[1]
|
张旸. 秸秆还田与施氮水平对东北黑土氮素周转的影响[D]: [博士学位论文]. 中国科学院大学, 2024.
|
[2]
|
Teng, J., Hou, R., Dungait, J.A.J., Zhou, G., Kuzyakov, Y., Zhang, J., et al. (2024) Conservation Agriculture Improves Soil Health and Sustains Crop Yields after Long-Term Warming. Nature Communications, 15, Article No. 8785. https://doi.org/10.1038/s41467-024-53169-6
|
[3]
|
Ni, H., Hu, H., Zohner, C.M., Huang, W., Chen, J., Sun, Y., et al. (2024) Effects of Winter Soil Warming on Crop Biomass Carbon Loss from Organic Matter Degradation. Nature Communications, 15, Article No. 8847. https://doi.org/10.1038/s41467-024-53216-2
|
[4]
|
Wang, C., Shen, Y., Fang, X., Xiao, S., Liu, G., Wang, L., et al. (2024) Reducing Soil Nitrogen Losses from Fertilizer Use in Global Maize and Wheat Production. Nature Geoscience, 17, 1008-1015. https://doi.org/10.1038/s41561-024-01542-x
|
[5]
|
Wang, X., Cui, C., Xu, M., Cheng, B. and Zhuang, M. (2024) Key Technologies Improvements Promote the Economic-Environmental Sustainability in Wheat Production of China. Journal of Cleaner Production, 443, Article ID: 141230. https://doi.org/10.1016/j.jclepro.2024.141230
|
[6]
|
Liu, Y., Zhuang, M., Liang, X., Lam, S.K., Chen, D., Malik, A., et al. (2024) Localized Nitrogen Management Strategies Can Halve Fertilizer Use in Chinese Staple Crop Production. Nature Food, 5, 825-835. https://doi.org/10.1038/s43016-024-01057-z
|
[7]
|
Wei, H., Li, Y., Zhu, K., Ju, X. and Wu, D. (2024) The Divergent Role of Straw Return in Soil O2 Dynamics Elucidates Its Confounding Effect on Soil N2O Emission. Soil Biology and Biochemistry, 199, Article ID: 109620. https://doi.org/10.1016/j.soilbio.2024.109620
|
[8]
|
Ji, L., Tian, C. and Kuramae, E.E. (2023) Phosphorus-Mediated Succession of Microbial Nitrogen, Carbon, and Sulfur Functions in Rice-Driven Saline-Alkali Soil Remediation. Soil Biology and Biochemistry, 184, Article ID: 109125. https://doi.org/10.1016/j.soilbio.2023.109125
|
[9]
|
Pei, J., Fang, C., Li, B., Nie, M. and Li, J. (2024) Direct Evidence for Microbial Regulation of the Temperature Sensitivity of Soil Carbon Decomposition. Global Change Biology, 30, e17523. https://doi.org/10.1111/gcb.17523
|
[10]
|
Wang, Y., Bing, H., Moorhead, D.L., Hou, E., Wu, Y., Wang, J., et al. (2024) Bacterial Community Structure Modulates Soil Phosphorus Turnover at Early Stages of Primary Succession. Global Biogeochemical Cycles, 38, e2024GB008174. https://doi.org/10.1029/2024gb008174
|
[11]
|
Elrys, A.S., Chen, S., Kong, M., Liu, L., Zhu, Q., Dan, X., et al. (2024) Organic Fertilization Strengthens Multiple Internal Pathways for Soil Mineral Nitrogen Production: Evidence from the Meta-Analysis of Long-Term Field Trials. Biology and Fertility of Soils, 60, 1173-1180. https://doi.org/10.1007/s00374-024-01856-3
|
[12]
|
Zhou, Y., Liu, D., Li, F., Dong, Y., Jin, Z., Liao, Y., et al. (2024) Superiority of Native Soil Core Microbiomes in Supporting Plant Growth. Nature Communications, 15, Article No. 6599. https://doi.org/10.1038/s41467-024-50685-3
|
[13]
|
Garrido-Sanz, D., Čaušević, S., Vacheron, J., Heiman, C.M., Sentchilo, V., van der Meer, J.R., et al. (2023) Changes in Structure and Assembly of a Species-Rich Soil Natural Community with Contrasting Nutrient Availability Upon Establishment of a Plant-Beneficial Pseudomonas in the Wheat Rhizosphere. Microbiome, 11, Article No. 214. https://doi.org/10.1186/s40168-023-01660-5
|
[14]
|
Sun, Y., Yang, X., Elsgaard, L., Du, T., Siddique, K.H.M., Kang, S., et al. (2024) Diversified Crop Rotations Improve Soil Microbial Communities and Functions in a Six-Year Field Experiment. Journal of Environmental Management, 370, Article ID: 122604. https://doi.org/10.1016/j.jenvman.2024.122604
|
[15]
|
Fu, Y., Luo, Y., Qi, J., He, X., Zhang, H., Guggenberger, G., et al. (2024) Shift of Microbial Taxa and Metabolisms Relying on Carbon Sources of Rhizodeposits and Straw of Zea mays L. Soil Biology and Biochemistry, 198, Article ID: 109578. https://doi.org/10.1016/j.soilbio.2024.109578
|
[16]
|
Liang, Y., Hu, H., Crowther, T.W., Jörgensen, R.G., Liang, C., Chen, J., et al. (2024) Global Decline in Microbial-Derived Carbon Stocks with Climate Warming and Its Future Projections. National Science Review, 11, nwae330. https://doi.org/10.1093/nsr/nwae330
|
[17]
|
Wang, L., Wang, J., Yuan, J., Tang, Z., Wang, J. and Zhang, Y. (2023) Long-Term Organic Fertilization Strengthens the Soil Phosphorus Cycle and Phosphorus Availability by Regulating the PQQC-and PHOD-Harboring Bacterial Communities. Microbial Ecology, 86, 2716-2732. https://doi.org/10.1007/s00248-023-02279-7
|
[18]
|
Rizzo, G., Agus, F., Susanti, Z., Buresh, R., Cassman, K.G., Dobermann, A., et al. (2024) Potassium Limits Productivity in Intensive Cereal Cropping Systems in Southeast Asia. Nature Food, 5, 929-938. https://doi.org/10.1038/s43016-024-01065-z
|
[19]
|
Zhai, C., Han, L., Xiong, C., Ge, A., Yue, X., Li, Y., et al. (2024) Soil Microbial Diversity and Network Complexity Drive the Ecosystem Multifunctionality of Temperate Grasslands under Changing Precipitation. Science of the Total Environment, 906, Article ID: 167217. https://doi.org/10.1016/j.scitotenv.2023.167217
|
[20]
|
Jayaramaiah, R.H., Martins, C.S.C., Egidi, E., Macdonald, C.A., Wang, J., Liu, H., et al. (2025) Soil Function-Microbial Diversity Relationship Is Impacted by Plant Functional Groups under Climate Change. Soil Biology and Biochemistry, 200, Article ID: 109623. https://doi.org/10.1016/j.soilbio.2024.109623
|
[21]
|
Zhou, X., Zhang, J., Shi, J., Khashi u Rahman, M., Liu, H., Wei, Z., et al. (2024) Volatile-Mediated Interspecific Plant Interaction Promotes Root Colonization by Beneficial Bacteria via Induced Shifts in Root Exudation. Microbiome, 12, Article No. 207. https://doi.org/10.1186/s40168-024-01914-w
|
[22]
|
Liu, Y., Zou, X., Chen, H.Y.H., Delgado‐Baquerizo, M., Wang, C., Zhang, C., et al. (2023) Fungal Necromass Is Reduced by Intensive Drought in Subsoil but Not in Topsoil. Global Change Biology, 29, 7159-7172. https://doi.org/10.1111/gcb.16978
|
[23]
|
Li, Q., Liu, Y., Su, N., Tian, C., Zhang, Y., Tan, L., et al. (2025) Knowledge-Based Phosphorus Input Levels Control the Link between Soil Microbial Diversity and Ecosystem Functions in Paddy Fields. Agriculture, Ecosystems & Environment, 379, Article ID: 109352. https://doi.org/10.1016/j.agee.2024.109352
|
[24]
|
Jiao, S., Xu, Y., Zhang, J., Hao, X. and Lu, Y. (2019) Core Microbiota in Agricultural Soils and Their Potential Associations with Nutrient Cycling. mSystems, 4, e00313-18. https://doi.org/10.1128/msystems.00313-18
|
[25]
|
Yang, X., Ma, S., Huang, E., Zhang, D., Chen, G., Zhu, J., et al. (2024) Nitrogen Addition Promotes Soil Carbon Accumulation Globally. Science China Life Sciences, 68, 284-293. https://doi.org/10.1007/s11427-024-2752-2
|
[26]
|
Shi, X., Eisenhauer, N., Peñuelas, J., Fu, Y., Wang, J., Chen, Y., et al. (2024) Trophic Interactions in Soil Micro‐Food Webs Drive Ecosystem Multifunctionality along Tree Species Richness. Global Change Biology, 30, e17234. https://doi.org/10.1111/gcb.17234
|
[27]
|
Zhou, Z., Wang, C., Cha, X., Zhou, T., Pang, X., Zhao, F., et al. (2024) The Biogeography of Soil Microbiome Potential Growth Rates. Nature Communications, 15, Article No. 9472. https://doi.org/10.1038/s41467-024-53753-w
|
[28]
|
Manning, P., van der Plas, F., Soliveres, S., Allan, E., Maestre, F.T., Mace, G., et al. (2018) Redefining Ecosystem Multifunctionality. Nature Ecology & Evolution, 2, 427-436. https://doi.org/10.1038/s41559-017-0461-7
|
[29]
|
李彦林, 陈杨洋, 杨霜溶, 等. 植物根系分泌的有机酸对土壤碳氮矿化的影响[J]. 生态环境学报, 2024, 33(9): 1362-1371.
|
[30]
|
Guo, Z., Liu, J., He, L., Rodrigues, J.L.M., Chen, N., Zuo, Y., et al. (2024) Dominant Edaphic Controls on Particulate Organic Carbon in Global Soils. Global Change Biology, 30, e17619. https://doi.org/10.1111/gcb.17619
|
[31]
|
Wang, X., Yang, M., Gao, L., Li, Y., Liang, W. and Zhang, X. (2024) Continuous Cropping Obstacles: Insights from the Community Composition and the Imbalance Carbon Fluxes within Soil Nematode Food Web. Geoderma, 451, Article ID: 117060. https://doi.org/10.1016/j.geoderma.2024.117060
|
[32]
|
Wang, H., Lu, J., Dijkstra, F.A., Sun, L., Yin, L., Wang, P., et al. (2025) Rhizosphere Priming Effects and Trade-Offs among Root Traits, Exudation and Mycorrhizal Symbioses. Soil Biology and Biochemistry, 202, Article ID: 109690. https://doi.org/10.1016/j.soilbio.2024.109690
|
[33]
|
Winterfeldt, S., Cruz-Paredes, C., Rousk, J. and Leizeaga, A. (2024) Microbial Resistance and Resilience to Drought across a European Climate Gradient. Soil Biology and Biochemistry, 199, Article ID: 109574. https://doi.org/10.1016/j.soilbio.2024.109574
|
[34]
|
Mo, F., Li, C. and Zhou, Q. (2024) The Pivotal Role of Phosphorus Level Gradient in Regulating Nitrogen Cycle in Wetland Ecosystems. Science of the Total Environment, 943, Article ID: 173646. https://doi.org/10.1016/j.scitotenv.2024.173646
|
[35]
|
Ren, C., Zhou, Z., Delgado-Baquerizo, M., Bastida, F., Zhao, F., Yang, Y., et al. (2024) Thermal Sensitivity of Soil Microbial Carbon Use Efficiency across Forest Biomes. Nature Communications, 15, Article No. 6269. https://doi.org/10.1038/s41467-024-50593-6
|
[36]
|
Zhang, G., Bai, J., Jia, J., Wang, W., Wang, D., Zhao, Q., et al. (2023) Soil Microbial Communities Regulate the Threshold Effect of Salinity Stress on SOM Decomposition in Coastal Salt Marshes. Fundamental Research, 3, 868-879. https://doi.org/10.1016/j.fmre.2023.02.024
|
[37]
|
Baker, N.R., Zhalnina, K., Yuan, M., Herman, D., Ceja-Navarro, J.A., Sasse, J., et al. (2024) Nutrient and Moisture Limitations Reveal Keystone Metabolites Linking Rhizosphere Metabolomes and Microbiomes. Proceedings of the National Academy of Sciences of the United States of America, 121, e2303439121. https://doi.org/10.1073/pnas.2303439121
|
[38]
|
Liu, C., Bai, Z., Luo, Y., Zhang, Y., Wang, Y., Liu, H., et al. (2024) Multiomics Dissection of Brassica napus L. Lateral Roots and Endophytes Interactions under Phosphorus Starvation. Nature Communications, 15, Article No. 9732. https://doi.org/10.1038/s41467-024-54112-5
|
[39]
|
Feng, Z., Liang, Q., Yao, Q., Bai, Y. and Zhu, H. (2024) The Role of the Rhizobiome Recruited by Root Exudates in Plant Disease Resistance: Current Status and Future Directions. Environmental Microbiome, 19, Article No. 91. https://doi.org/10.1186/s40793-024-00638-6
|
[40]
|
Zhu, D., Liu, S., Sun, M., Yi, X., Duan, G., Ye, M., et al. (2024) Adaptive Expression of Phage Auxiliary Metabolic Genes in Paddy Soils and Their Contribution toward Global Carbon Sequestration. Proceedings of the National Academy of Sciences of the United States of America, 121, e2419798121. https://doi.org/10.1073/pnas.2419798121
|
[41]
|
Zhao, X., Gao, Z., Peng, J., Konstantinidis, K.T. and Zhang, S. (2024) Various Microbial Taxa Couple Arsenic Transformation to Nitrogen and Carbon Cycling in Paddy Soils. Microbiome, 12, Article No. 238. https://doi.org/10.1186/s40168-024-01952-4
|
[42]
|
Zhang, H., Ruan, Y., Kuzyakov, Y., Qiao, Y., Xu, Q., Huang, Q., et al. (2024) Carbon Flow from Roots to Rhizobacterial Networks: Grafting Effects. Soil Biology and Biochemistry, 199, Article ID: 109580. https://doi.org/10.1016/j.soilbio.2024.109580
|