|
[1]
|
Loap, P., Loirat, D., Berger, F., Rodrigues, M., Bazire, L., Pierga, J., et al. (2022) Concurrent Olaparib and Radiotherapy in Patients with Triple-Negative Breast Cancer: The Phase 1 Olaparib and Radiation Therapy for Triple-Negative Breast Cancer Trial. JAMA Oncology, 8, 1802-1808. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Tutt, A.N.J., Garber, J.E., Kaufman, B., Viale, G., Fumagalli, D., Rastogi, P., et al. (2021) Adjuvant Olaparib for Patients with BRCA1-or BRCA2-Mutated Breast Cancer. New England Journal of Medicine, 384, 2394-2405. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Robson, M., Im, S., Senkus, E., Xu, B., Domchek, S.M., Masuda, N., et al. (2017) Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. New England Journal of Medicine, 377, 523-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fuertes, M.A., Alonso, C. and Pérez, J.M. (2003) Biochemical Modulation of Cisplatin Mechanisms of Action: Enhancement of Antitumor Activity and Circumvention of Drug Resistance. Chemical Reviews, 103, 645-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Vodenkova, S., Buchler, T., Cervena, K., Veskrnova, V., Vodicka, P. and Vymetalkova, V. (2020) 5-Fluorouracil and Other Fluoropyrimidines in Colorectal Cancer: Past, Present and Future. Pharmacology & Therapeutics, 206, Article ID: 107447. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Er, O., Tuncel, A., Ocakoglu, K., Ince, M., Kolatan, E.H., Yilmaz, O., et al. (2020) Radiolabeling, in Vitro Cell Uptake, and in Vivo Photodynamic Therapy Potential of Targeted Mesoporous Silica Nanoparticles Containing Zinc Phthalocyanine. Molecular Pharmaceutics, 17, 2648-2659. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Farhood, B., Mortezaee, K., Goradel, N.H., Khanlarkhani, N., Salehi, E., Nashtaei, M.S., et al. (2018) Curcumin as an Anti‐Inflammatory Agent: Implications to Radiotherapy and Chemotherapy. Journal of Cellular Physiology, 234, 5728-5740. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Shah, Z., Gohar, U.F., Jamshed, I., Mushtaq, A., Mukhtar, H., Zia-UI-Haq, M., et al. (2021) Podophyllotoxin: History, Recent Advances and Future Prospects. Biomolecules, 11, Article 603. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Schaue, D. and McBride, W.H. (2015) Opportunities and Challenges of Radiotherapy for Treating Cancer. Nature Reviews Clinical Oncology, 12, 527-540. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, S., Cheng, M., Wang, S., Jiang, W., Yang, F., Shen, X., et al. (2024) A Self‐Catalytic No/O2 Gas‐Releasing Nanozyme for Radiotherapy Sensitization through Vascular Normalization and Hypoxia Relief. Advanced Materials, 36, Article ID: 2403921. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hainfeld, J.F., Slatkin, D.N. and Smilowitz, H.M. (2004) The Use of Gold Nanoparticles to Enhance Radiotherapy in Mice. Physics in Medicine and Biology, 49, N309-N315. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Le Guével, X., Henry, M., Motto-Ros, V., Longo, E., Montañez, M.I., Pelascini, F., et al. (2018) Elemental and Optical Imaging Evaluation of Zwitterionic Gold Nanoclusters in Glioblastoma Mouse Models. Nanoscale, 10, 18657-18664. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Carigga Gutierrez, N.M., Clainche, T.L., Bulin, A., Leo, S., Kadri, M., Abdelhamid, A.G.A., et al. (2024) Engineering Radiocatalytic Nanoliposomes with Hydrophobic Gold Nanoclusters for Radiotherapy Enhancement. Advanced Materials, 36, Article ID: 2404605. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Huang, Y., Lü, X., Chen, R. and Chen, Y. (2020) Comparative Study of the Effects of Gold and Silver Nanoparticles on the Metabolism of Human Dermal Fibroblasts. Regenerative Biomaterials, 7, 221-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Morais, M., Machado, V., Figueiredo, P., Dias, F., Craveiro, R., Lencart, J., et al. (2023) Silver Nanoparticles (AgNPs) as Enhancers of Everolimus and Radiotherapy Sensitivity on Clear Cell Renal Cell Carcinoma. Antioxidants, 12, Article 2051. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Tamborini, M., Locatelli, E., Rasile, M., Monaco, I., Rodighiero, S., Corradini, I., et al. (2016) A Combined Approach Employing Chlorotoxin-Nanovectors and Low Dose Radiation to Reach Infiltrating Tumor Niches in Glioblastoma. ACS Nano, 10, 2509-2520. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Xu, P., Ma, J., Zhou, Y., Gu, Y., Cheng, X., Wang, Y., et al. (2023) Radiotherapy-Triggered in Situ Tumor Vaccination Boosts Checkpoint Blockaded Immune Response via Antigen-Capturing Nanoadjuvants. ACS Nano, 18, 1022-1040. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Liao, Y., Wang, D., Gu, C., Wang, X., Zhu, S., Zheng, Z., et al. (2024) A Cuproptosis Nanocapsule for Cancer Radiotherapy. Nature Nanotechnology, 19, 1892-1902. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
You, Y., Chang, Y., Pan, S., Bu, Q., Ling, J., He, W., et al. (2024) Cleavage of Homonuclear Chalcogen‐Chalcogen Bonds in a Hybrid Platform in Response to X‐ray Radiation Potentiates Tumor Radiochemotherapy. Angewandte Chemie, 137, e202412922. [Google Scholar] [CrossRef]
|
|
[20]
|
Luo, K., Guo, W., Yu, Y., Xu, S., Zhou, M., Xiang, K., et al. (2020) Reduction-Sensitive Platinum (IV)-Prodrug Nano-Sensitizer with an Ultra-High Drug Loading for Efficient Chemo-Radiotherapy of PT-Resistant Cervical Cancer in Vivo. Journal of Controlled Release, 326, 25-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bonvalot, S., Rutkowski, P.L., Thariat, J., Carrère, S., Ducassou, A., Sunyach, M., et al. (2019) NBTXR3, a First-In-Class Radioenhancer Hafnium Oxide Nanoparticle, Plus Radiotherapy versus Radiotherapy Alone in Patients with Locally Advanced Soft-Tissue Sarcoma (Act.In.Sarc): A Multicentre, Phase 2–3, Randomised, Controlled Trial. The Lancet Oncology, 20, 1148-1159. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Li, R., Zhao, W., Han, Z., Feng, N., Wu, T., Xiong, H., et al. (2024) Self‐cascade Nanozyme Reactor as a Cuproptosis Inducer Synergistic Inhibition of Cellular Respiration Boosting Radioimmunotherapy. Small, 20, Article ID: 2306263. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Cline, B.L., Jiang, W., Lee, C., Cao, Z., Yang, X., Zhan, S., et al. (2021) Potassium Iodide Nanoparticles Enhance Radiotherapy against Breast Cancer by Exploiting the Sodium-Iodide Symporter. ACS Nano, 15, 17401-17411. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yin, M., Yuan, Y., Huang, Y., Liu, X., Meng, F., Luo, L., et al. (2024) Carbon-Iodine Polydiacetylene Nanofibers for Image-Guided Radiotherapy and Tumor-Microenvironment-Enhanced Radiosensitization. ACS Nano, 18, 8325-8336. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhu, S., Gu, C., Gao, L., Du, S., Feng, D. and Gu, Z. (2024) Lipiodol Emulsion as a Dual Chemoradiation-Sensitizer for Pancreatic Cancer Treatment. Journal of Controlled Release, 374, 242-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Barth, R.F., Mi, P. and Yang, W. (2018) Boron Delivery Agents for Neutron Capture Therapy of Cancer. Cancer Communications, 38, 1-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, L., Liu, Y.H., Chou, F. and Jiang, S. (2018) Clinical Trials for Treating Recurrent Head and Neck Cancer with Boron Neutron Capture Therapy Using the Tsing‐Hua Open Pool Reactor. Cancer Communications, 38, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhou, Y., Cheng, K., Liu, B., Cao, Y., Fan, J., Liu, Z., et al. (2024) Recent Progress of Nano-Drugs in Neutron Capture Therapy. Theranostics, 14, 3193-3212. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, Y., Cho, M.H., Lee, S.S., Lee, D., Cheong, H. and Choi, Y. (2020) Hydroxychloroquine-Loaded Hollow Mesoporous Silica Nanoparticles for Enhanced Autophagy Inhibition and Radiation Therapy. Journal of Controlled Release, 325, 100-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ferreira, C.A., Goel, S., Ehlerding, E.B., Rosenkrans, Z.T., Jiang, D., Sun, T., et al. (2021) Ultrasmall Porous Silica Nanoparticles with Enhanced Pharmacokinetics for Cancer Theranostics. Nano Letters, 21, 4692-4699. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wu, Y., Qin, J., Gu, Y., Zhao, G., Xu, P., Lin, S., et al. (2024) Radioresponsive Delivery of Toll-Like Receptor 7/8 Agonist for Tumor Radioimmunotherapy Enabled by Core-Cross-Linked Diselenide Nanoparticles. ACS Nano, 18, 2800-2814. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chen, Q., Chen, J., Yang, Z., Xu, J., Xu, L., Liang, C., et al. (2019) Nanoparticle‐enhanced Radiotherapy to Trigger Robust Cancer Immunotherapy. Advanced Materials, 31, Article ID: 1802228. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Shen, W., Pei, P., Zhang, C., Li, J., Han, X., Liu, T., et al. (2023) A Polymeric Hydrogel to Eliminate Programmed Death-Ligand 1 for Enhanced Tumor Radio-immunotherapy. ACS Nano, 17, 23998-24011. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hsu, C., Lin, J., Wei, M., Chen, L., Liang, H.T. and Lin, F. (2025) Local Delivery of Carboplatin-Loaded Hydrogel and Calcium Carbonate Enables Two-Stage Drug Release for Limited-Dose Radiation to Eliminate Mouse Malignant Glioma. Biomaterials, 312, Article ID: 122746. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ma, X., Jiang, X., Wang, Z., Fan, Y., Li, J., Chow, C., et al. (2024) Cationic Metal‐Organic Layer Delivers Sirnas to Overcome Radioresistance and Potentiate Cancer Radiotherapy. Angewandte Chemie, 2024, e202419409. [Google Scholar] [CrossRef]
|
|
[36]
|
Lu, D., Li, W., Tan, J., Li, Y., Mao, W., Zheng, Y., et al. (2024) STING Agonist Delivered by Neutrophil Membrane-Coated Gold Nanoparticles Exerts Synergistic Tumor Inhibition with Radiotherapy. ACS Applied Materials & Interfaces, 16, 53474-53488. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, Z., Ren, X., Li, Y., Qiu, L., Wang, D., Liu, A., et al. (2024) Reactive Oxygen Species Amplifier for Apoptosis-Ferroptosis Mediated High-Efficiency Radiosensitization of Tumors. ACS Nano, 18, 10288-10301. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Fu, S., Li, Y., Shen, L., Chen, Y., Lu, J., Ran, Y., et al. (2024) Cu2WS4‐PEG Nanozyme as Multifunctional Sensitizers for Enhancing Immuno‐radiotherapy by Inducing Ferroptosis. Small, 20, Article ID: 2309537. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Feng, Q., Qi, F., Fang, W., Hu, P. and Shi, J. (2024) Ferroptosis to Pyroptosis Regulation by Iron-Based Nanocatalysts for Enhanced Tumor Immunotherapy. Journal of the American Chemical Society, 146, 32403-32414. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Xu, Q., Zhang, H., Liu, H., Han, Y., Qiu, W. and Li, Z. (2022) Inhibiting Autophagy Flux and DNA Repair of Tumor Cells to Boost Radiotherapy of Orthotopic Glioblastoma. Biomaterials, 280, Article ID: 121287. [Google Scholar] [CrossRef] [PubMed]
|