联合临床指标和多期动态增强CT影像学特征在术前预测肝细胞癌微血管侵犯中的价值探讨
Exploring the Value of Combined Clinical Indicators and Multiphase Dynamic Contrast-Enhanced CT Imaging Characteristics for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma
摘要: 目的:探讨评估临床指标和多期动态增强CT (Contrast-enhanced computed tomography, CECT)的影像学特征,并构建回归模型预测术前肝细胞癌(Hepatocellular carcinoma, HCC)微血管侵犯(Microvascular invasion, MVI)状态。方法:回顾性研究141例HCC患者的临床、影像学和病理资料。根据是否存在微血管侵犯,分为MVI阳性组77例,MVI阴性组64例。用单因素和多因素Logistic回归分析筛选MVI的独立危险因素,构建回归模型预测MVI,使用Area under the curve (AUC值)、特异度和灵敏度评估模型的预测效能。结果:最终筛选出MVI的临床和影像学独立危险因素为甲胎蛋白(Alpha-fetoprotein, AFP) ≥ 400 ng/ml、瘤周低密度环和肝外生长。结合这三个因素构建的模型ROC曲线下面积(Area under the curve, AUC)值为0.730,特异度为0.625,灵敏度为0.727。结论:由AFP联合影像学特征(瘤周低密度环和生长方式)建立的回归模型可以在一定程度上预测术前MVI状态,有助于临床优化治疗策略。
Abstract: Objective: To investigate the role of clinical indicators and imaging characteristics from multiphase contrast-enhanced computed tomography (CECT) in predicting preoperative microvascular invasion (MVI) in hepatocellular carcinoma (HCC), and to construct a predictive regression model for microvascular invasion (MVI) status. Methods: Clinical, imaging, and pathological data of 141 patients with HCC were studied retrospectively. Based on the presence or absence of microvascular invasion, patients were divided into MVI-positive group (n = 77) and MVI-negative group (n = 64). Independent risk factors for MVI were screened using univariate and multivariate Logistic regression analyses, and a regression model was constructed to predict MVI, and the predictive efficacy of the model was assessed using the Area under the curve (AUC value), specificity and sensitivity. Results: Independent risk factors for MVI identified from both clinical and imaging data included AFP ≥ 400 ng/ml, peritumoral hypodense halo, and extrahepatic growth. The area under the ROC curve (AUC) value of the model combining these three factors was 0.730, the specificity was 0.625 and the sensitivity was 0.727. Conclusion: The regression model incorporating AFP levels and key imaging features (peritumoral hypodense halo and extrahepatic growth) demonstrates moderate predictive value for preoperative MVI status, which may assist in optimizing clinical treatment strategies for patients with HCC.
文章引用:胡敬梅, 李欢, 王龙胜. 联合临床指标和多期动态增强CT影像学特征在术前预测肝细胞癌微血管侵犯中的价值探讨[J]. 临床医学进展, 2025, 15(1): 2203-2211. https://doi.org/10.12677/acm.2025.151289

1. 引言

肝细胞癌(Hepatocellular carcinoma, HCC)是我国常见恶性肿瘤,致死率高[1]。微血管侵犯(Microvascular invasion, MVI)是指显微镜下观察到内皮衬覆的脉管腔中出现癌栓[2],多见于门静脉分支,少见于肝静脉、肝动脉、胆管及淋巴管中[3]。多项研究结果表明,MVI是影响HCC患者术后预后的重要相关因素[4],因此术前无创性预测是否存在MVI对优化临床治疗策略和改善患者的生存预后至关重要。多期增强CT扫描(Contrast-enhanced computed tomography, CECT)作为肝癌病变术前的常规检查,有着高度特异性和敏感性[5],能反映病灶特征及血供情况[6],为诊断MVI提供价值。近年来研究表明临床指标和CT的影像学特征能有效预测MVI状态[7] [8]。本研究旨在结合临床实验室指标和CECT的影像学特征构建模型,并探讨其对MVI的预测价值。

2. 资料和方法

2.1. 临床和实验室资料

收集我院2018年4月至2022年4月间经术后病理证实为HCC的患者资料。本研究为回顾性研究,经医院审查委员会批准免除知情同意。

纳入标准:① 行根治性手术治疗,并且术后病理证实是HCC;② 术前一个月内行增强CT检查;③ 临床、实验室、影像学及病理资料完整。

排除标准:① CT图像有伪影;② 有其他恶性肿瘤病史或出现肝外转移;③ 已经进行过任何抗肝癌治疗。

经过筛选共纳入141例患者,按照病理组织学分为MVI阴性组和MVI阳性组。收集的临床资料包括年龄、性别、肝炎病史、肝硬化病史;收集的实验室指标为甲胎蛋白(AFP)。

2.2. 影像学资料

CT扫描方法:患者检查前常规禁食至少4小时,并进行呼吸训练。使用256层CT扫描仪Philips Brilliancei进行检查。扫描参数设置成管电压120 kV,管电流150 mAs,厚层层厚和层间距均为5 mm、薄层层厚和层间距均为1 mm。患者呈仰卧位,扫描范围为膈顶至双肾下极。先进行无对比剂扫描,后使用高压注射器、以2.5~3.0 ml/s流速注射非离子造影剂碘海醇(300 mg/ml),并在8 s、45 s、100 s时获得动脉期、门静脉期和延迟期的图像。

Figure 1. MVI-negative patient, female, 66 years old, with a tumor diameter of 27 mm. (a)~(c) are images of tumor arterial, phase, portal vein phase, and delayed phase, respectively. (a) Regular tumor shape (arrows); (b) Absence of peritumoral hypodense halo around the tumor; (a)~(c) tumor growth into the liver

1. MVI阴性患者,女,66岁,肿瘤直径为27 mm。(a)~(c)分别为肿瘤动脉期、门静脉期和延迟期图像。(a) 肿瘤形态规则(白箭),(b) 瘤周不存在低密度环,(c) 肿瘤向肝内生长

Figure 2. MVI-positive patient, male, 47 years old, with a tumor diameter is 86 mm. (a)~(c) are images of tumor arterial phase, portal vein phase, and delayed phase, respectively. (a) Irregular tumor shape, tumor growing outward toward the liver (white arrow), and intratumoral arteries are visible (blue arrow); (b) Presence of a peritumoral hypodense halo (arrow); (c) Incomplete capsule with delayed enhancement (arrow)

2. MVI阳性患者,男,47岁,肿瘤直径为86 mm。图(a)~(c)分别为肿瘤动脉期、门静脉期和延迟期图像。(a) 肿瘤形态不规则,肿瘤向肝外生长(白箭),瘤内动脉显影(蓝箭);(b) 瘤周存在低密度环(箭);(c) 延迟强化的不完整包膜(箭)

影像学征象评估:由两位有丰富腹部诊断经验的放射科医生独立分析,对于争议方面,经讨论达成一致。两名医师已知病灶为HCC,但对其他信息不知情。分析的征象及定义如下:① 肿瘤直径:轴位肿瘤最大截面的直径;② 肿瘤形态:根据肿瘤是否呈球形分为形态规则和不规则两类;③ 生长方式:根据肿瘤是否突出肝脏轮廓分为肝内生长和肝外生长两类;④ 包膜:动脉期呈低密度影,门静脉期、延迟期肿瘤边缘呈环形强化,根据包膜完整情况分为无包膜、包膜完整和包膜不完整三类;⑤ 瘤内动脉:根据动脉期肿瘤内是否存在强化动脉血管分为显影和不显影两类;⑥ 瘤周高灌注:根据动脉晚期或门静脉早期肿瘤周围是否存在片状高强化区分为有和无两类;⑦ 瘤周低密度环:根据门静脉期肿瘤周围出现的弧形或者环形的低密度影,分为有和无两类;⑧ 大血管侵犯:根据肝静脉、门静脉是否存在癌栓分为有和无两类。⑨ 动脉期高强化:根据动脉期肿瘤的强化范围是否 > 50%,分为有和无两类(部分“见图1图2”)。

2.3. 统计学分析

采用SPSS 27.0进行数据分析,计量资料符合正态分布的用均数 ± 标准差( x ¯ ±s )表示,采用独立样本t检验进行组间比较。不符合正态分布的用中位数和四分位间距(Interquartile range, IQR)表示,采用Mann-Whitney U检验进行组间比较。计数资料用数量(N)和百分比(%)表示,采用x2检验进行组间比较。所有特征先纳入Logistic单因素分析,再用容差(Tolerance)和方差膨胀因子(VIF)进行共线性分析,最后进行Logistic多因素分析得到独立相关因素。使用独立相关因素建立回归预测模型,用受试者工作特性(receiver operating characteristic, ROC)曲线评估预测模型。P < 0.05为差异有统计学意义。

3. 结果

3.1. 临床影像学资料

141例HCC患者中男性113例,女性28例,MVI阴性组64例,MVI阳性组77例;124例(87.94%)患者有乙型肝炎病史、94例(66.7%)有肝硬化。MVI阳性组和MVI阴性组在年龄、肝硬化、AFP、直径、生长方式、瘤周高灌注、瘤周低密度环和大血管侵犯差异有统计学意义(P < 0.05),详“见表1”。

Table 1. General analysis of clinical and imaging features

1. 临床和影像学特征一般性分析

特征

MVI阴性组

MVI阳性组

x2/t统计值

P值

性别

0.525

0.469

11 (17.2%)

17 (22.1%)

53 (82.8%)

60 (77.9%)

年龄(岁)

60.34 ± 9.78

56.92 ± 9.76

2.072

0.040*

乙型肝炎病史

1.407

0.236

10 (15.6%)

7 (9.1%)

54 (84.4%)

70 (90.9%)

肝硬化病史

7.568

0.006*

29 (45.3%)

18 (23.4%)

35 (54.7%)

59 (76.6%)

AFP (ng/ml)

9.348

0.002*

<400

52 (81.3%)

44 (57.1%)

≥400

12 (18.7%)

33 (42.9%)

直径(mm)

40.35 (27.28, 66.95)

63.70 (36.10, 89.60)

2.866

0.004*

肿瘤形态

0.999

0.318

不规则

17 (26.6%)

15 (19.5%)

规则

47 (73.4%)

62 (80.5%)

生长方式

7.583

0.006*

肝内生长

39 (60.9%)

29 (37.7%)

肝外生长

25 (39.1%)

48 (62.3%)

瘤内动脉

3.723

0.054

不显影

31 (48.4%)

25 (32.5%)

显影

33 (51.6%)

52 (67.5%)

包膜

3.839

0.147

35 (54.7%)

33 (42.9%)

完整

5 (7.8%)

3 (3.9%)

不完整

24 (37.5%)

41 (53.2%)

瘤周高灌注

3.858

0.049*

46 (71.9%)

43 (55.8%)

18 (28.1%)

34 (44.2%)

瘤周低密度环

6.616

0.010*

49 (76.6%)

43 (55.8%)

15 (23.4%)

34 (44.2%)

大血管侵犯

8.093

0.004*

58 (90.6%)

55 (71.4%)

6 (9.4%)

22 (28.6%)

动脉期高强化

1.409

0.235

16 (25.0%)

13 (16.9%)

48 (75.0%)

64 (83.1%)

3.2. 单因素和多因素Logistic分析

单因素Logistic回归分析和共线性分析显示,年龄、有肝硬化病史、血清AFP水平 ≥ 400 ng/ml、直径、肝外生长、存在瘤周低密度环、大血管侵犯的P值 < 0.05,并且这些因素之间不存在共线性。多因素Logistic回归分析显示,血清AFP水平 ≥ 400 ng/ml (OR = 2.536, P = 0.038)、肝外生长(OR = 2.315, P = 0.045)和瘤周存在低密度环(OR = 3.672, P = 0.008)是MVI阳性的独立危险因素,详“见表2”。

Table 2. Univariate and multivariate Logistic regression analysis of clinical and imaging characteristics

2. 临床和影像学特征单因素和多因素Logistic回归分析

因素

单因素Logistic分析

多因素Logistic分析

共线性统计

OR

95%CI

P

OR

95%CI

P

Tolerance

VIF

性别

0.733

0.315~1.703

0.470

年龄

0.964

0.931~0.999

0.043

0.965

0.926~1.006

0.097

0.920

1.087

有乙肝病史

1.667

0.583~4.761

0.340

有肝硬化病史

2.716

1.320~5.589

0.007

2.117

0.915~4.898

0.080

0.843

1.187

AFP ≥ 400 ng/ml

3.250

1.500~7.041

0.003

2.536

1.053~6.104

0.038

0.844

1.184

直径(mm)

1.010

1.000~1.021

0.047

0.997

0.983~1.011

0.691

0.611

1.636

肿瘤形态不规则

1.495

0.678~3.298

0.319

肝外生长

2.582

1.306~5.105

0.006

2.315

1.020~5.256

0.045

0.846

1.182

瘤内动脉显影

1.954

0.986~3.872

0.055

包膜不完整

1.812

0.906~3.622

0.093

存在瘤周高灌注

2.021

0.997~4.096

0.051

存在瘤周低密度环

2.583

1.241~5.374

0.011

3.672

1.396~9.661

0.008

0.777

1.288

存在大血管侵犯

3.867

1.458~10.253

0.007

2.620

0.822~8.355

0.103

0.773

1.294

动脉期高强化

0.609

0.268~1.386

0.238

3.3. 回归模型建立

采用Logistic回归根据三个独立危险因素构建模型(详“见图3”),AFP、生长方式、瘤周低密度环的单独模型曲线下面积(Area under the cuerve, AUC)值分别为0.621、0.616、0.604,而联合模型的预测性能优于独立模型,AUC值为0.730,特异度为0.625,灵敏度0.727。

Figure 3. ROC curve for Logistic model

3. Logistic模型的ROC曲线

4. 讨论

MVI作为肝癌患者复发和转移的重要危险因素[4],术前预测是否存在MVI,对改善患者治疗策略、提高生存预后有着重要的临床意义。CECT是HCC常规术前无创诊断的检查方法,增强图像能够清晰显示肿瘤的血供情况,表现一系列反映MVI信息的影像学特征。临床指标作为反映MVI不可忽略的因素,有研究表明其诊断效能甚至高于影像组学模型[9]。本研究旨在基于临床、影像学特征的独立危险因素构建回归模型,给临床治疗提供一定的参考。

我们结果显示AFP ≥ 400 ng/ml、瘤周存在低密度环、肿瘤肝外生长是MVI阳性的独立危险因素。AFP是MVI预测模型中最常见的生物标志物[10] [11],其中AFP水平越高,肝癌侵袭性越高[12],Schlichtemeier [10]等人研究结果表明术前同时具备年龄 > 64岁、AFP ≥ 400 ng/ml、肿瘤 > 50 mm这三个因素的患者在切除标本中发现MVI的几率为84.4%,本研究结果表明年龄在MVI阳性组和阴性组有统计学差异,但MVI阳性组年龄低于阴性组,可能是由于人种、样本差异所致,同时AFP ≥ 400 ng/ml依然作为MVI的独立预测因素,OR值为2.536 (1.053~6.104, P < 0.05)。HCC是一种高血管性的恶性肿瘤,异常水平的AFP可以促进肿瘤血管生成,使得微血管密度(MVD)增加,促使出现MVI,同时也可以改变肿瘤的微环境及免疫状态,从而使肿瘤免疫逃逸[12] [13]。与此同时,我们发现本研究中MVI阳性组中有68.1%病例AFP < 400 ng/ml,这些患者AFP未明显升高的原因可能与肝炎、肝硬化会减低AFP特异性有关[14]。Segal [15]等人研究结果显示影像上同时出现瘤内动脉和瘤周低密度环的特征,发生MVI的风险明显提高,有研究基于此衍生出了一种“two-trait predictor of venous invasion (TTPVI)”模式的预测模型[16]。瘤周低密度环是膨胀生长的肿瘤,挤压周围肝实质组织及引起纤维组织增生,在CT上肿瘤周围形成环形或者弧形的低密度影[17]。我们猜测低密度环的形成也可能与肿瘤周围血管闭塞、肝组织纤维化引起血管收缩有关。有研究认为存在低密度环同时肿瘤细胞和间质细胞使肿瘤边缘生成大量血管壁不完整的新生血管,从而使肿瘤细胞容易透过这些血管进入血液循环引起MVI,同时也会导致包膜不完整[17]。Wang等人研究结果显示[18],肿瘤向肝外生长比肝内生长发生MVI的风险增加(OR值2.586,95%CI 1.266~5.284,P < 0.05),这与本研究结果类似(OR值2.315,95%CI 1.020~5.256,P < 0.05)。

此外,我们的结果显示,肝硬化、直径、瘤周高灌注、大血管侵犯与MVI显著相关(P < 0.05)。Huang等人[19]结果表明肝硬化是预测MVI的独立危险因素(OR值8.911,95%CI 1.922~41.318,P < 0.05)。我们的结果显示,肝硬化会导致出现MVI风险增高(OR值2.117,95%CI 0.915~4.898)。合并肝硬化的HCC患者,会出现反复的炎症和坏死的细胞,从而容易形成MVI [20];同时随着肝硬化出现的门静脉高压和肝脏合成功能障碍,会导致血流速度减慢和抗凝血酶水平降低,微血管中癌栓风险增加[21]。肿瘤直径被认为是预测MVI的可靠因素,有研究认为将直径分成<2 cm、2~5 cm、>5 cm三组,证实了肿瘤直径越大,MVI发生的风险越高[22],而Huang等人[19]结果表明直径 > 3 cm是MVI的独立危险因素,本研究并未对直径进行进一步分类,且多因素Logistic分析结果无统计学意义,具体分类临界值可能有待进一步大数据考证。动脉期肿瘤周围出现的高灌注可能与MVI阻塞肿瘤周围小静脉分支,动脉血管代偿性增加血流灌注[23]。胡等人结果显示[17],当肿瘤合并门静脉癌栓时,出现MVI的风险提高。大血管侵犯与MVI的关系可能与癌栓会随着门脉系统转移有关。

本研究有一定的局限性:首先为单中心小样本研究,研究结果需要进一步行多中心大样本验证;其次本研究仅纳入特异性强的AFP,未纳入其他常见生物标志物;再次,本研究有待进一步外部数据集验证;最后影像组学研究可能提供更多肿瘤的MVI信息,进一步将组学纳入研究是必要的。

5. 结论

综上所述,联合独立危险因素AFP、瘤周低密度环和生长方式可以有效预测术前MVI状态,为指导临床诊疗提供了价值。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Rodríguez-Perálvarez, M., Luong, T.V., Andreana, L., Meyer, T., Dhillon, A.P. and Burroughs, A.K. (2012) A Systematic Review of Microvascular Invasion in Hepatocellular Carcinoma: Diagnostic and Prognostic Variability. Annals of Surgical Oncology, 20, 325-339.
https://doi.org/10.1245/s10434-012-2513-1
[3] 段茜婷, 李荣惠, 王关顺, 冯再辉, 等. 基于人工智能影像组学在肝细胞癌中的研究进展[J]. 影像研究与医学应用, 2023(7): 12-14.
[4] Erstad, D.J. and Tanabe, K.K. (2019) Prognostic and Therapeutic Implications of Microvascular Invasion in Hepatocellular Carcinoma. Annals of Surgical Oncology, 26, 1474-1493.
https://doi.org/10.1245/s10434-019-07227-9
[5] Chen, L., Zhang, L., Bao, J., Zhang, J., Li, C., Xia, Y., et al. (2013) Comparison of MRI with Liver-Specific Contrast Agents and Multidetector Row CT for the Detection of Hepatocellular Carcinoma: A Meta-Analysis of 15 Direct Comparative Studies. Gut, 62, 1520-1521.
https://doi.org/10.1136/gutjnl-2013-305231
[6] 吴水天. CT增强扫描在评估原发性肝细胞肝癌TACE术后疗效中的应用[J]. 中国CT和MRI杂志, 2022, 20(3): 91-93.
[7] Cao, L., Wang, Q., Hong, J., Han, Y., Zhang, W., Zhong, X., et al. (2023) MVI-TR: A Transformer-Based Deep Learning Model with Contrast-Enhanced CT for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Cancers, 15, Article 1538.
https://doi.org/10.3390/cancers15051538
[8] 李祥哲, 高中秋, 刘杰. 肝癌微血管侵犯的增强CT评估及风险因素分析[J]. 实用癌症杂志, 2022, 37(1): 102-104.
[9] Zhang, X., Ruan, S., Xiao, W., Shao, J., Tian, W., Liu, W., et al. (2020) Contrast-Enhanced CT Radiomics for Preoperative Evaluation of Microvascular Invasion in Hepatocellular Carcinoma: A Two-Center Study. Clinical and Translational Medicine, 10, e111.
https://doi.org/10.1002/ctm2.111
[10] Schlichtemeier, S.M., Pang, T.C., Williams, N.E., Gill, A.J., Smith, R.C., Samra, J.S., et al. (2016) A Pre-Operative Clinical Model to Predict Microvascular Invasion and Long-Term Outcome after Resection of Hepatocellular Cancer: The Australian Experience. European Journal of Surgical Oncology (EJSO), 42, 1576-1583.
https://doi.org/10.1016/j.ejso.2016.05.032
[11] Kang, W., Cao, X. and Luo, J. (2023) Effect of Multiple Peritumoral Regions of Interest Ranges Based on Computed Tomography Radiomics for the Prediction of Early Recurrence of Hepatocellular Carcinoma after Resection. Quantitative Imaging in Medicine and Surgery, 13, 6668-6682.
https://doi.org/10.21037/qims-23-226
[12] Galle, P.R., Foerster, F., Kudo, M., Chan, S.L., Llovet, J.M., Qin, S., et al. (2019) Biology and Significance of α-Fetoprotein in Hepatocellular Carcinoma. Liver International, 39, 2214-2229.
https://doi.org/10.1111/liv.14223
[13] Li, Y., Li, W., Xu, Y., Jia, L., Wang, M., Qu, M., et al. (2024) Clinical Application of Dual-Layer Spectral CT Multi-Parameter Feature to Predict Microvascular Invasion in Hepatocellular Carcinoma. Clinical Hemorheology and Microcirculation, 88, 97-113.
https://doi.org/10.3233/ch-242175
[14] Ginés, P., Quintero, E., Arroyo, V., Terés, J., Bruguera, M., Rimola, A., et al. (1987) Compensated Cirrhosis: Natural History and Prognostic Factors. Hepatology, 7, 122-128.
https://doi.org/10.1002/hep.1840070124
[15] Segal, E., Sirlin, C.B., Ooi, C., Adler, A.S., Gollub, J., Chen, X., et al. (2007) Decoding Global Gene Expression Programs in Liver Cancer by Noninvasive Imaging. Nature Biotechnology, 25, 675-680.
https://doi.org/10.1038/nbt1306
[16] Renzulli, M., Brocchi, S., Cucchetti, A., Mazzotti, F., Mosconi, C., Sportoletti, C., et al. (2016) Can Current Preoperative Imaging Be Used to Detect Microvascular Invasion of Hepatocellular Carcinoma? Radiology, 279, 432-442.
https://doi.org/10.1148/radiol.2015150998
[17] 胡纳, 杨国庆, 付泉水. CT和MRI在肝细胞癌微血管浸润中的诊断价值[J]. 中国临床医学影像杂志, 2018, 29(8): 575-579.
[18] Wang, Q., Zhou, Y., Yang, H., Zhang, J., Zeng, X. and Tan, Y. (2024) MRI-Based Clinical-Radiomics Nomogram Model for Predicting Microvascular Invasion in Hepatocellular Carcinoma. Medical Physics, 51, 4673-4686.
https://doi.org/10.1002/mp.17087
[19] Huang, X., Li, Y., Jiang, L., Zhao, B., Liu, Y., Chen, C., et al. (2024) Nomogram for Preoperative Estimation of Microvascular Invasion Risk in Hepatocellular Carcinoma. Translational Oncology, 45, Article 101986.
https://doi.org/10.1016/j.tranon.2024.101986
[20] Taura, K., Ikai, I., Hatano, E., Yasuchika, K., Nakajima, A., Tada, M., et al. (2007) Influence of Coexisting Cirrhosis on Outcomes after Partial Hepatic Resection for Hepatocellular Carcinoma Fulfilling the Milan Criteria: An Analysis of 293 Patients. Surgery, 142, 685-694.
https://doi.org/10.1016/j.surg.2007.05.009
[21] Alkim, H., Ayaz, S., Sasmaz, N., Oguz, P. and Sahin, B. (2011) Hemostatic Abnormalities in Cirrhosis and Tumor-Related Portal Vein Thrombosis. Clinical and Applied Thrombosis/Hemostasis, 18, 409-415.
https://doi.org/10.1177/1076029611427900
[22] Yang, J., Qian, J., Wu, Z., Zhang, W., Yin, Z., Shen, W., et al. (2024) Exploring the Factors Affecting the Occurrence of Postoperative MVI and the Prognosis of Hepatocellular Carcinoma Patients Treated with Hepatectomy: A Multicenter Retrospective Study. Cancer Medicine, 13, e6933.
https://doi.org/10.1002/cam4.6933
[23] Matsui, O., Kobayashi, S., Sanada, J., Kouda, W., Ryu, Y., Kozaka, K., et al. (2011) Hepatocelluar Nodules in Liver Cirrhosis: Hemodynamic Evaluation (Angiography-Assisted CT) with Special Reference to Multi-Step Hepatocarcinogenesis. Abdominal Imaging, 36, 264-272.
https://doi.org/10.1007/s00261-011-9685-1