[1]
|
Kanan, M.W. and Nocera, D.G. (2008) In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+. Science, 321, 1072-1075. https://doi.org/10.1126/science.1162018
|
[2]
|
Wang, S., Yu, D. and Dai, L. (2011) Polyelectrolyte Functionalized Carbon Nanotubes as Efficient Metal-Free Electrocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 133, 5182-5185. https://doi.org/10.1021/ja1112904
|
[3]
|
Schipper, F. and Aurbach, D. (2016) A Brief Review: Past, Present and Future of Lithium Ion Batteries. Russian Journal of Electrochemistry, 52, 1095-1121. https://doi.org/10.1134/s1023193516120120
|
[4]
|
Yin, Y., Xin, S., Guo, Y. and Wan, L. (2013) Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angewandte Chemie International Edition, 52, 13186-13200. https://doi.org/10.1002/anie.201304762
|
[5]
|
Gasteiger, H.A., Kocha, S.S., Sompalli, B. and Wagner, F.T. (2005) Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs. Applied Catalysis B: Environmental, 56, 9-35. https://doi.org/10.1016/j.apcatb.2004.06.021
|
[6]
|
Yi, X., Liu, X., Pan, W., Qin, B., Fang, J., Jiang, K., et al. (2022) Evolution of Discharge Products on Carbon Nanotube Cathodes in Li-O2 Batteries Unraveled by Molecular Dynamics and Density Functional Theory. ACS Catalysis, 12, 5048-5059. https://doi.org/10.1021/acscatal.2c00409
|
[7]
|
Kwak, W., Rosy, Sharon, D., Xia, C., Kim, H., Johnson, L.R., et al. (2020) Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future. Chemical Reviews, 120, 6626-6683. https://doi.org/10.1021/acs.chemrev.9b00609
|
[8]
|
Geng, D., Ding, N., Hor, T.S.A., Chien, S.W., Liu, Z., Wuu, D., et al. (2016) From Lithium‐Oxygen to Lithium‐Air Batteries: Challenges and Opportunities. Advanced Energy Materials, 6, Article ID: 150216. https://doi.org/10.1002/aenm.201502164
|
[9]
|
Zhao, B., Wu, Y., Han, L., Xia, Z., Wang, Q., Chang, S., et al. (2022) Collective, Bifunctional 1D CNT/2D TMOH Hybrid Sponge as High-Capacity and Long-Cycle Li-O2 Cathode. Energy Storage Materials, 50, 344-354. https://doi.org/10.1016/j.ensm.2022.05.029
|
[10]
|
Li, C., Huang, G., Yu, Y., Xiong, Q., Yan, J. and Zhang, X. (2022) Three Birds with One Stone: An Integrated Cathode-Electrolyte Structure for High‐performance Solid‐State Lithium-Oxygen Batteries. Small, 18, Article ID: 2107833. https://doi.org/10.1002/smll.202107833
|
[11]
|
Wang, H., Xie, K., Wang, L. and Han, Y. (2013) All Carbon Nanotubes and Freestanding Air Electrodes for Rechargeable Li-Air Batteries. RSC Advances, 3, 8236-8241. https://doi.org/10.1039/c3ra40659h
|
[12]
|
Shen, Z., Zhang, Y., Zhou, C., Wen, R. and Wan, L. (2021) Revealing the Correlations between Morphological Evolution and Surface Reactivity of Catalytic Cathodes in Lithium-Oxygen Batteries. Journal of the American Chemical Society, 143, 21604-21612. https://doi.org/10.1021/jacs.1c09700
|
[13]
|
Pan, J., Tian, X.L., Zaman, S., Dong, Z., Liu, H., Park, H.S., et al. (2018) Recent Progress on Transition Metal Oxides as Bifunctional Catalysts for Lithium‐Air and Zinc‐Air Batteries. Batteries & Supercaps, 2, 336-347. https://doi.org/10.1002/batt.201800082
|
[14]
|
Li, Y., Wang, J., Li, X., Geng, D., Li, R. and Sun, X. (2011) Superior Energy Capacity of Graphene Nanosheets for a Nonaqueous Lithium-Oxygen Battery. Chemical Communications, 47, 9438-9440. https://doi.org/10.1039/c1cc13464g
|
[15]
|
McCloskey, B.D., Speidel, A., Scheffler, R., Miller, D.C., Viswanathan, V., Hummelshøj, J.S., et al. (2012) Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O2 Batteries. The Journal of Physical Chemistry Letters, 3, 997-1001. https://doi.org/10.1021/jz300243r
|
[16]
|
Maiti, U.N., Lee, W.J., Lee, J.M., Oh, Y., Kim, J.Y., Kim, J.E., et al. (2013) 25th Anniversary Article: Chemically Modified/Doped Carbon Nanotubes & Graphene for Optimized Nanostructures & Nanodevices. Advanced Materials, 26, 40-67. https://doi.org/10.1002/adma.201303265
|
[17]
|
王帅晴, 杨思文, 李娜, 等. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 2023, 42(8): 4296-306.
|
[18]
|
Wang, M., Yao, Y., Tang, Z., Zhao, T., Wu, F., Yang, Y., et al. (2018) Self-Nitrogen-Doped Carbon from Plant Waste as an Oxygen Electrode Material with Exceptional Capacity and Cycling Stability for Lithium-Oxygen Batteries. ACS Applied Materials & Interfaces, 10, 32212-32219. https://doi.org/10.1021/acsami.8b11282
|
[19]
|
Murugesan, C., Senthilkumar, B. and Barpanda, P. (2022) Biowaste-Derived Highly Porous N-Doped Carbon as a Low-Cost Bifunctional Electrocatalyst for Hybrid Sodium-Air Batteries. ACS Sustainable Chemistry & Engineering, 10, 9077-9086. https://doi.org/10.1021/acssuschemeng.2c01300
|
[20]
|
Chen, C., Song, J., Zhu, S., Li, Y., Kuang, Y., Wan, J., et al. (2018) Scalable and Sustainable Approach toward Highly Compressible, Anisotropic, Lamellar Carbon Sponge. Chem, 4, 544-554. https://doi.org/10.1016/j.chempr.2017.12.028
|
[21]
|
Kichambare, P., Kumar, J., Rodrigues, S. and Kumar, B. (2011) Electrochemical Performance of Highly Mesoporous Nitrogen Doped Carbon Cathode in Lithium-Oxygen Batteries. Journal of Power Sources, 196, 3310-3316. https://doi.org/10.1016/j.jpowsour.2010.11.112
|
[22]
|
Li, D., Wang, Q., Yao, Y., Wu, F., Yu, Y. and Zhang, C. (2018) New Application of Waste Citrus Maxima Peel-Derived Carbon as an Oxygen Electrode Material for Lithium Oxygen Batteries. ACS Applied Materials & Interfaces, 10, 32058-32066. https://doi.org/10.1021/acsami.8b07212
|
[23]
|
Fu, P., Zhou, L., Sun, L., Huang, B. and Yuan, Y. (2017) Nitrogen-doped Porous Activated Carbon Derived from Cocoon Silk as a Highly Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction. RSC Advances, 7, 13383-13389. https://doi.org/10.1039/c7ra00433h
|
[24]
|
Mi, R., Li, S., Liu, X., Liu, L., Li, Y., Mei, J., et al. (2014) Electrochemical Performance of Binder-Free Carbon Nanotubes with Different Nitrogen Amounts Grown on the Nickel Foam as Cathodes in Li-O2 Batteries. Journal of Materials Chemistry A, 2, 18746-18753. https://doi.org/10.1039/c4ta03457k
|
[25]
|
Liu, H., Zhang, Y., Li, R., Sun, X., Désilets, S., Abou-Rachid, H., et al. (2010) Structural and Morphological Control of Aligned Nitrogen-Doped Carbon Nanotubes. Carbon, 48, 1498-1507. https://doi.org/10.1016/j.carbon.2009.12.045
|
[26]
|
Xiao, J., Mei, D., Li, X., Xu, W., Wang, D., Graff, G.L., et al. (2011) Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Nano Letters, 11, 5071-5078. https://doi.org/10.1021/nl203332e
|
[27]
|
Jang, S., Kim, J., Na, E., Song, M., Choi, J., Song, K., et al. (2019) Facile Synthesis of Mesoporous and Highly Nitrogen/Sulfur Dual-Doped Graphene and Its Ultrahigh Discharge Capacity in Non-Aqueous Lithium Oxygen Batteries. Carbon Letters, 29, 297-305. https://doi.org/10.1007/s42823-019-00026-y
|