[1]
|
Schleder, G.R., Padilha, A.C.M., Acosta, C.M., Costa, M. and Fazzio, A. (2019) From DFT to Machine Learning: Recent Approaches to Materials Science—A Review. Journal of Physics: Materials, 2, Article 032001. https://doi.org/10.1088/2515-7639/ab084b
|
[2]
|
余海山. 结合第一性原理计算和机器学习的材料理论研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2020.
|
[3]
|
Deringer, V.L., Caro, M.A. and Csányi, G. (2019) Machine Learning Interatomic Potentials as Emerging Tools for Materials Science. Advanced Materials, 31, Article 1902765. https://doi.org/10.1002/adma.201902765
|
[4]
|
牛程程, 李少波, 胡建军, 等. 机器学习在材料信息学中的应用综述[J]. 材料导报, 2020, 34(23): 23100-23108.
|
[5]
|
米晓希, 汤爱涛, 朱雨晨, 等. 机器学习技术在材料科学领域中的应用进展[J]. 材料导报, 2021, 35(15): 15115-15124.
|
[6]
|
Gomes, C.P., Selman, B. and Gregoire, J.M. (2019) Artificial Intelligence for Materials Discovery. MRS Bulletin, 44, 538-544. https://doi.org/10.1557/mrs.2019.158
|
[7]
|
Konstantopoulos, G., Koumoulos, E.P. and Charitidis, C.A. (2022) Digital Innovation Enabled Nanomaterial Manufacturing: Machine Learning Strategies and Green Perspectives. Nanomaterials, 12, Article 2646. https://doi.org/10.3390/nano12152646
|
[8]
|
Skylaris, C. (2016) A Benchmark for Materials Simulation. Science, 351, 1394-1395. https://doi.org/10.1126/science.aaf3412
|
[9]
|
高军, 朱新宇, 姚晨光, 等. 有限元在开关面板用新型聚酯工程塑料开发中的应用研究[J]. 塑料工业, 2015, 43(10): 123-126.
|
[10]
|
章凌, 赵优存, 李祎, 等. 基于FEA的复合材料结构极限承载失效预测[J]. 宇航总体技术, 2023, 7(5): 29-37.
|
[11]
|
赵宇, 彭珍瑞. 基于SGMD及LWOA-ELM的有限元模型修正[J]. 计算力学学报, 2023, 40(2): 255-263.
|
[12]
|
赵宇, 彭珍瑞. 基于MWOA-ELM代理模型的有限元模型修正[J]. 传感器与微系统, 2022, 41(1): 127-130.
|
[13]
|
Zhang, L., Han, J., Wang, H., Car, R. and E, W. (2018) Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics. Physical Review Letters, 120, Article 143001. https://doi.org/10.1103/physrevlett.120.143001.
|
[14]
|
Schütt, K., Kindermans, P.J., Sauceda Felix, H.E., et al. (2017) SCHNET: A Continuous-Filter Convolutional Neural Network for Modeling Quantum Interactions. Advances in Neural Information Processing Systems, 30.
|
[15]
|
邓斌, 华海明, 张与之, 等. 深度势能方法及其在电化学储能材料中的应用[J]. 储能科学与技术, 2024, 13(9): 2884-2906.
|
[16]
|
Wang, Z., Su, M., Duan, X., Yao, X., Han, X., Song, J., et al. (2022) Molecular Dynamics Simulation of the Thermomechanical and Tribological Properties of Graphene-Reinforced Natural Rubber Nanocomposites. Polymers, 14, Article 5056. https://doi.org/10.3390/polym14235056
|
[17]
|
Teng, F., Wu, J., Su, B. and Wang, Y. (2022) High-Speed Tribological Properties of Eucommia Ulmoides Gum/Natural Rubber Blends: Experimental and Molecular Dynamics Simulation Study. Tribology International, 171, Article 107542. https://doi.org/10.1016/j.triboint.2022.107542
|
[18]
|
Gao, Y., Xie, Y., Liao, M., Li, Y., Zhu, J. and Tian, W. (2023) Study on the Mechanism of the Effect of Graphene on the Rheological Properties of Rubber-Modified Asphalt Based on Size Effect. Construction and Building Materials, 364, Article 129815. https://doi.org/10.1016/j.conbuildmat.2022.129815
|
[19]
|
Joseph, E., Swaminathan, N. and Kannan, K. (2020) Material Identification for Improving the Strength of Silica/SBR Interface Using MD Simulations. Journal of Molecular Modeling, 26, Article No. 234. https://doi.org/10.1007/s00894-020-04489-z
|
[20]
|
Sattar, M.A., Nair, A.S., Xavier, P.J. and Patnaik, A. (2019) Natural Rubber-SiO2 Nanohybrids: Interface Structures and Dynamics. Soft Matter, 15, 2826-2837. https://doi.org/10.1039/c9sm00254e
|
[21]
|
张旭敏. 新型纳米填料/橡胶复合材料结构和性能的分子动力学模拟与实验研究[D]: [博士学位论文]. 南京: 南京理工大学, 2023.
|
[22]
|
郭伟, 孙斌, 任继江, 等. 尼龙66/氧化石墨烯纳米复合材料力学性能的分子动力学模拟[J]. 中原工学院学报, 2018, 29(3): 27-33.
|
[23]
|
唐黎明, 王新楠, 纪平, 等. 碳纳米管/丁腈橡胶复合材料力学及摩擦性能的分子动力学模拟[J]. 润滑与密封, 2022, 47(8): 21-26.
|
[24]
|
熊敏. Al/Cu界面Ni中间层作用的第一性原理与分子动力学研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2022.
|
[25]
|
郝泽文. 卟啉基低维材料电子性质及其自旋输运性质的理论研究[D]: [硕士学位论文]. 济南: 山东师范大学, 2022.
|
[26]
|
齐学强. 燃料电池电催化剂催化机理与可控制备[D]: [博士学位论文]. 重庆: 重庆大学, 2012.
|
[27]
|
孙超. 基于密度泛函理论的材料设计: VO2相变温度的调控和LiFePO4电导率的提高[D]: [博士学位论文]. 上海: 上海大学, 2015.
|
[28]
|
杨小渝, 郝德博, 舒城, 等. MatCloud-QE: 基于云原生理念的高通量第一性原理计算程序包[J]. 中国材料进展, 2024, 43(11): 1007-1015.
|
[29]
|
陆文聪, 吴炎淼, 刘太昂, 等. 基于机器学习的材料设计[J]. 河南师范大学学报(自然科学版), 2024, 52(4): 120-131.
|
[30]
|
张聪, 刘杰, 解树一, 等. 高通量计算与机器学习驱动高熵合金的研究进展[J]. 材料工程, 2023, 51(3): 1-16.
|
[31]
|
李一航, 肖斌, 唐宇超, 等. 尖晶石氧化物能量和结构的第一性原理计算和机器学习[J]. 上海大学学报(自然科学版), 2021, 27(4): 635-649.
|
[32]
|
王园园, 武川, 彭志伟, 等. 基于机器学习的钛合金弹性模量预测方法研究[J]. 精密成形工程, 2024, 16(1): 33-42.
|
[33]
|
肖斌, 吴雨沁, 刘轶. 基于第一性原理计算的镍基单晶高温合金掺杂的机器学习研究[J]. 上海金属, 2020, 42(3): 97-104+110.
|
[34]
|
李妮. 铝合金中化合物微电偶效应的第一性原理计算与腐蚀行为预测研究[D]: [博士学位论文]. 北京: 北京科技大学, 2021.
|
[35]
|
康靓, 米晓希, 王海莲, 等. 人工神经网络在材料科学中的研究进展[J]. 材料导报, 2020, 34(21): 21172-21179.
|
[36]
|
Wang, A., Liang, H., McDannald, A., Takeuchi, I. and Kusne, A.G. (2022) Benchmarking Active Learning Strategies for Materials Optimization and Discovery. Oxford Open Materials Science, 2, itac006. https://doi.org/10.1093/oxfmat/itac006
|
[37]
|
Huang, G., Guo, Y., Chen, Y. and Nie, Z. (2023) Application of Machine Learning in Material Synthesis and Property Prediction. Materials, 16, Article 5977. https://doi.org/10.3390/ma16175977
|
[38]
|
李宏伟, 高佳, 孙新新, 等. 面向高性能塑性成形的多尺度建模仿真研究进展[J]. 机械工程学报, 2024, 60(1): 27-43.
|
[39]
|
张慧敏, 王京, 王一博, 等. 锂离子电池SEI多尺度建模研究展望[J]. 储能科学与技术, 2023, 12(2): 366-382.
|
[40]
|
沈雪阳, 褚瑞轩, 蒋宜辉, 等. 相变存储新材料设计与多尺度模拟的研究进展[J]. 金属学报, 2024, 60(10): 1362-1378.
|
[41]
|
陶梦琴, 蔡振飞, 吴慧敏, 等. 基于第一性原理计算的Li7La3Zr2O12固态电解质的研究进展[J]. 功能材料, 2022, 53(8): 8067-8077.
|
[42]
|
Badini, S., Regondi, S. and Pugliese, R. (2023) Unleashing the Power of Artificial Intelligence in Materials Design. Materials, 16, Article 5927. https://doi.org/10.3390/ma16175927
|
[43]
|
Goswami, L., Deka, M.K. and Roy, M. (2023) Artificial Intelligence in Material Engineering: A Review on Applications of Artificial Intelligence in Material Engineering. Advanced Engineering Materials, 25, Article 2300104. https://doi.org/10.1002/adem.202300104
|
[44]
|
López, C. (2023) Artificial Intelligence and Advanced Materials. Advanced Materials, 35, Article 2208683. https://doi.org/10.1002/adma.202208683
|
[45]
|
谢建新, 宿彦京, 薛德祯, 等. 机器学习在材料研发中的应用[J]. 金属学报, 2021, 57(11): 1343-1361.
|
[46]
|
伍侃. 机器学习预测三元无机光伏材料[D]: [硕士学位论文]. 西安: 西北大学, 2022.
|
[47]
|
Zuccarini, C., Ramachandran, K. and Jayaseelan, D.D. (2024) Material Discovery and Modeling Acceleration via Machine Learning. APL Materials, 12, Article 090601. https://doi.org/10.1063/5.0230677
|
[48]
|
Wang, T., Shao, M., Guo, R., Tao, F., Zhang, G., Snoussi, H., et al. (2020) Surrogate Model via Artificial Intelligence Method for Accelerating Screening Materials and Performance Prediction. Advanced Functional Materials, 31, Article 2006425. https://doi.org/10.1002/adfm.202006245
|
[49]
|
Agrawal, A. and Choudhary, A. (2019) Deep Materials Informatics: Applications of Deep Learning in Materials Science. MRS Communications, 9, 779-792. https://doi.org/10.1557/mrc.2019.73
|
[50]
|
吕蔚. 基于数据挖掘的材料性能优化及分子筛选[D]: [博士学位论文]. 上海: 上海大学, 2019.
|
[51]
|
万新阳. 基于机器学习算法的钙钛矿氧化物全解水光催化剂的高效筛选[D]: [硕士学位论文]. 南京: 东南大学, 2022.
|
[52]
|
Yuan, J., Li, Z., Yang, Y., Yin, A., Li, W., Sun, D., et al. (2024) Applications of Machine Learning Method in High-Performance Materials Design: A Review. Journal of Materials Informatics, 4, Article No. 14. https://doi.org/10.20517/jmi.2024.15
|
[53]
|
Johnson, N.S., Vulimiri, P.S., To, A.C., Zhang, X., Brice, C.A., Kappes, B.B., et al. (2020) Invited Review: Machine Learning for Materials Developments in Metals Additive Manufacturing. Additive Manufacturing, 36, Article 101641. https://doi.org/10.1016/j.addma.2020.101641
|
[54]
|
刘春太. 基于数值模拟的注塑成型工艺优化和制品性能研究[D]: [博士学位论文]. 河南: 郑州大学, 2003.
|
[55]
|
Wang, J. and Zhang, D. (2021) Research on Application of Machine Learning Technology in New Material System. Journal of Physics: Conference Series, 1865, Article 032009. https://doi.org/10.1088/1742-6596/1865/3/032009
|
[56]
|
许家忠, 郑学海, 周洵. 复合材料打磨机器人的主动柔顺控制[J]. 电机与控制学报, 2019, 23(12): 151-158.
|
[57]
|
马旭东, 王朝, 孙理. 基于蚁群算法塑模孔群加工路径优化[J]. 制造技术与机床, 2020(10): 97-101.
|
[58]
|
侯腾跃, 孙炎辉, 孙舒鹏, 等. 机器学习在材料结构与性能预测中的应用综述[J]. 材料导报, 2022, 36(6): 161-172.
|
[59]
|
吴炜, 孙强. 应用机器学习加速新材料的研发[J]. 中国科学(物理学 力学 天文学), 2018(10): 58-70.
|
[60]
|
Li, B., Cao, P., Saito, T. and Sokolov, A.P. (2022) Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chemical Reviews, 123, 701-735. https://doi.org/10.1021/acs.chemrev.2c00575
|
[61]
|
程强, 徐文祥, 刘志峰, 等. 面向智能绿色制造的机床装备研究综述[J]. 华中科技大学学报(自然科学版), 2022, 50(6): 31-38.
|