颞下颌关节骨关节病的治疗研究进展
Research Progress in the Treatment of Temporomandibular Joint Osteoarthropathy
摘要: 颞下颌关节骨关节病(TMJOA)的状况是普遍存在的颞下颌关节问题,其特征在于开口困难、关节区域痛感及摩擦声等症状,这给患者的日常生活带来了极大的困扰,目前的治疗手段主要是保守疗法与非保守疗法。然而,近些年,由于基础研究对于颞下颌骨关节疾病的深入探讨,使得诊断和治疗的方法得到了进一步提升和优化。本文就TMJOA的诊治进展做一综述。
Abstract: Temporomandibular joint osteoarthrosis (TMJOA) is a prevalent condition affecting the temporomandibular joint, marked by symptoms like restricted mouth opening, joint pain, and clicking noises, significantly impacting the well-being of individuals. The current approaches to treatment involve both conservative and non-conservative methods. In recent years, with the development of basic research on temporomandibular joint osteoarthrosis, the diagnosis and treatment methods of TMJOA have been continuously improved and perfected. This article reviews the progress in the diagnosis and treatment of TMJOA.
文章引用:徐皓, 周润润, 曾睿, 刘紫妍, 戴红卫. 颞下颌关节骨关节病的治疗研究进展[J]. 临床医学进展, 2025, 15(1): 1882-1890. https://doi.org/10.12677/acm.2025.151251

1. 引言

颞下颌关节骨关节疾病(temporomandibular joint osteoarthrosis, TMJOA)是普遍存在于人口中的一种疾病,其典型症状包括持续性的痛感、关节噪声以及下巴的运动受限等等,如果病情恶化的话可能会导致下颌倾斜、下颌向后移动或牙齿咬合错位等问题,这些问题会给患者带来极大的身体与精神压力。其主要的病因有:局部受力过度、外伤、咬合错乱导致的关节受力异常[1]、激素状态改变、全身骨代谢异常[2] [3]和基因多态性[4] [5]。颞下颌关节骨关节病被视为一种慢性进展型疾病,它不仅影响到关节的柔软部分(如滑膜)和坚固部分(如骨骼) [6],而且也与其内部的炎症反应有着紧密联系。通常情况下,这种疾病的症状包括滑膜发炎、大量炎性液体流入等现象,而关节盘可能出现错位或者破裂的情况[7]。从影像学的角度来看,其主要特点是关节间的空间减小、髁突表面的骨皮质受到侵蚀、髁突逐渐消瘦、骨质变得更加致密、产生类似于囊泡状的变化及骨刺生成,有时甚至会出现独立的骨刺[8]

对于TMJOA患者来说,其治疗的主要目的在于阻止软骨及软骨下方骨骼的持续损伤,引导骨骼再生,缓解关节痛楚,并使关节构造和机能得到恢复[9]。治疗方法涵盖了两种类型:一种是保守疗法,其中包含使用药品、向关节内部注入液体、物理治疗等方式;另一种则是非保守疗法,如采用牙科矫正器或外科手术等手段。这些方法能较明显地缓解疼痛症状,但不能促进软骨的再生,髁突破坏后不能很好地修复。同时,以上治疗方法存在不足之处,非甾体类抗炎镇痛为口服药物,会引起明显的胃肠道反应。透明质酸主要在髁突运动时起到润滑作用,而抗炎作用不是特别理想。而理疗包括红外线治疗,其穿透力有限,并不能深入到关节的区域,效果有限。而现在对于细胞层面的治疗方法也在进一步探索中。现将TMJOA治疗方法进行总结。

2. 保守治疗

2.1. 药物治疗

针对TMJOA疾病的主要疗法可分为两大部分——传统的医药手段与现代化的生化制品;前者的代表是常见的药品如无机消炎止痛片、肾上腺素替代品及玻尿酸HYALURONIC ACID (HA);而第二部分则以活性物质为主导,例如细胞增殖因素、自身富含血液的小球蛋白PLATELET RICH PLASMA (PRP),钙调神经磷脂酶PARATHYROID HORMONE (PTH))等等[10],治疗颞下颌关节紊乱的药物治疗方案较多,其中包括常用的NSAIDs [11]药物,如双氯芬酸钠、塞来昔布、阿司匹林、对乙酰氨基酚等;另外氨基葡萄糖类[12]药物也是治疗的一种选择,尽管有些学者表示短期使用效果不佳,但长期使用可以减轻疼痛症状;此外,临床上也常用HA药物,其通过口服和关节注射两种方式使用,主要作用是润滑关节腔[13];皮质类固醇也可以治疗TMJOA,主要通过消除关节腔内炎症来减少疼痛感[14];还有一些药物如硫酸软骨素[15]和壳聚糖[16],前者通过抗炎作用减少炎症发生,后者具有抗菌、止血、促进伤口愈合以及软骨修复的功能,并有助于MSCs的分化[17]

生物制剂包含MSCs、生长激素(growth hormone, GH)、生长因子、β2肾上腺素能受体(β2-adrenergic receptor, Adrb2)、PRP、PTH。其中生长因子包含IGF-1和转化生长因子-β (transforming growth factor beta, TGF-β)。近年来,生物制剂的研究已成热点,相比与传统药物相比,具有不良反应发生率更低、疗效更好等优点,但是其治疗成本更高以及保存更加复杂,使得难以成为常规治疗方式。

2.2. 物理治疗

理疗是通过各种如光、电、力、热、等物理因子来影响关节区内神经递质或(和)细胞凶子的传递与表达,以达到缓解疼痛、促进愈合的作用,此方法已在大关节OA诊疗中得到肯定[18]但对于TMJOA的疗法,学者们的看法不一,有研究者发现单纯的理疗在早期可以对与肌肉痉挛和缓解疼痛方面有一定作用[19],学者Kim [20]通过体外冲击波疗法(extracorporeal shockwave therapy, ESWT)发现对小鼠TMJOA的软骨和软骨下骨结构具有保护作用,但也仅仅停留在基础实验阶段,尚未运用于临床治疗。

2.3. 低强度脉冲超声在关节炎中的治疗作用

低强度脉冲超声(Low-intensity pulsed ultrasound, LIPUS)由于其低强度和脉冲输出模式而具有最小的热效应,同时保持能量向目标组织的传输[21],是一种用于治疗的非侵入性物理刺激[22]。已有研究证明LIPUS治疗膝关节骨关节炎、髋关节骨关节炎[23]等具有确切的疗效,能有效减轻患者骨关节炎疼痛并促进关节软骨损伤的修复[24]。LIPUS作为一种新兴且高效的辅助疗法,不只适用于骨性疾病的治疗[25],也可以用于肌肉炎症[26]和关节滑膜炎的治疗[27]

在LIPUS应用于TMD方面,有研究[28]发现LIPUS对TMD中咀嚼肌炎及关节炎的临床疗效十分明显,结果表示,咀嚼肌炎组经LIPUS治疗一周后,Fricton指数(PI/CMI)、VAS值、患侧压力值均有显著恢复。关节滑膜炎组经LIPUS治疗一周后,Fricton指数(DI/CMI)、VAS值、患侧压力值也得到了有效恢复。以压力差值大小分组比较,发现LIPUS对压力差值较大者恢复效果更佳。以病程时间分组比较,发现LIPUS对于慢性炎症恢复效果更佳。以上研究表明LIPUS对颞下颌关节炎症性疾病有较好的治疗效果,但是单纯的LIPUS治疗对软骨缺失的修复效果比较局限。软骨在长期炎症作用下主要表现为退行性改变,关节腔内的软骨干细胞数量和活性显著降低,自身修复作用减弱。因此有大量的文献[29]-[31]通过注射外源性干细胞进行颞下颌关节骨关节炎的治疗。

2.4. 口颌系统功能锻炼

口颌系统功能锻炼(stomatognathic system functional exercise, SSFE)主要适用于颞下颌关节疼痛,开口受限的患者,可以缓解患者的疼痛症状。卢晓杰[32]采用前瞻性队列研究,将试验组SSFE与对照组上颌佩戴垫治疗TMJOA进行对比,发现试验组患者大部分髁突骨质发生良性改建,少部分髁突骨质无改变,而对照组患者髁突骨质均无明显改变,得出结论在颞下颌关节骨关节炎治疗患者中采用口颌系统功能锻炼,能有效减轻患者的疼痛,改善开口受限度,并促进患者髁突骨质的修复。另有学者[33]发现选用SSFE对颞下颌骨关节病和颞下颌非骨关节病进行治疗一个月后,SSFE在治疗骨关节病和非骨关节病的应用中,均能显著减轻TMD患者的不适症状,由此得出结论,对于有关节疼痛以及张口受限的患者采用SSFE是有一定效果的,不仅能缓解症状,还能在一定程度上促进髁突的良性改建。

3. 非保守治疗

3.1. 咬合板

现目前临床上常用的咬合板包括稳定咬合板和前伸在定位咬合板[34],前者主要应用于缓解颞下颌关节区软硬组织的疼痛,具有较好的疗效,通过去除干扰并将髁突位置进行调整,从而达到治疗目的;后者适用于可复性关节盘移位伴关节弹响患者,或者急性期不可复性关节盘移位手法复位后的治疗,引导下颌前伸到盘突复位状态[35];对于TMJOA主要使用的是稳定性咬合板,有学者发现TMJOA患者进行咬合板治疗发现实验组减轻了患者TMJ的过度负荷,并且通过CBCT叠加法,显示出关节窝的软骨吸收较少[36]

手术治疗包括关节穿刺、关节镜下的关节腔扩大、清扫和修整,也有关节盘穿孔修复术、关节盘切除、髁突修整术、髁突高位成形术等手术。

3.1.1. 微创治疗

使用注射法的主要药物为HA,这是人体滑液中的自然物质。它的主要功效在于提供润滑与滋养,这使得它成为了一种重要的医疗手段来应对TMJOA [13]。研究者们发现,无论是在关节内注入HA还是在关节穿刺过程中加入HA,对缓解疼痛和恢复功能的效果并无明显差别[37]。然而,不同种类的HA分子质量存在差异,会影响到它们分解速度和注射频次。所以,单次应用内源性的HA作为治疗骨关节炎的方法被认为是最优选择。Basterzi等[38]和Manfredini等[39]都发现,在关节腔内注射HA后,患者疼痛症状明显好转,开口度显著增加。发现低分子量HA的治疗效果优于高分子量HA。

关节镜下的关节腔扩大、清扫和修整,关节镜不仅可以用于治疗,还可以用于早期的诊断,对颞下颌关节强直有一定的预防作用。关节镜下治疗,有学者指出中短期疗效较好,但远期效果则有待进一步证实,而且容易复发[40]

3.1.2. 手术治疗

对于保守治疗无效的患者可以考虑采用关节手术,主要包括关节成型术、牵张成骨以及关节置换术。关节成形术包括关节盘复位以及髁突成形,在手术过程中可以考虑将颞肌筋膜瓣或颊脂垫瓣等植入关节间隙,可有效预防关节强直发生[41]。牵张成骨术适用于需要修复骨组织的患者,但牵张成骨需要注意并发症包括局部疼痛、神经损伤及牵张器周围感染等,这些均可通过适当的预防措施予以避免[42]。目前,肋骨和肋软骨的自体移植是关节置换术最常用的方式。随着内镜技术的进步,关节置换手术的复杂性有所降低,同时也缩短了手术周期并减少了手术创伤[43]

4. 基础研究

4.1. 干细胞在颞下颌关节炎中的治疗作用

干细胞治疗促进软骨组织再生是当前的研究热点。目前治疗关节炎常用的干细胞包括骨髓间充质干细胞、脂肪干细胞、乳牙牙髓干细胞和牙周膜干细胞等。其中骨髓间充质干细胞因其取材方便、来源广以及具有多向分化和增殖能力被广泛用于骨关节炎等的治疗,但对于其缺少统一的适应症以及安全用量缺少统一标准,仍需要进一步研究[44]。有研究发现,使用乳牙牙髓干细胞外泌体通过miR-100-5p/ mTOR抑制软骨的炎性改变,缓解关节炎的进展[45]。对于脂肪干细胞,由于其具有获取容易、创伤小和多向分化潜能,在多个领域都有一定的应用,如泌尿生殖方面、骨关节炎治疗等,但目前多驻留在基础实验方面[46];有研究发现,脂肪干细胞加光敏材料可以很好地修复膝关节的软骨缺损[47]。牙周膜干细胞具有再矿化能力、软骨细胞分化能力等多项分化能力、可用于牙周组织的修复以及骨关节病的治疗[48]。因此干细胞对关节炎的治疗在实验研究中已经取得了一定的效果。

4.2. 尿源性干细胞在关节炎软骨再生中的作用

现阶段用于软骨组织再生的干细胞主要来源于脂肪和骨组织的干细胞,这些细胞的获取具有侵入损伤性,而且数量较少尿源性干细胞(usc)是一种从人体排泄物中提取的干细胞,相对于其他间充质干细胞,它有以下特点:1) 细胞来源不会受到个人的年龄、性别和健康状况的影响,只有在泌尿系统感染或者没有排泄物的情况下才会产生。2) 细胞获取成本低且安全无创。3) 细胞分离无需使用酶消化。4) 具有旺盛的增殖和多向分化能力[49]。以往的研究发现,尿源性干细胞具有促进骨组织再生的作用[50] [51]。研究指出,尿源性干细胞有助于牙周膜干细胞的繁殖和骨骼成熟[52]。Chen等人[53]的研究也证实了usc-exo能够推动间充质干细胞的骨骼成熟,同时还可以抑制破骨前体细胞的骨骼形成,从而改善骨质疏松状况。有文献显示USC能促进软骨再生,同时在膝关节骨关节炎中有明显的治疗效果[54]。Liu等[55]的研究发现,过表达miR-140-5p的人尿源性干细胞衍生的外泌体通过下调VEGFA减轻大鼠膝关节骨关节炎,并促进软骨再生。Sun等[56]将同一个体来源的hUSCs和hBMSCs分别注射进兔的膝关节软骨缺损部位后发现,hUSCs和hBMSCs在体内具有相似的软骨修复作用hUSCs可以作为软骨再生的干细胞替代品,并为软骨组织工程和临床转化提供强大的平台。

4.3. 脂肪干细胞在关节软骨再生中的作用

脂肪干细胞(ADSCs)是理想的种子细胞之一,这是因为它们具有丰富的组织来源、容易获取、免疫原性低、增殖速度快以及多向分化潜能等优点,因此在软骨组织工程研究中备受关注。ADSCs可以在不同的诱导条件下分化为脂肪细胞、成骨细胞、软骨细胞等不同类型的细胞[57]。软骨组织工程利用了ADSCs的成软骨分化能力,为修复软骨缺损提供了新的治疗途径。在不同的诱导环境下,脂肪干细胞可以分化为脂肪细胞、骨细胞、软骨细胞等细胞类型。目前,有研究者提出了5种方式来诱导ADSCs分化为软骨细胞,包括生长因子、基因修饰、共培养体系、生长因子与共培养结合以及生物支架材料[58]

许多变量会影响ADSCs向软骨转变的能力,包括供体的年纪、采集位置、低氧条件、细胞世代与数量等等[59]。关于年岁如何影响ADSCs的软骨转化能力仍存在争论:多数专家指出,随著年岁的增长,其转化为软骨的能力会逐渐减弱[60] [61];但另一方面,也有人持相反观点,即年岁并不会显著地影响人类脂肪干细胞的软骨转化潜力[62]。现阶段,最常用的获取地点为皮肤下的脂肪组织,例如大网膜、腹腔或臀部等[63],且从这些区域提取出的脂肪干细胞具有各自独特的特性。根据现有研究,最佳的体外培养次数应介于2到5次之间,此时细胞的生长能力和分化程度较高。另有一些研究者发现在较高的细胞浓度的条件下,ADSCs更易成功转变成软骨。同时,他们还观察到了生物力学、动态环境和电磁场的刺激可能会进一步影响ADSCs的软骨转化过程。

4.4. LIPUS促进尿源性干细胞的活性和外泌体释放

虽然目前干细胞治疗在实验阶段已经取得了较好的效果,但干细胞注射后会受到关节炎本身炎性环境的干扰,容易被炎性诱导或者被炎症细胞清除,从而不能最大程度地发挥其抗炎和促组织再生作用。有学者发现低强度脉冲超声可以促进干细胞的增殖,并通过调节NF-κB信号通路促进 BMSC 衍生的外泌体再生骨关节炎软骨[64] [65]。还有学者发现低强度脉冲超声促进自噬,调控软骨细胞分泌SDF-1和CXCR4,进而介导间充质干细胞迁移到软骨缺损处修复软骨的缺损[66]。Lesley Cheng等[67]通过细胞尿液、尿液来源外泌体和尿源性细胞外泌体进行基因测序,发现miR-26a是和增殖、成骨相关的MicroRNA的前十位高表达基因之一。X Su等[68]对BMSC进行成骨诱导后,分别合成miR-26a mimic和miR-26a inhibitor转染BMSC,从而过表达和抑制miR-26a的表达,发现前者7天后成骨相关基因和矿化结节显著增加,后者则出现成骨相关蛋白表达降低,说明miR-26a可以促进BMSC的成骨分化。通过3个miRNA目标预测数据库TargetScan、PicTar和TargetRank来预测目标mRNA,在预测的可调节成骨作用的mRNA中发现,miR-26a的靶向基因为GSK3β。有研究发现miR-26a 可以靶向抑制GSK3β从而激活Wntβ-catenin信号通路,促进骨髓间充质干细胞和脂肪干细胞的增殖和成骨分化[69]

5. 总结与展望

颞下颌关节与其他滑膜关节不同的是,其复杂的组织结构注定了治疗的方法不同。当前,治疗颞下颌关节骨关节疾病的目标是阻止软骨和软骨下骨的持续损伤,引导骨质重塑,缓解关节疼痛,恢复关节结构和功能。TMJOA可能会降低患者的生活品质,因此,非手术疗法可能是大部分患者更愿意接受的治疗方式。目前,OA的治疗虽在缓解症状和恢复功能方面取得一定效果,但很难实现关节软骨、软骨下骨和滑膜的修复与再生。因此,今后亦需努力探索新的治疗方案如基因治疗、干细胞治疗、组织工程技术等。对于颞下颌骨关节病的病因有多种,其中遗传也占据一定比例,所以未来科研可以从基因层面进行探索,探寻TMJOA的致病基因,从基因方面进行诊断和治疗,从根源上对TMJOA进行诊治,但这样必定是一场长时间的战斗。虽然目前干细胞在基础研究中取得不错进展,但对于应用于临床还是有不少挑战,首先治疗成本就比传统诊治高,本身颞下颌关节疾病存在自限性,所以就患者而言肯定会选择性价比更高的治疗方式;其次,在临床上应用干细胞治疗TMJOA的操作自身就存在一定困难。所以想要从基因层面或者应用干细胞来治疗TMJOA还需要科研人员以及医务人员继续努力才能实施。

NOTES

*通讯作者。

参考文献

[1] Ong, T.K. and Franklin, C.D. (1996) A Clinical and Histopathological Study of Osteoarthrosis of the Temporomandibular Joint. British Journal of Oral and Maxillofacial Surgery, 34, 186-192.
https://doi.org/10.1016/s0266-4356(96)90375-7
[2] Jayachandran, S. (2017) Efficacy of Bromelain along with Trypsin, Ru-toside Trihydrate Enzymes and Diclofenac Sodium Combination Therapy for the Treatment of TMJ Osteoarthritis—A Randomised Clinical Trial. Journal of Clinical and Diagnostic Research, 11, ZC09-ZC11.
https://doi.org/10.7860/jcdr/2017/25771.9964
[3] Lee, Y., Park, H., Auh, Q., Nah, H., Lee, J.S., Moon, H., et al. (2020) Emerging Potential of Exosomes in Regenerative Medicine for Temporomandibular Joint Osteoarthritis. International Journal of Mo-lecular Sciences, 21, Article 1541.
https://doi.org/10.3390/ijms21041541
[4] Li, C. and Zhang, Q. (2022) Comparison of Magnetic Resonance Imaging Findings in 880 Temporomandibular Disorder Patients of Different Age Groups: A Retrospective Study. BMC Oral Health, 22, Article No. 651.
https://doi.org/10.1186/s12903-022-02666-5
[5] 傅开元, 胡敏, 余强, 等. 颞下颌关节紊乱病锥形束CT检查规范及诊断标准的专家共识[J]. 中华口腔医学杂志, 2020, 55(9): 613-616.
[6] Jiang, T. (2021) Relationship between Temporomandibular Disorders and Malocclusions: From History to Present. Chinese Journal of Stomatology, 56, 734-739.
[7] Hu, H., Liu, W., Sun, C., Wang, Q., Yang, W., Zhang, Z., et al. (2021) Endogenous Repair and Regeneration of Injured Articular Cartilage: A Challenging but Promising Therapeutic Strategy. Aging and Disease, 12, 886-901.
https://doi.org/10.14336/ad.2020.0902
[8] Zhao, Y., Zhang, Z., Wu, Y., Zhang, W. and Ma, X. (2011) Investigation of the Clin-ical and Radiographic Features of Osteoarthrosis of the Temporomandibular Joints in Adolescents and Young Adults. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 111, e27-e34.
https://doi.org/10.1016/j.tripleo.2010.09.076
[9] Wang, X.D., Zhang, J.N., Gan, Y.H. and Zhou, Y.H. (2015) Current Under-standing of Pathogenesis and Treatment of TMJ Osteoarthritis. Journal of Dental Research, 94, 666-673.
https://doi.org/10.1177/0022034515574770
[10] 时子文, 祝颂松, 毕瑞野. 颞下颌关节骨关节炎的药物治疗基础与临床研究进展[J]. 中国现代应用药学, 2022, 39(4): 552-559.
[11] Behnia, A., Haghighat, A., Kaviani, N. and Khorami, B. (2013) Evalua-tion of Glucosamine Sulfate and Ibuprofen Effects in Patients with Temporomandibular Joint Osteoarthritis Symptom. Journal of Re-search in Pharmacy Practice, 2, 34-39.
https://doi.org/10.4103/2279-042x.114087
[12] Yang, W., Liu, W., Miao, C., Sun, H., Li, L. and Li, C. (2018) Oral Glucosamine Hydrochloride Combined with Hyaluronate Sodium Intra-Articular Injection for Temporoman-dibular Joint Osteoarthritis: A Double-Blind Randomized Controlled Trial. Journal of Oral and Maxillofacial Surgery, 76, 2066-2073.
https://doi.org/10.1016/j.joms.2018.04.031
[13] Tolba, Y.M., Omar, S.S., Nagui, D.A. and Nawwar, M.A. (2020) Effect of High Molecular Weight Hyaluronic Acid in Treatment of Osteoarthritic Temporomandibular Joints of Rats. Archives of Oral Biology, 110, Article 104618.
https://doi.org/10.1016/j.archoralbio.2019.104618
[14] Renapurkar, S.K. (2018) Surgical versus Nonsurgical Management of Degenerative Joint Disease. Oral and Maxillofacial Surgery Clinics of North America, 30, 291-297.
https://doi.org/10.1016/j.coms.2018.04.005
[15] Kapadia, J.M., Ganti, S., Shriram, P., Ansari, A.S., Azad, A. and Dubey, A. (2018) Evaluation of Effect of Glucosamine-Chondroitin Sulfate, Tramadol, and Sodium Hyaluronic Acid on Expression of Cytokine Levels in Internal Derangement of Temporomandibular Joint. The Journal of Contemporary Dental Practice, 19, 1502-1506.
https://doi.org/10.5005/jp-journals-10024-2456
[16] Rashid, T.U., Shamsuddin, S.M., Khan, M.A. and Rahman, M.M. (2014) Evaluation of Fat Binding Capacity of Gamma Irradiated Chitosan Extracted from Prawn Shell. Soft Materials, 12, 262-267.
https://doi.org/10.1080/1539445x.2014.880720
[17] Li, F., Wu, C., Sun, H. and Zhou, Q. (2021) Comparison of Autologous Platelet-Rich Plasma and Chitosan in the Treatment of Temporomandibular Joint Osteoarthritis: A Retrospective Cohort Study. Journal of Oral and Maxillofacial Surgery, 79, 324-332.
https://doi.org/10.1016/j.joms.2020.09.016
[18] 郭惟静, 张哲, 刘志明. 颞下颌关节骨关节病治疗的研究进展[J]. 中华老年口腔医学杂志, 2024, 22(2): 119-124.
[19] Ahmad, S.A., Hasan, S., Saeed, S., et al. (2021) Low-Level Laser Therapy in Temporomandibular Joint Disorders: A Systenmtie Review. Journal of Medicine and Life, 14, 148-164.
[20] Kim, Y.-H., Bang, J.-I., Son, H.-J., Kim, Y., Kim, J.H., Bae, H., et al. (2019) Protective Effects of Extracorporeal Shockwave on Rat Chondrocytes and Temporomandibular Joint Osteoarthritis; Preclinical Evaluation with in vivo 99mTc-HDP SPECT and ex vivo Micro-CT. Osteoarthritis and Cartilage, 27, 1692-1701.
https://doi.org/10.1016/j.joca.2019.07.008
[21] Li, F., Li, Y., Zhu, Y., Bao, X. and Wang, L. (2024) Recent Advances in Basic Studies of Low-Intensity Pulsed Ultrasound in Periodontal Tissue Regeneration: A Systematic Review. Stem Cell Reviews and Reports, 20, 2124-2137.
https://doi.org/10.1007/s12015-024-10769-5
[22] Wang, Y., Cao, X., Shen, Y., Zhong, Q., Huang, Y., Zhang, Y., et al. (2023) Osteogenic Effect of Low-Intensity Pulsed Ultrasound on Peri-Implant Bone: A Systematic Review and Meta-Analysis. Journal of Prosthodontic Research, 68, 215-226.
https://doi.org/10.2186/jpr.jpr_d_23_00068
[23] Xia, P., Wang, Q., Song, J., Wang, X., Wang, X., Lin, Q., et al. (2022) Low-Intensity Pulsed Ultrasound Enhances the Efficacy of Bone Marrow-Derived MSCs in Osteoar-thritis Cartilage Repair by Regulating Autophagy-Mediated Exosome Release. CARTILAGE, 13.
https://doi.org/10.1177/19476035221093060
[24] Zhou, J., Zhu, Y., Ai, D., Zhou, M., Li, H., Fu, Y., et al. (2023) Low-Intensity Pulsed Ultrasound Regulates Osteoblast-Osteoclast Crosstalk via EphrinB2/EphB4 Signaling for Orthodontic Alveolar Bone Remodel-ing. Frontiers in Bioengineering and Biotechnology, 11, Article 1192720.
https://doi.org/10.3389/fbioe.2023.1192720
[25] Tanaka, E., Liu, Y., Xia, L., Ogasawara, N., Sakamaki, T., Kano, F., et al. (2020) Effectiveness of Low-Intensity Pulsed Ultrasound on Osteoarthritis of the Temporomandibular Joint: A Review. Annals of Biomedical Engineering, 48, 2158-2170.
https://doi.org/10.1007/s10439-020-02540-x
[26] Nagata, K., Nakamura, T., Fujihara, S. and Tanaka, E. (2013) Ultrasound Modulates the Inflammatory Response and Promotes Muscle Regeneration in Injured Muscles. Annals of Biomedical Engineering, 41, 1095-1105.
https://doi.org/10.1007/s10439-013-0757-y
[27] Zhang, Z., Yang, Y., Li, B., Hu, X., Xu, S., Wang, F., et al. (2019) Low-Intensity Pulsed Ultrasound Promotes Spinal Fusion by Regulating Macrophage Polarization. Biomedicine & Pharmacotherapy, 120, Article 109499.
https://doi.org/10.1016/j.biopha.2019.109499
[28] Zhang, X., Gao, W., Zhou, J., Dai, H., Xiang, X. and Xu, J. (2024) Low-Intensity Pulsed Ultrasound in the Treatment of Masticatory Myositis and Temporomandibular Joint Synovitis: A Clinical Trial. Journal of Stomatology, Oral and Maxillofacial Surgery, 125, Article 101632.
https://doi.org/10.1016/j.jormas.2023.101632
[29] 段宇辰, 何睿, 陈晓华, 等. 脱落乳牙牙髓干细胞来源外泌体对大鼠TMJ OA软骨下骨稳态的影响[J]. 实用口腔医学杂志, 2024, 40(3): 315-322.
[30] Ogasawara, N., Kano, F., Hashimoto, N., Mori, H., Liu, Y., Xia, L., et al. (2020) Factors Secreted from Dental Pulp Stem Cells Show Multifaceted Benefits for Treating Experimental Temporomandibular Joint Osteoarthritis. Osteoarthritis and Cartilage, 28, 831-841.
https://doi.org/10.1016/j.joca.2020.03.010
[31] 贾搏, 可注射脂肪干细胞膜片靶向作用于颞下颌关节骨关节病精准治疗的分子机制和临床开发研究[Z]. 广州: 广东省口腔医院, 2022-04-22.
[32] 卢晓杰. 口颌系统功能锻炼应用于颞下颌关节骨关节炎患者中的效果观察[J]. 反射疗法与康复医学, 2023, 4(22): 139-142.
[33] Sun, S.T. (2018) Clinical Study on the Treatment of Osteoarthrosis and Non Osteoarthrosis in Temporomandibular Disorders. Master’s Thesis, Qingdao Univer-sity.
[34] 张钰, 黄冉, 张爱青, 等. 咬合板联合其他方法治疗颞下颌关节紊乱病的研究进展[J]. 口腔颌面修复学杂志, 2024, 25(6): 456-461.
[35] Hu, J.L. and Dong, Y. (2019) Research Progress in Occlusal Splint Therapy for Temporomandibular Joint Dis-orders. Chinese Journal of Stomatology, 54, 273-277.
[36] Ok, S., Jeong, S., Ahn, Y. and Kim, Y. (2016) Effect of Stabilization Splint Therapy on Glenoid Fossa Remodeling in Temporomandibular Joint Osteoarthritis. Journal of Prosthodontic Research, 60, 301-307.
https://doi.org/10.1016/j.jpor.2016.03.001
[37] Tran, K. and Loshak, H. (2019) Intra-Articular Hyaluronic Acid for Visco Sup-plementation in Osteoarthritis of the Hand, Shoulder, and Temporomandibular Joint: A Review of Clinical Effectiveness and Safety. Canadian Agency for Drugs and Technologies in Health.
[38] Basterzi, Y., Sari, A., Demirkan, F., Unal, S. and Arslan, E. (2009) Intraarticular Hyaluronic Acid Injection for the Treatment of Reducing and Nonreducing Disc Displacement of the Temporomandibular Joint. Annals of Plastic Surgery, 62, 265-267.
https://doi.org/10.1097/sap.0b013e31817dadb1
[39] Manfredini, D., Rancitelli, D., Ferronato, G. and Guarda‐Nardini, L. (2011) Arthrocentesis with or without Additional Drugs in Temporomandibular Joint Inflamma-tory‐Degenerative Disease: Comparison of Six Treatment Protocols. Journal of Oral Rehabilitation, 39, 245-251.
https://doi.org/10.1111/j.1365-2842.2011.02265.x
[40] Totlis, T., Marín Fermín, T., Kalifis, G., Terzidis, I., Maffulli, N. and Papakostas, E. (2021) Arthroscopic Debridement for Focal Articular Cartilage Lesions of the Knee: A Systematic Review. The Surgeon, 19, 356-364.
https://doi.org/10.1016/j.surge.2020.11.011
[41] Singh, V., Dhingra, R. and Bhagol, A. (2012) Prospective Analysis of Tem-poromandibular Joint Reconstruction in Ankylosis with Sternoclavicular Graft and Buccal Fat Pad Lining. Journal of Oral and Maxil-lofacial Surgery, 70, 997-1006.
https://doi.org/10.1016/j.joms.2011.02.129
[42] Nørholt, S.E., Jensen, J., Schou, S. and Pedersen, T.K. (2011) Complications after Mandibular Distraction Osteogenesis: A Retrospective Study of 131 Patients. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 111, 420-427.
https://doi.org/10.1016/j.tripleo.2010.05.050
[43] Qiu, Y., Yang, C. and Chen, M. (2010) Endoscopically Assisted Reconstruction of the Mandibular Condyle with a Costochondral Graft through a Modified Preauricular Approach. British Journal of Oral and Maxillofacial Surgery, 48, 443-447.
https://doi.org/10.1016/j.bjoms.2009.07.017
[44] 刘昱航, 林金盈. 骨髓间充质干细胞治疗骨关节炎的研究进展[J]. 中国临床新医学, 2024, 17(1): 118-122.
[45] Luo, P., Jiang, C., Ji, P., Wang, M. and Xu, J. (2019) Exosomes of Stem Cells from Human Exfoliated Deciduous Teeth as an Anti-Inflammatory Agent in Temporomandibular Joint Chondrocytes via miR-100-5p/mTOR. Stem Cell Research & Therapy, 10, Article No. 216.
https://doi.org/10.1186/s13287-019-1341-7
[46] 陈忠义, 叶嘉靖. 脂肪干细胞治疗骨关节炎的研究现状及展望[J]. 浙江医学, 2020, 42(5): 411-413, 425.
[47] Liu, F., Wang, X., Li, Y., Ren, M., He, P., Wang, L., et al. (2022) Dendrimer-Modified Gelatin Methacrylate Hydrogels Carrying Adipose-Derived Stromal/Stem Cells Promote Cartilage Regeneration. Stem Cell Research & Thera-py, 13, Article No. 26.
https://doi.org/10.1186/s13287-022-02705-6
[48] 冀堃, 陆伟, 马辰春. 牙周膜干细胞的研究进展[J]. 中华临床医师杂志(电子版), 2015, 9(15): 2936-2939.
[49] Zhang, Y., McNeill, E., Tian, H., Soker, S., Andersson, K., Yoo, J.J., et al. (2008) Urine Derived Cells Are a Potential Source for Urological Tissue Reconstruction. Journal of Urology, 180, 2226-2233.
https://doi.org/10.1016/j.juro.2008.07.023
[50] Bharadwaj, S., Liu, G., Shi, Y., Wu, R., Yang, B., He, T., et al. (2013) Multipo-tential Differentiation of Human Urine-Derived Stem Cells: Potential for Therapeutic Applications in Urology. Stem Cells, 31, 1840-1856.
https://doi.org/10.1002/stem.1424
[51] Guan, J., Zhang, J., Guo, S., Zhu, H., Zhu, Z., Li, H., et al. (2015) Human Urine-Derived Stem Cells Can Be Induced into Osteogenic Lineage by Silicate Bioceramics via Activation of the Wnt/β-Catenin Signaling Pathway. Biomaterials, 55, 1-11.
https://doi.org/10.1016/j.biomaterials.2015.03.029
[52] Xiong, X., Yang, X., Dai, H., Feng, G., Zhang, Y., Zhou, J., et al. (2019) Extracellular Matrix Derived from Human Urine-Derived Stem Cells Enhances the Expansion, Adhesion, Spreading, and Differentiation of Human Periodontal Ligament Stem Cells. Stem Cell Research & Therapy, 10, Article No. 396.
https://doi.org/10.1186/s13287-019-1483-7
[53] Chen, C., Rao, S., Tan, Y., Luo, M., Hu, X., Yin, H., et al. (2019) Extracellular Vesicles from Human Urine-Derived Stem Cells Prevent Osteoporosis by Transferring CTHRC1 and OPG. Bone Research, 7, Article No. 18.
https://doi.org/10.1038/s41413-019-0056-9
[54] Zhang, W., Hu, J., Huang, Y., Wu, C. and Xie, H. (2021) Urine-Derived Stem Cells: Applications in Skin, Bone and Articular Cartilage Repair. Burns & Trauma, 9, tkab039.
https://doi.org/10.1093/burnst/tkab039
[55] Liu, Y., Zeng, Y., Si, H., Tang, L., Xie, H. and Shen, B. (2022) Exosomes Derived from Human Urine-Derived Stem Cells Overexpressing miR-140-5p Alleviate Knee Osteoarthritis through Downregulation of VEGFA in a Rat Model. The American Journal of Sports Medicine, 50, 1088-1105.
https://doi.org/10.1177/03635465221073991
[56] Sun, J., Xing, F., Zou, M., Gong, M., Li, L. and Xiang, Z. (2021) Comparison of Chondrogenesis-Related Biological Behaviors between Human Urine-Derived Stem Cells and Human Bone Marrow Mesenchymal Stem Cells from the Same Individual. Stem Cell Research & Therapy, 12, Article No. 366.
https://doi.org/10.1186/s13287-021-02370-1
[57] Fahy, N., Alini, M. and Stoddart, M.J. (2017) Mechanical Stimulation of Mesenchymal Stem Cells: Implications for Cartilage Tissue Engineering. Journal of Orthopaedic Research, 36, 52-63.
https://doi.org/10.1002/jor.23670
[58] 赵明璨, 刘畅. 脂肪干细胞在软骨组织工程中的研究进展[J]. 中国生物医学工程学报, 2014, 33(4): 475-481.
[59] 刘琴, 陈芳, 王丽平, 等. 脂肪干细胞成软骨分化研究进展[J]. 华南国防医学杂志, 2019, 33(4): 286-291.
[60] Marędziak, M., Marycz, K., Tomaszewski, K.A., Kornicka, K. and Henry, B.M. (2016) The Influence of Aging on the Regenerative Potential of Human Adipose Derived Mesenchymal Stem Cells. Stem Cells International, 2016, Article ID: 2152435.
https://doi.org/10.1155/2016/2152435
[61] Zhang, M., Wang, Z., Zhao, Y., Zhang, L., Xu, L., Cao, L., et al. (2018) The Effect of Age on the Regenerative Potential of Human Eyelid Adipose-Derived Stem Cells. Stem Cells International, 2018, Article ID: 5654917.
https://doi.org/10.1155/2018/5654917
[62] Ding, D., Chou, H., Hung, W., Liu, H. and Chu, T. (2013) Human Adipose-Derived Stem Cells Cultured in Keratinocyte Serum Free Medium: Donor’s Age Does Not Affect the Proliferation and Differentiation Capacities. Journal of Biomedical Science, 20, Article No. 59.
https://doi.org/10.1186/1423-0127-20-59
[63] Veronesi, F., Maglio, M., Tschon, M., Aldini, N.N. and Fini, M. (2013) Adipose‐Derived Mesenchymal Stem Cells for Cartilage Tissue Engineering: State‐of‐the‐Art in in vivo Studies. Journal of Biomedical Materials Research Part A, 102, 2448-2466.
https://doi.org/10.1002/jbm.a.34896
[64] Liao, Q., Li, B.J., Li, Y., Xiao, Y., Zeng, H., Liu, J.M., et al. (2021) Low-Intensity Pulsed Ultrasound Promotes Osteoarthritic Cartilage Regeneration by BMSC-Derived Exosomes via Modulating the NF-κB Signaling Pathway. International Immunopharmacology, 97, Article 107824.
https://doi.org/10.1016/j.intimp.2021.107824
[65] Tan, Y., Guo, Y., Reed-Maldonado, A.B., Li, Z., Lin, G., Xia, S., et al. (2021) Low-Intensity Pulsed Ultrasound Stimulates Proliferation of Stem/Progenitor Cells: What We Need to Know to Translate Basic Science Research into Clinical Applications. Asian Journal of An-drology, 23, 602-610.
https://doi.org/10.4103/aja.aja_25_21
[66] Xia, P., Wang, X., Wang, Q., Wang, X., Lin, Q., Cheng, K., et al. (2021) Low-Intensity Pulsed Ultrasound Promotes Autophagy-Mediated Migration of Mesenchymal Stem Cells and Cartilage Re-pair. Cell Transplantation, 30.
https://doi.org/10.1177/0963689720986142
[67] Cheng, L., Sun, X., Scicluna, B.J., Coleman, B.M. and Hill, A.F. (2014) Char-acterization and Deep Sequencing Analysis of Exosomal and Non-Exosomal Mirna in Human Urine. Kidney International, 86, 433-444.
https://doi.org/10.1038/ki.2013.502
[68] Su, X., Liao, L., Shuai, Y., Jing, H., Liu, S., Zhou, H., et al. (2015) MiR-26a Functions Oppositely in Osteogenic Differentiation of BMSCs and ADSCs Depending on Distinct Activation and Roles of Wnt and BMP Sig-naling Pathway. Cell Death & Disease, 6, e1851-e1851.
https://doi.org/10.1038/cddis.2015.221
[69] Mohamed, J.S., Lopez, M.A. and Boriek, A.M. (2010) Mechanical Stretch Up-Regulates MicroRNA-26a and Induces Human Airway Smooth Muscle Hypertrophy by Suppressing Glycogen Synthase Kinase-3β. Journal of Biological Chemistry, 285, 29336-29347.
https://doi.org/10.1074/jbc.m110.101147