| [1] | Criado, A., Lavela, P., Tirado, J.L. and Pérez-Vicente, C. (2020) Increasing Energy Density with Capacity Preservation by Aluminum Substitution in Sodium Vanadium Phosphate. ACS Applied Materials & Interfaces, 12, 21651-21660.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Li, P., Gao, M., Wang, D., Li, Z., Liu, Y., Liu, X., et al. (2023) Optimizing Vanadium Redox Reaction in Na3V2(PO4)3 Cathodes for Sodium-Ion Batteries by the Synergistic Effect of Additional Electrons from Heteroatoms. ACS Applied Materials & Interfaces, 15, 9475-9485.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Cheng, J., Chen, Y., Wang, Y., Wang, C., He, Z., Li, D., et al. (2020) Insights into the Enhanced Sodium Storage Property and Kinetics Based on the Zr/Si Codoped Na3V2(PO4)3/C Cathode with Superior Rate Capability and Long Lifespan. Journal of Power Sources, 474, Article ID: 228632.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [4] | Lim, S.Y., Kim, H., Shakoor, R.A., Jung, Y. and Choi, J.W. (2012) Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study. Journal of The Electrochemical Society, 159, A1393-A1397.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [5] | Xu, C., Xiao, R., Zhao, J., Ding, F., Yang, Y., Rong, X., et al. (2021) Mn-Rich Phosphate Cathodes for Na-Ion Batteries with Superior Rate Performance. ACS Energy Letters, 7, 97-107.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [6] | Cao, X., Pan, A., Yin, B., Fang, G., Wang, Y., Kong, X., et al. (2019) Nanoflake-Constructed Porous Na3V2(PO4)3/c Hierarchical Microspheres as a Bicontinuous Cathode for Sodium-Ion Batteries Applications. Nano Energy, 60, 312-323.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [7] | Li, W., Yao, Z., Zhou, C., Wang, X., Xia, X., Gu, C., et al. (2019) Boosting High‐Rate Sodium Storage Performance of N‐Doped Carbon‐Encapsulated Na3V2(PO4)3 Nanoparticles Anchoring on Carbon Cloth. Small, 15, Article ID: 1902432.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Wang, M., Guo, J., Wang, Z., Gu, Z., Nie, X., Yang, X., et al. (2020) Isostructural and Multivalent Anion Substitution toward Improved Phosphate Cathode Materials for Sodium‐Ion Batteries. Small, 16, Article ID: 1907645.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Ma, H., Zhao, B., Bai, J., Li, K., Fang, Z., Wang, P., et al. (2020) Improved Electrochemical Performance of Na3V2−xZrx(PO4)3/c through Electronic and Ionic Conductivities Regulation. Journal of The Electrochemical Society, 167, Article ID: 070548.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [10] | Li, H., Yu, X., Bai, Y., Wu, F., Wu, C., Liu, L., et al. (2015) Effects of Mg Doping on the Remarkably Enhanced Electrochemical Performance of Na3V2(PO4)3 Cathode Materials for Sodium Ion Batteries. Journal of Materials Chemistry A, 3, 9578-9586.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [11] | Song, W., Ji, X., Wu, Z., Yang, Y., Zhou, Z., Li, F., et al. (2014) Exploration of Ion Migration Mechanism and Diffusion Capability for Na3V2(PO4)2F3 Cathode Utilized in Rechargeable Sodium-Ion Batteries. Journal of Power Sources, 256, 258-263.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Wang, F., Luo, Y., Liu, P., Balogun, M., Deng, J. and Wang, Z. (2022) Improved Cycling Performance and High Rate Capacity of LiNi0.8Co0.1Mn0.1O2 Cathode Achieved by Al(PO3)3 Modification via Dry Coating Ball Milling. Coatings, 12, Article No. 319.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [13] | Zhang, Y., Pei, Y., Liu, W., Zhang, S., Xie, J., Xia, J., et al. (2020) AlPO4-Coated P2-Type Hexagonal Na0.7MnO2.05 as High Stability Cathode for Sodium Ion Battery. Chemical Engineering Journal, 382, Article ID: 122697.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [14] | Wang, K., Huang, X., Luo, C., Shen, Y., Wang, H. and Zhou, T. (2023) Boosting Cycling Stability through Al(PO3)3 Loading in a Na4MnV(PO4)3/c Cathode for High-Performance Sodium-Ion Batteries. Journal of Colloid and Interface Science, 642, 705-713.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Song, J., Wang, Y., Feng, Z., Zhang, X., Wang, K., Gu, H., et al. (2018) Investigation on the Electrochemical Properties and Stabilized Surface/Interface of NanO-AlPO4-Coated Li1.15Ni0.17Co0.11Mn0.57O2 as the Cathode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 10, 27326-27332.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Aragón, M.J., Lavela, P., Ortiz, G.F., Alcántara, R. and Tirado, J.L. (2017) On the Effect of Silicon Substitution in Na3V2(PO4)3 on the Electrochemical Behavior as Cathode for Sodium‐Ion Batteries. ChemElectroChem, 5, 367-374.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [17] | Pal, S.K., Thirupathi, R., Chakrabarty, S. and Omar, S. (2020) Improving the Electrochemical Performance of Na3V2(PO4)3 Cathode in Na-Ion Batteries by Si-Doping. ACS Applied Energy Materials, 3, 12054-12065.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [18] | Ko, J.S., Paul, P.P., Wan, G., Seitzman, N., DeBlock, R.H., Dunn, B.S., et al. (2020) NASICON Na3V2(PO4)3 Enables Quasi-Two-Stage Na+ and Zn2+ Intercalation for Multivalent Zinc Batteries. Chemistry of Materials, 32, 3028-3035.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [19] | Chen, Y., Tian, Z., Li, J. and Zhou, T. (2023) In-Situ Constructing Pearl Necklace-Shaped Heterostructure: Zn2+ Substituted Na3V2(PO4)3 Attached on Carbon Nano Fibers with High Performance for Half and Full Na Ion Cells. Chemical Engineering Journal, 472, Article ID: 145041.  [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [20] | Shen, W., Li, H., Guo, Z., Wang, C., Li, Z., Xu, Q., et al. (2016) Double-Nanocarbon Synergistically Modified Na3V2(PO4)3: An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 8, 15341-15351.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Ni, Q., Bai, Y., Li, Y., Ling, L., Li, L., Chen, G., et al. (2018) 3D Electronic Channels Wrapped Large‐Sized Na3V2(PO4)3 as Flexible Electrode for Sodium‐Ion Batteries. Small, 14, Article ID: 1702864.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Hu, P., Zou, Z., Sun, X., Wang, D., Ma, J., Kong, Q., et al. (2020) Uncovering the Potential of M1‐Site‐Activated NASICON Cathodes for Zn‐Ion Batteries. Advanced Materials, 32, Article ID: 1907526.  [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Feng, Z., Rajagopalan, R., Sun, D., Tang, Y. and Wang, H. (2020) In-Situ Formation of Hybrid Li3PO4-AlPO4-Al(PO3)3 Coating Layer on LiNi0.8Co0.1Mn0.1O2 Cathode with Enhanced Electrochemical Properties for Lithium-Ion Battery. Chemical Engineering Journal, 382, Article ID: 122959.  [Google Scholar] [CrossRef] |