., Yang, W., Zhang, Z., et al. (2021) Endogenous Repair and Regeneration of Injured Articular Cartilage: A Challenging but Promising Therapeutic Strategy. Aging and Disease, 12, 886-901.
https://doi.org/10.14336/ad.2020.0902
|
[8]
|
Zhao, Y., Zhang, Z., Wu, Y., Zhang, W. and Ma, X. (2011) Investigation of the Clin-ical and Radiographic Features of Osteoarthrosis of the Temporomandibular Joints in Adolescents and Young Adults. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 111, e27-e34. https://doi.org/10.1016/j.tripleo.2010.09.076
|
[9]
|
Wang, X.D., Zhang, J.N., Gan, Y.H. and Zhou, Y.H. (2015) Current Under-standing of Pathogenesis and Treatment of TMJ Osteoarthritis. Journal of Dental Research, 94, 666-673. https://doi.org/10.1177/0022034515574770
|
[10]
|
时子文, 祝颂松, 毕瑞野. 颞下颌关节骨关节炎的药物治疗基础与临床研究进展[J]. 中国现代应用药学, 2022, 39(4): 552-559.
|
[11]
|
Behnia, A., Haghighat, A., Kaviani, N. and Khorami, B. (2013) Evalua-tion of Glucosamine Sulfate and Ibuprofen Effects in Patients with Temporomandibular Joint Osteoarthritis Symptom. Journal of Re-search in Pharmacy Practice, 2, 34-39. https://doi.org/10.4103/2279-042x.114087
|
[12]
|
Yang, W., Liu, W., Miao, C., Sun, H., Li, L. and Li, C. (2018) Oral Glucosamine Hydrochloride Combined with Hyaluronate Sodium Intra-Articular Injection for Temporoman-dibular Joint Osteoarthritis: A Double-Blind Randomized Controlled Trial. Journal of Oral and Maxillofacial Surgery, 76, 2066-2073. https://doi.org/10.1016/j.joms.2018.04.031
|
[13]
|
Tolba, Y.M., Omar, S.S., Nagui, D.A. and Nawwar, M.A. (2020) Effect of High Molecular Weight Hyaluronic Acid in Treatment of Osteoarthritic Temporomandibular Joints of Rats. Archives of Oral Biology, 110, Article 104618.
https://doi.org/10.1016/j.archoralbio.2019.104618
|
[14]
|
Renapurkar, S.K. (2018) Surgical versus Nonsurgical Management of Degenerative Joint Disease. Oral and Maxillofacial Surgery Clinics of North America, 30, 291-297. https://doi.org/10.1016/j.coms.2018.04.005
|
[15]
|
Kapadia, J.M., Ganti, S., Shriram, P., Ansari, A.S., Azad, A. and Dubey, A. (2018) Evaluation of Effect of Glucosamine-Chondroitin Sulfate, Tramadol, and Sodium Hyaluronic Acid on Expression of Cytokine Levels in Internal Derangement of Temporomandibular Joint. The Journal of Contemporary Dental Practice, 19, 1502-1506.
https://doi.org/10.5005/jp-journals-10024-2456
|
[16]
|
Rashid, T.U., Shamsuddin, S.M., Khan, M.A. and Rahman, M.M. (2014) Evaluation of Fat Binding Capacity of Gamma Irradiated Chitosan Extracted from Prawn Shell. Soft Materials, 12, 262-267.
https://doi.org/10.1080/1539445x.2014.880720
|
[17]
|
Li, F., Wu, C., Sun, H. and Zhou, Q. (2021) Comparison of Autologous Platelet-Rich Plasma and Chitosan in the Treatment of Temporomandibular Joint Osteoarthritis: A Retrospective Cohort Study. Journal of Oral and Maxillofacial Surgery, 79, 324-332. https://doi.org/10.1016/j.joms.2020.09.016
|
[18]
|
郭惟静, 张哲, 刘志明. 颞下颌关节骨关节病治疗的研究进展[J]. 中华老年口腔医学杂志, 2024, 22(2): 119-124.
|
[19]
|
Ahmad, S.A., Hasan, S., Saeed, S., et al. (2021) Low-Level Laser Therapy in Temporomandibular Joint Disorders: A Systenmtie Review. Journal of Medicine and Life, 14, 148-164.
|
[20]
|
Kim, Y.-H., Bang, J.-I., Son, H.-J., Kim, Y., Kim, J.H., Bae, H., et al. (2019) Protective Effects of Extracorporeal Shockwave on Rat Chondrocytes and Temporomandibular Joint Osteoarthritis; Preclinical Evaluation with in vivo 99mTc-HDP SPECT and ex vivo Micro-CT. Osteoarthritis and Cartilage, 27, 1692-1701.
https://doi.org/10.1016/j.joca.2019.07.008
|
[21]
|
Li, F., Li, Y., Zhu, Y., Bao, X. and Wang, L. (2024) Recent Advances in Basic Studies of Low-Intensity Pulsed Ultrasound in Periodontal Tissue Regeneration: A Systematic Review. Stem Cell Reviews and Reports, 20, 2124-2137.
https://doi.org/10.1007/s12015-024-10769-5
|
[22]
|
Wang, Y., Cao, X., Shen, Y., Zhong, Q., Huang, Y., Zhang, Y., et al. (2023) Osteogenic Effect of Low-Intensity Pulsed Ultrasound on Peri-Implant Bone: A Systematic Review and Meta-Analysis. Journal of Prosthodontic Research, 68, 215-226. https://doi.org/10.2186/jpr.jpr_d_23_00068
|
[23]
|
Xia, P., Wang, Q., Song, J., Wang, X., Wang, X., Lin, Q., et al. (2022) Low-Intensity Pulsed Ultrasound Enhances the Efficacy of Bone Marrow-Derived MSCs in Osteoar-thritis Cartilage Repair by Regulating Autophagy-Mediated Exosome Release. CARTILAGE, 13. https://doi.org/10.1177/19476035221093060
|
[24]
|
Zhou, J., Zhu, Y., Ai, D., Zhou, M., Li, H., Fu, Y., et al. (2023) Low-Intensity Pulsed Ultrasound Regulates Osteoblast-Osteoclast Crosstalk via EphrinB2/EphB4 Signaling for Orthodontic Alveolar Bone Remodel-ing. Frontiers in Bioengineering and Biotechnology, 11, Article 1192720. https://doi.org/10.3389/fbioe.2023.1192720
|
[25]
|
Tanaka, E., Liu, Y., Xia, L., Ogasawara, N., Sakamaki, T., Kano, F., et al. (2020) Effectiveness of Low-Intensity Pulsed Ultrasound on Osteoarthritis of the Temporomandibular Joint: A Review. Annals of Biomedical Engineering, 48, 2158-2170. https://doi.org/10.1007/s10439-020-02540-x
|
[26]
|
Nagata, K., Nakamura, T., Fujihara, S. and Tanaka, E. (2013) Ultrasound Modulates the Inflammatory Response and Promotes Muscle Regeneration in Injured Muscles. Annals of Biomedical Engineering, 41, 1095-1105.
https://doi.org/10.1007/s10439-013-0757-y
|
[27]
|
Zhang, Z., Yang, Y., Li, B., Hu, X., Xu, S., Wang, F., et al. (2019) Low-Intensity Pulsed Ultrasound Promotes Spinal Fusion by Regulating Macrophage Polarization. Biomedicine & Pharmacotherapy, 120, Article 109499.
https://doi.org/10.1016/j.biopha.2019.109499
|
[28]
|
Zhang, X., Gao, W., Zhou, J., Dai, H., Xiang, X. and Xu, J. (2024) Low-Intensity Pulsed Ultrasound in the Treatment of Masticatory Myositis and Temporomandibular Joint Synovitis: A Clinical Trial. Journal of Stomatology, Oral and Maxillofacial Surgery, 125, Article 101632. https://doi.org/10.1016/j.jormas.2023.101632
|
[29]
|
段宇辰, 何睿, 陈晓华, 等. 脱落乳牙牙髓干细胞来源外泌体对大鼠TMJ OA软骨下骨稳态的影响[J]. 实用口腔医学杂志, 2024, 40(3): 315-322.
|
[30]
|
Ogasawara, N., Kano, F., Hashimoto, N., Mori, H., Liu, Y., Xia, L., et al. (2020) Factors Secreted from Dental Pulp Stem Cells Show Multifaceted Benefits for Treating Experimental Temporomandibular Joint Osteoarthritis. Osteoarthritis and Cartilage, 28, 831-841. https://doi.org/10.1016/j.joca.2020.03.010
|
[31]
|
贾搏, 可注射脂肪干细胞膜片靶向作用于颞下颌关节骨关节病精准治疗的分子机制和临床开发研究[Z]. 广州: 广东省口腔医院, 2022-04-22.
|
[32]
|
卢晓杰. 口颌系统功能锻炼应用于颞下颌关节骨关节炎患者中的效果观察[J]. 反射疗法与康复医学, 2023, 4(22): 139-142.
|
[33]
|
Sun, S.T. (2018) Clinical Study on the Treatment of Osteoarthrosis and Non Osteoarthrosis in Temporomandibular Disorders. Master’s Thesis, Qingdao Univer-sity.
|
[34]
|
张钰, 黄冉, 张爱青, 等. 咬合板联合其他方法治疗颞下颌关节紊乱病的研究进展[J]. 口腔颌面修复学杂志, 2024, 25(6): 456-461.
|
[35]
|
Hu, J.L. and Dong, Y. (2019) Research Progress in Occlusal Splint Therapy for Temporomandibular Joint Dis-orders. Chinese Journal of Stomatology, 54, 273-277.
|
[36]
|
Ok, S., Jeong, S., Ahn, Y. and Kim, Y. (2016) Effect of Stabilization Splint Therapy on Glenoid Fossa Remodeling in Temporomandibular Joint Osteoarthritis. Journal of Prosthodontic Research, 60, 301-307.
https://doi.org/10.1016/j.jpor.2016.03.001
|
[37]
|
Tran, K. and Loshak, H. (2019) Intra-Articular Hyaluronic Acid for Visco Sup-plementation in Osteoarthritis of the Hand, Shoulder, and Temporomandibular Joint: A Review of Clinical Effectiveness and Safety. Canadian Agency for Drugs and Technologies in Health.
|
[38]
|
Basterzi, Y., Sari, A., Demirkan, F., Unal, S. and Arslan, E. (2009) Intraarticular Hyaluronic Acid Injection for the Treatment of Reducing and Nonreducing Disc Displacement of the Temporomandibular Joint. Annals of Plastic Surgery, 62, 265-267. https://doi.org/10.1097/sap.0b013e31817dadb1
|
[39]
|
Manfredini, D., Rancitelli, D., Ferronato, G. and Guarda‐Nardini, L. (2011) Arthrocentesis with or without Additional Drugs in Temporomandibular Joint Inflamma-tory‐Degenerative Disease: Comparison of Six Treatment Protocols. Journal of Oral Rehabilitation, 39, 245-251. https://doi.org/10.1111/j.1365-2842.2011.02265.x
|
[40]
|
Totlis, T., Marín Fermín, T., Kalifis, G., Terzidis, I., Maffulli, N. and Papakostas, E. (2021) Arthroscopic Debridement for Focal Articular Cartilage Lesions of the Knee: A Systematic Review. The Surgeon, 19, 356-364.
https://doi.org/10.1016/j.surge.2020.11.011
|
[41]
|
Singh, V., Dhingra, R. and Bhagol, A. (2012) Prospective Analysis of Tem-poromandibular Joint Reconstruction in Ankylosis with Sternoclavicular Graft and Buccal Fat Pad Lining. Journal of Oral and Maxil-lofacial Surgery, 70, 997-1006.
https://doi.org/10.1016/j.joms.2011.02.129
|
[42]
|
Nørholt, S.E., Jensen, J., Schou, S. and Pedersen, T.K. (2011) Complications after Mandibular Distraction Osteogenesis: A Retrospective Study of 131 Patients. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 111, 420-427. https://doi.org/10.1016/j.tripleo.2010.05.050
|
[43]
|
Qiu, Y., Yang, C. and Chen, M. (2010) Endoscopically Assisted Reconstruction of the Mandibular Condyle with a Costochondral Graft through a Modified Preauricular Approach. British Journal of Oral and Maxillofacial Surgery, 48, 443-447. https://doi.org/10.1016/j.bjoms.2009.07.017
|
[44]
|
刘昱航, 林金盈. 骨髓间充质干细胞治疗骨关节炎的研究进展[J]. 中国临床新医学, 2024, 17(1): 118-122.
|
[45]
|
Luo, P., Jiang, C., Ji, P., Wang, M. and Xu, J. (2019) Exosomes of Stem Cells from Human Exfoliated Deciduous Teeth as an Anti-Inflammatory Agent in Temporomandibular Joint Chondrocytes via miR-100-5p/mTOR. Stem Cell Research & Therapy, 10, Article No. 216. https://doi.org/10.1186/s13287-019-1341-7
|
[46]
|
陈忠义, 叶嘉靖. 脂肪干细胞治疗骨关节炎的研究现状及展望[J]. 浙江医学, 2020, 42(5): 411-413, 425.
|
[47]
|
Liu, F., Wang, X., Li, Y., Ren, M., He, P., Wang, L., et al. (2022) Dendrimer-Modified Gelatin Methacrylate Hydrogels Carrying Adipose-Derived Stromal/Stem Cells Promote Cartilage Regeneration. Stem Cell Research & Thera-py, 13, Article No. 26. https://doi.org/10.1186/s13287-022-02705-6
|
[48]
|
冀堃, 陆伟, 马辰春. 牙周膜干细胞的研究进展[J]. 中华临床医师杂志(电子版), 2015, 9(15): 2936-2939.
|
[49]
|
Zhang, Y., McNeill, E., Tian, H., Soker, S., Andersson, K., Yoo, J.J., et al. (2008) Urine Derived Cells Are a Potential Source for Urological Tissue Reconstruction. Journal of Urology, 180, 2226-2233.
https://doi.org/10.1016/j.juro.2008.07.023
|
[50]
|
Bharadwaj, S., Liu, G., Shi, Y., Wu, R., Yang, B., He, T., et al. (2013) Multipo-tential Differentiation of Human Urine-Derived Stem Cells: Potential for Therapeutic Applications in Urology. Stem Cells, 31, 1840-1856.
https://doi.org/10.1002/stem.1424
|
[51]
|
Guan, J., Zhang, J., Guo, S., Zhu, H., Zhu, Z., Li, H., et al. (2015) Human Urine-Derived Stem Cells Can Be Induced into Osteogenic Lineage by Silicate Bioceramics via Activation of the Wnt/β-Catenin Signaling Pathway. Biomaterials, 55, 1-11. https://doi.org/10.1016/j.biomaterials.2015.03.029
|
[52]
|
Xiong, X., Yang, X., Dai, H., Feng, G., Zhang, Y., Zhou, J., et al. (2019) Extracellular Matrix Derived from Human Urine-Derived Stem Cells Enhances the Expansion, Adhesion, Spreading, and Differentiation of Human Periodontal Ligament Stem Cells. Stem Cell Research & Therapy, 10, Article No. 396. https://doi.org/10.1186/s13287-019-1483-7
|
[53]
|
Chen, C., Rao, S., Tan, Y., Luo, M., Hu, X., Yin, H., et al. (2019) Extracellular Vesicles from Human Urine-Derived Stem Cells Prevent Osteoporosis by Transferring CTHRC1 and OPG. Bone Research, 7, Article No. 18.
https://doi.org/10.1038/s41413-019-0056-9
|
[54]
|
Zhang, W., Hu, J., Huang, Y., Wu, C. and Xie, H. (2021) Urine-Derived Stem Cells: Applications in Skin, Bone and Articular Cartilage Repair. Burns & Trauma, 9, tkab039. https://doi.org/10.1093/burnst/tkab039
|
[55]
|
Liu, Y., Zeng, Y., Si, H., Tang, L., Xie, H. and Shen, B. (2022) Exosomes Derived from Human Urine-Derived Stem Cells Overexpressing miR-140-5p Alleviate Knee Osteoarthritis through Downregulation of VEGFA in a Rat Model. The American Journal of Sports Medicine, 50, 1088-1105. https://doi.org/10.1177/03635465221073991
|
[56]
|
Sun, J., Xing, F., Zou, M., Gong, M., Li, L. and Xiang, Z. (2021) Comparison of Chondrogenesis-Related Biological Behaviors between Human Urine-Derived Stem Cells and Human Bone Marrow Mesenchymal Stem Cells from the Same Individual. Stem Cell Research & Therapy, 12, Article No. 366. https://doi.org/10.1186/s13287-021-02370-1
|
[57]
|
Fahy, N., Alini, M. and Stoddart, M.J. (2017) Mechanical Stimulation of Mesenchymal Stem Cells: Implications for Cartilage Tissue Engineering. Journal of Orthopaedic Research, 36, 52-63. https://doi.org/10.1002/jor.23670
|
[58]
|
赵明璨, 刘畅. 脂肪干细胞在软骨组织工程中的研究进展[J]. 中国生物医学工程学报, 2014, 33(4): 475-481.
|
[59]
|
刘琴, 陈芳, 王丽平, 等. 脂肪干细胞成软骨分化研究进展[J]. 华南国防医学杂志, 2019, 33(4): 286-291.
|
[60]
|
Marędziak, M., Marycz, K., Tomaszewski, K.A., Kornicka, K. and Henry, B.M. (2016) The Influence of Aging on the Regenerative Potential of Human Adipose Derived Mesenchymal Stem Cells. Stem Cells International, 2016, Article ID: 2152435. https://doi.org/10.1155/2016/2152435
|
[61]
|
Zhang, M., Wang, Z., Zhao, Y., Zhang, L., Xu, L., Cao, L., et al. (2018) The Effect of Age on the Regenerative Potential of Human Eyelid Adipose-Derived Stem Cells. Stem Cells International, 2018, Article ID: 5654917.
https://doi.org/10.1155/2018/5654917
|
[62]
|
Ding, D., Chou, H., Hung, W., Liu, H. and Chu, T. (2013) Human Adipose-Derived Stem Cells Cultured in Keratinocyte Serum Free Medium: Donor’s Age Does Not Affect the Proliferation and Differentiation Capacities. Journal of Biomedical Science, 20, Article No. 59. https://doi.org/10.1186/1423-0127-20-59
|
[63]
|
Veronesi, F., Maglio, M., Tschon, M., Aldini, N.N. and Fini, M. (2013) Adipose‐Derived Mesenchymal Stem Cells for Cartilage Tissue Engineering: State‐of‐the‐Art in in vivo Studies. Journal of Biomedical Materials Research Part A, 102, 2448-2466. https://doi.org/10.1002/jbm.a.34896
|
[64]
|
Liao, Q., Li, B.J., Li, Y., Xiao, Y., Zeng, H., Liu, J.M., et al. (2021) Low-Intensity Pulsed Ultrasound Promotes Osteoarthritic Cartilage Regeneration by BMSC-Derived Exosomes via Modulating the NF-κB Signaling Pathway. International Immunopharmacology, 97, Article 107824. https://doi.org/10.1016/j.intimp.2021.107824
|
[65]
|
Tan, Y., Guo, Y., Reed-Maldonado, A.B., Li, Z., Lin, G., Xia, S., et al. (2021) Low-Intensity Pulsed Ultrasound Stimulates Proliferation of Stem/Progenitor Cells: What We Need to Know to Translate Basic Science Research into Clinical Applications. Asian Journal of An-drology, 23, 602-610. https://doi.org/10.4103/aja.aja_25_21
|
[66]
|
Xia, P., Wang, X., Wang, Q., Wang, X., Lin, Q., Cheng, K., et al. (2021) Low-Intensity Pulsed Ultrasound Promotes Autophagy-Mediated Migration of Mesenchymal Stem Cells and Cartilage Re-pair. Cell Transplantation, 30.
https://doi.org/10.1177/0963689720986142
|
[67]
|
Cheng, L., Sun, X., Scicluna, B.J., Coleman, B.M. and Hill, A.F. (2014) Char-acterization and Deep Sequencing Analysis of Exosomal and Non-Exosomal Mirna in Human Urine. Kidney International, 86, 433-444.
https://doi.org/10.1038/ki.2013.502
|
[68]
|
Su, X., Liao, L., Shuai, Y., Jing, H., Liu, S., Zhou, H., et al. (2015) MiR-26a Functions Oppositely in Osteogenic Differentiation of BMSCs and ADSCs Depending on Distinct Activation and Roles of Wnt and BMP Sig-naling Pathway. Cell Death & Disease, 6, e1851-e1851. https://doi.org/10.1038/cddis.2015.221
|
[69]
|
Mohamed, J.S., Lopez, M.A. and Boriek, A.M. (2010) Mechanical Stretch Up-Regulates MicroRNA-26a and Induces Human Airway Smooth Muscle Hypertrophy by Suppressing Glycogen Synthase Kinase-3β. Journal of Biological Chemistry, 285, 29336-29347. https://doi.org/10.1074/jbc.m110.101147
|