[1]
|
Loap, P., Loirat, D., Berger, F., Rodrigues, M., Bazire, L., Pierga, J., et al. (2022) Concurrent Olaparib and Radiotherapy in Patients with Triple-Negative Breast Cancer: The Phase 1 Olaparib and Radiation Therapy for Triple-Negative Breast Cancer Trial. JAMA Oncology, 8, 1802-1808. https://doi.org/10.1001/jamaoncol.2022.5074
|
[2]
|
Tutt, A.N.J., Garber, J.E., Kaufman, B., Viale, G., Fumagalli, D., Rastogi, P., et al. (2021) Adjuvant Olaparib for Patients with BRCA1-or BRCA2-Mutated Breast Cancer. New England Journal of Medicine, 384, 2394-2405. https://doi.org/10.1056/nejmoa2105215
|
[3]
|
Robson, M., Im, S., Senkus, E., Xu, B., Domchek, S.M., Masuda, N., et al. (2017) Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. New England Journal of Medicine, 377, 523-533. https://doi.org/10.1056/nejmoa1706450
|
[4]
|
Fuertes, M.A., Alonso, C. and Pérez, J.M. (2003) Biochemical Modulation of Cisplatin Mechanisms of Action: Enhancement of Antitumor Activity and Circumvention of Drug Resistance. Chemical Reviews, 103, 645-662. https://doi.org/10.1021/cr020010d
|
[5]
|
Vodenkova, S., Buchler, T., Cervena, K., Veskrnova, V., Vodicka, P. and Vymetalkova, V. (2020) 5-Fluorouracil and Other Fluoropyrimidines in Colorectal Cancer: Past, Present and Future. Pharmacology & Therapeutics, 206, Article ID: 107447. https://doi.org/10.1016/j.pharmthera.2019.107447
|
[6]
|
Er, O., Tuncel, A., Ocakoglu, K., Ince, M., Kolatan, E.H., Yilmaz, O., et al. (2020) Radiolabeling, in Vitro Cell Uptake, and in Vivo Photodynamic Therapy Potential of Targeted Mesoporous Silica Nanoparticles Containing Zinc Phthalocyanine. Molecular Pharmaceutics, 17, 2648-2659. https://doi.org/10.1021/acs.molpharmaceut.0c00331
|
[7]
|
Farhood, B., Mortezaee, K., Goradel, N.H., Khanlarkhani, N., Salehi, E., Nashtaei, M.S., et al. (2018) Curcumin as an Anti‐Inflammatory Agent: Implications to Radiotherapy and Chemotherapy. Journal of Cellular Physiology, 234, 5728-5740. https://doi.org/10.1002/jcp.27442
|
[8]
|
Shah, Z., Gohar, U.F., Jamshed, I., Mushtaq, A., Mukhtar, H., Zia-UI-Haq, M., et al. (2021) Podophyllotoxin: History, Recent Advances and Future Prospects. Biomolecules, 11, Article 603. https://doi.org/10.3390/biom11040603
|
[9]
|
Schaue, D. and McBride, W.H. (2015) Opportunities and Challenges of Radiotherapy for Treating Cancer. Nature Reviews Clinical Oncology, 12, 527-540. https://doi.org/10.1038/nrclinonc.2015.120
|
[10]
|
Wang, S., Cheng, M., Wang, S., Jiang, W., Yang, F., Shen, X., et al. (2024) A Self‐Catalytic No/O2 Gas‐Releasing Nanozyme for Radiotherapy Sensitization through Vascular Normalization and Hypoxia Relief. Advanced Materials, 36, Article ID: 2403921. https://doi.org/10.1002/adma.202403921
|
[11]
|
Hainfeld, J.F., Slatkin, D.N. and Smilowitz, H.M. (2004) The Use of Gold Nanoparticles to Enhance Radiotherapy in Mice. Physics in Medicine and Biology, 49, N309-N315. https://doi.org/10.1088/0031-9155/49/18/n03
|
[12]
|
Le Guével, X., Henry, M., Motto-Ros, V., Longo, E., Montañez, M.I., Pelascini, F., et al. (2018) Elemental and Optical Imaging Evaluation of Zwitterionic Gold Nanoclusters in Glioblastoma Mouse Models. Nanoscale, 10, 18657-18664. https://doi.org/10.1039/c8nr05299a
|
[13]
|
Carigga Gutierrez, N.M., Clainche, T.L., Bulin, A., Leo, S., Kadri, M., Abdelhamid, A.G.A., et al. (2024) Engineering Radiocatalytic Nanoliposomes with Hydrophobic Gold Nanoclusters for Radiotherapy Enhancement. Advanced Materials, 36, Article ID: 2404605. https://doi.org/10.1002/adma.202404605
|
[14]
|
Huang, Y., Lü, X., Chen, R. and Chen, Y. (2020) Comparative Study of the Effects of Gold and Silver Nanoparticles on the Metabolism of Human Dermal Fibroblasts. Regenerative Biomaterials, 7, 221-232. https://doi.org/10.1093/rb/rbz051
|
[15]
|
Morais, M., Machado, V., Figueiredo, P., Dias, F., Craveiro, R., Lencart, J., et al. (2023) Silver Nanoparticles (AgNPs) as Enhancers of Everolimus and Radiotherapy Sensitivity on Clear Cell Renal Cell Carcinoma. Antioxidants, 12, Article 2051. https://doi.org/10.3390/antiox12122051
|
[16]
|
Tamborini, M., Locatelli, E., Rasile, M., Monaco, I., Rodighiero, S., Corradini, I., et al. (2016) A Combined Approach Employing Chlorotoxin-Nanovectors and Low Dose Radiation to Reach Infiltrating Tumor Niches in Glioblastoma. ACS Nano, 10, 2509-2520. https://doi.org/10.1021/acsnano.5b07375
|
[17]
|
Xu, P., Ma, J., Zhou, Y., Gu, Y., Cheng, X., Wang, Y., et al. (2023) Radiotherapy-Triggered in Situ Tumor Vaccination Boosts Checkpoint Blockaded Immune Response via Antigen-Capturing Nanoadjuvants. ACS Nano, 18, 1022-1040. https://doi.org/10.1021/acsnano.3c10225
|
[18]
|
Liao, Y., Wang, D., Gu, C., Wang, X., Zhu, S., Zheng, Z., et al. (2024) A Cuproptosis Nanocapsule for Cancer Radiotherapy. Nature Nanotechnology, 19, 1892-1902. https://doi.org/10.1038/s41565-024-01784-1
|
[19]
|
You, Y., Chang, Y., Pan, S., Bu, Q., Ling, J., He, W., et al. (2024) Cleavage of Homonuclear Chalcogen‐Chalcogen Bonds in a Hybrid Platform in Response to X‐ray Radiation Potentiates Tumor Radiochemotherapy. Angewandte Chemie, 137, e202412922. https://doi.org/10.1002/ange.202412922
|
[20]
|
Luo, K., Guo, W., Yu, Y., Xu, S., Zhou, M., Xiang, K., et al. (2020) Reduction-Sensitive Platinum (IV)-Prodrug Nano-Sensitizer with an Ultra-High Drug Loading for Efficient Chemo-Radiotherapy of PT-Resistant Cervical Cancer in Vivo. Journal of Controlled Release, 326, 25-37. https://doi.org/10.1016/j.jconrel.2020.06.005
|
[21]
|
Bonvalot, S., Rutkowski, P.L., Thariat, J., Carrère, S., Ducassou, A., Sunyach, M., et al. (2019) NBTXR3, a First-In-Class Radioenhancer Hafnium Oxide Nanoparticle, Plus Radiotherapy versus Radiotherapy Alone in Patients with Locally Advanced Soft-Tissue Sarcoma (Act.In.Sarc): A Multicentre, Phase 2–3, Randomised, Controlled Trial. The Lancet Oncology, 20, 1148-1159. https://doi.org/10.1016/s1470-2045(19)30326-2
|
[22]
|
Li, R., Zhao, W., Han, Z., Feng, N., Wu, T., Xiong, H., et al. (2024) Self‐cascade Nanozyme Reactor as a Cuproptosis Inducer Synergistic Inhibition of Cellular Respiration Boosting Radioimmunotherapy. Small, 20, Article ID: 2306263. https://doi.org/10.1002/smll.202306263
|
[23]
|
Cline, B.L., Jiang, W., Lee, C., Cao, Z., Yang, X., Zhan, S., et al. (2021) Potassium Iodide Nanoparticles Enhance Radiotherapy against Breast Cancer by Exploiting the Sodium-Iodide Symporter. ACS Nano, 15, 17401-17411. https://doi.org/10.1021/acsnano.1c01435
|
[24]
|
Yin, M., Yuan, Y., Huang, Y., Liu, X., Meng, F., Luo, L., et al. (2024) Carbon-Iodine Polydiacetylene Nanofibers for Image-Guided Radiotherapy and Tumor-Microenvironment-Enhanced Radiosensitization. ACS Nano, 18, 8325-8336. https://doi.org/10.1021/acsnano.3c12623
|
[25]
|
Zhu, S., Gu, C., Gao, L., Du, S., Feng, D. and Gu, Z. (2024) Lipiodol Emulsion as a Dual Chemoradiation-Sensitizer for Pancreatic Cancer Treatment. Journal of Controlled Release, 374, 242-253. https://doi.org/10.1016/j.jconrel.2024.08.020
|
[26]
|
Barth, R.F., Mi, P. and Yang, W. (2018) Boron Delivery Agents for Neutron Capture Therapy of Cancer. Cancer Communications, 38, 1-15. https://doi.org/10.1186/s40880-018-0299-7
|
[27]
|
Wang, L., Liu, Y.H., Chou, F. and Jiang, S. (2018) Clinical Trials for Treating Recurrent Head and Neck Cancer with Boron Neutron Capture Therapy Using the Tsing‐Hua Open Pool Reactor. Cancer Communications, 38, 1-7. https://doi.org/10.1186/s40880-018-0295-y
|
[28]
|
Zhou, Y., Cheng, K., Liu, B., Cao, Y., Fan, J., Liu, Z., et al. (2024) Recent Progress of Nano-Drugs in Neutron Capture Therapy. Theranostics, 14, 3193-3212. https://doi.org/10.7150/thno.95034
|
[29]
|
Li, Y., Cho, M.H., Lee, S.S., Lee, D., Cheong, H. and Choi, Y. (2020) Hydroxychloroquine-Loaded Hollow Mesoporous Silica Nanoparticles for Enhanced Autophagy Inhibition and Radiation Therapy. Journal of Controlled Release, 325, 100-110. https://doi.org/10.1016/j.jconrel.2020.06.025
|
[30]
|
Ferreira, C.A., Goel, S., Ehlerding, E.B., Rosenkrans, Z.T., Jiang, D., Sun, T., et al. (2021) Ultrasmall Porous Silica Nanoparticles with Enhanced Pharmacokinetics for Cancer Theranostics. Nano Letters, 21, 4692-4699. https://doi.org/10.1021/acs.nanolett.1c00895
|
[31]
|
Wu, Y., Qin, J., Gu, Y., Zhao, G., Xu, P., Lin, S., et al. (2024) Radioresponsive Delivery of Toll-Like Receptor 7/8 Agonist for Tumor Radioimmunotherapy Enabled by Core-Cross-Linked Diselenide Nanoparticles. ACS Nano, 18, 2800-2814. https://doi.org/10.1021/acsnano.3c05882
|
[32]
|
Chen, Q., Chen, J., Yang, Z., Xu, J., Xu, L., Liang, C., et al. (2019) Nanoparticle‐enhanced Radiotherapy to Trigger Robust Cancer Immunotherapy. Advanced Materials, 31, Article ID: 1802228. https://doi.org/10.1002/adma.201802228
|
[33]
|
Shen, W., Pei, P., Zhang, C., Li, J., Han, X., Liu, T., et al. (2023) A Polymeric Hydrogel to Eliminate Programmed Death-Ligand 1 for Enhanced Tumor Radio-immunotherapy. ACS Nano, 17, 23998-24011. https://doi.org/10.1021/acsnano.3c08875
|
[34]
|
Hsu, C., Lin, J., Wei, M., Chen, L., Liang, H.T. and Lin, F. (2025) Local Delivery of Carboplatin-Loaded Hydrogel and Calcium Carbonate Enables Two-Stage Drug Release for Limited-Dose Radiation to Eliminate Mouse Malignant Glioma. Biomaterials, 312, Article ID: 122746. https://doi.org/10.1016/j.biomaterials.2024.122746
|
[35]
|
Ma, X., Jiang, X., Wang, Z., Fan, Y., Li, J., Chow, C., et al. (2024) Cationic Metal‐Organic Layer Delivers Sirnas to Overcome Radioresistance and Potentiate Cancer Radiotherapy. Angewandte Chemie, 2024, e202419409. https://doi.org/10.1002/ange.202419409
|
[36]
|
Lu, D., Li, W., Tan, J., Li, Y., Mao, W., Zheng, Y., et al. (2024) STING Agonist Delivered by Neutrophil Membrane-Coated Gold Nanoparticles Exerts Synergistic Tumor Inhibition with Radiotherapy. ACS Applied Materials & Interfaces, 16, 53474-53488. https://doi.org/10.1021/acsami.4c09825
|
[37]
|
Wang, Z., Ren, X., Li, Y., Qiu, L., Wang, D., Liu, A., et al. (2024) Reactive Oxygen Species Amplifier for Apoptosis-Ferroptosis Mediated High-Efficiency Radiosensitization of Tumors. ACS Nano, 18, 10288-10301. https://doi.org/10.1021/acsnano.4c01625
|
[38]
|
Fu, S., Li, Y., Shen, L., Chen, Y., Lu, J., Ran, Y., et al. (2024) Cu2WS4‐PEG Nanozyme as Multifunctional Sensitizers for Enhancing Immuno‐radiotherapy by Inducing Ferroptosis. Small, 20, Article ID: 2309537. https://doi.org/10.1002/smll.202309537
|
[39]
|
Feng, Q., Qi, F., Fang, W., Hu, P. and Shi, J. (2024) Ferroptosis to Pyroptosis Regulation by Iron-Based Nanocatalysts for Enhanced Tumor Immunotherapy. Journal of the American Chemical Society, 146, 32403-32414. https://doi.org/10.1021/jacs.4c08304
|
[40]
|
Xu, Q., Zhang, H., Liu, H., Han, Y., Qiu, W. and Li, Z. (2022) Inhibiting Autophagy Flux and DNA Repair of Tumor Cells to Boost Radiotherapy of Orthotopic Glioblastoma. Biomaterials, 280, Article ID: 121287. https://doi.org/10.1016/j.biomaterials.2021.121287
|