特发性炎性肌病合并耶氏肺孢子虫肺炎进展
Progression of Idiopathic Inflammatory Myopathy with Pneumocystis Jirovecii Pneumonia
摘要: 耶氏肺孢子虫肺炎(Pneumocystis Jirovecii Pneumonia, PJP)是一种机会性感染,其发病率低但死亡率高,既往多发于人类免疫缺陷病毒(Human Immunodeficiency Virus, HIV)患者中。由于免疫抑制治疗的广泛使用,PJP已成为免疫功能低下的非HIV感染患者的新威胁。PJP患者的临床表现、诊断方法、危险因素、治疗及预后在HIV患者及非HIV患者中不完全相同。在非HIV患者中PJP往往进展迅速,容易出现呼吸衰竭导致预后不良。PJP的诊断方法有多种包括肺囊虫镜检、聚合酶链反应(PCR)、宏基因组二代测序(NGS),但上述方法均为有创操作且适用范围受限。血清学检查β-D葡聚糖( beta-D glucan, β-DG)是一种较为简便的无创操作,有较高的灵敏度及阴性预测值,目前越来越多地运用于PJP的辅助诊断。因合并PJP往往导致较差结局,故寻找其危险因素很重要,以便早期预防及治疗。有研究表明PJP好发于特发性炎性肌病(Idiopathic Inflammatory Myopathies, IIM)患者中,故本文对PubMed及知网数据库进行了全面的文献检索,对特发性炎性肌病合并耶氏肺孢子虫肺炎患者的发病机制、临床特征、诊断方法、危险因素、治疗及预防等方面做一个系统阐述。
Abstract: Pneumocystis jirovecii pneumonia (PJP) is an opportunistic infection with low morbidity but high mortality that has been prevalent in patients with human immunodeficiency virus (HIV). Due to the widespread use of immunosuppressive therapy, PJP has emerged as a new threat to immunocompromised non-HIV-infected patients. The clinical presentation, diagnostic approach, risk factors, treatment, and prognosis in patients with PJP are not identical in HIV patients and non-HIV patients. In non-HIV patients, PJP tends to progress rapidly and is prone to respiratory failure, leading to a poor prognosis. There are a variety of methods for the diagnosis of PJP, such as microscopic examination of pneumocystis, polymerase chain reaction (PCR), and metagenomic next-generation sequencing (NGS), but these methods are invasive and have limited applicability. Serological beta-D glucan (β-DG) is a relatively simple and non-invasive operation with high sensitivity and negative predictive value, which is increasingly used as an auxiliary diagnosis of PJP. Because the combination of PJP tends to lead to worse outcomes, it is important to look for risk factors for early prevention and treatment. Studies have shown that PJP is more common in idiopathic inflammatory myopathy (IIM), so this paper conducted a comprehensive literature search of PubMed and CNKI databases to systematically elaborate on the pathogenesis, clinical features, diagnostic methods, risk factors, treatment and prevention of idiopathic inflammatory myopathies complicated with pneumocystis jirovecii pneumonia.
文章引用:李俊麒, 唐琳. 特发性炎性肌病合并耶氏肺孢子虫肺炎进展[J]. 临床医学进展, 2025, 15(2): 28-36. https://doi.org/10.12677/acm.2025.152311

1. 引言

特发性炎性肌病(Idiopathic inflammatory myopathies, IIM)是一组罕见的自身免疫性疾病,具有广泛的临床表现,最常见的特征是具有免疫介导的肌肉损伤[1]。根据特征性临床表现、血清学和病理学结果,特发性炎性肌病患者分为皮肌炎、抗合成酶综合征、免疫介导的坏死性肌病、包涵体肌炎和多发性肌炎五种类型[2]。IIM容易并发感染,耶氏肺孢子虫肺炎(Pneumocystis jirovecii pneumonia, PJP)是IIM患者中发生的一种机会性真菌感染性疾病。PJP是由肺孢子菌引起的肺部感染,其主要表现为发热、干咳、呼吸困难、低氧血症,典型的影像学特征为双侧弥漫性的肺间质病变。在过去PJP好发于人类免疫缺陷病毒(Human Immunodeficiency Virus, HIV)患者,但随着免疫抑制剂、糖皮质激素、生物制剂的广泛使用,PJP在非HIV (如恶性肿瘤、器官移植术后及自身免疫性疾病)患者中的发病率显著升高[3] [4]。患者是否合并HIV在临床特点、诊治方法、预后等方面均有所不同。据报道,非HIV但是使用免疫抑制剂患者的PJP较HIV患者发病更隐匿,进展更快,死亡率更高[5],因此,特发性炎性肌病患者发生耶氏肺孢子虫肺炎感染的情况需要引起高度重视。

2. 发病机制

2.1. 特发性炎性肌病发病机制

IIM发病机制目前不明确,但考虑与病毒感染、T细胞免疫、B细胞免疫、遗传因素等有关。部分IIM患者发病前有病毒感染史,如巨细胞病毒、流感病毒、细小病毒,提示病毒感染可能是IIM发病的诱因,但具体机制不详[6]。IIM患者受累的肌纤维周围可发现大量浸润的T淋巴细胞,提示T细胞介导的细胞免疫在IIM患者肌肉损伤中起重要作用,CD8+ T细胞可释放穿孔素、颗粒酶从而诱导肌细胞坏死[7],活化的CD4+ T细胞发展成不同类型的T辅助细胞(TH)协同促进巨噬细胞及树突状细胞产生β趋化因子进而促进单核细胞的迁移至肌肉内膜和肌周间隙导致局部炎症浸润[8]。B细胞在特发性炎性肌病的免疫机制中起主要作用,它们分化成的浆细胞不仅可以合成和分泌大量免疫球蛋白,还可以调节其他免疫细胞,分泌细胞因子并呈递抗原。遗传因素上HLA-II类基因HLA-DRB1*0301和与它连锁的等位基因DQA1*0501是IIM的主要遗传风险因子[9]。IIM发病机制除上述潜在的遗传、免疫易感因素外,还需要环境触发因素,包括紫外线辐射、吸烟、某些污染物、药物等。

2.2. 耶氏肺孢子虫肺炎发病机制

肺孢子菌是一种有独特嗜肺性的机会性真菌,通常定植在肺组织中,流行病学表示与该微生物的初次接触发生在婴儿期[10],PJP是潜伏感染重新激活的结果。PJP发病几乎只存在于免疫功能障碍患者中如自身免疫性疾病、实体器官移植、肿瘤等,肺孢子菌感染开始于滋养体,肺孢子菌附着于I型肺泡细胞与之相互作用并增殖引起肺泡损伤、嗜酸性肺泡内泡沫基质和间质性炎症反应,导致肺部疾病、进行性低氧血症和死亡[11] [12]。肺泡巨噬细胞是防御PJP的中心效应细胞,巨噬细胞对肺孢子菌的吞噬作用是通过多种受体系统实现的,其中包括甘露糖受体与肺孢子菌表面的gpA/MSG相互作用,以及肺孢子菌的β-D-葡聚糖与dectin-1受体之间的相互作用[13]-[15]。肺孢子虫一旦被纳入吞噬溶酶体中,就会被降解[16]。但在没有肺部炎症的情况下,肺孢子虫对肺功能几乎没有直接影响[17] [18]。炎症会诱导弥漫性肺泡损伤并损害气体交换,导致呼吸衰竭,有研究表明肺部炎症程度的相关性比微生物负荷更密切[19],这表明有效的宿主炎症反应是消除肺孢子虫感染所必需的。

3. 临床表现

3.1. IIM的临床表现

特发性炎性肌病是一组异质性的自身免疫性疾病,通常以慢性肌肉炎症为特征,IIM最典型的症状是对称性的近端肌无力,最常受影响的是臀部和大腿肌肉,颈部肌肉则常影响颈曲肌,有时伴有肌肉疼痛。除此之外IIM常常伴有皮肤、肺和关节病变引起的肌外表现。根据不同的肌炎类型及肌炎抗体分型其临床症状有不同表现[20]

3.2. PJP的临床表现

PJP多以发热、干咳起病,病情进展迅速者可发展为低氧血症甚至呼吸衰竭,其临床症状不特异,肺部听诊多正常[21] [22]

4. PJP诊断方法

PJP的临床表现有时不典型,且其进展迅速,这可能导致抗PJP治疗延迟。因此,具有高灵敏度和特异性的诊断工具一直是临床医生所追求的。肺孢子菌的检查主要为肺囊虫镜检、聚合酶链反应(PCR)、宏基因组二代测序(NGS)、β-D-葡聚糖(β-DG)。

4.1. 肺囊虫镜检

肺囊虫镜检是诊断PJP的金标准,它在特异性和阴性预测值方面具有优异性能,但其灵敏度低仅有9.3% [23],吉姆萨染色可能低估PJP感染率[24],故阴性结果不能排除PJP。而且此检查方法依赖于观察者的技能和经验,故目前较少使用。

4.2. 聚合酶链反应

PCR比镜检快速且更敏感,阴性PCR高度提示不存在肺孢子虫,但其诊断价值在识别混合感染方面有限。阳性PCR不能区分定殖和活动性感染,而混合性感染在免疫抑制患者中常见,PCR可能导致病原体漏诊,故目前也较少使用。

4.3. 宏基因组二代测序

NGS近年来快速发展,成为诊断PJP的新工具,其诊断性能与PCR相比在灵敏度和特异性方面没有显示出显著差异,但NGS可以同时测量数百万甚至上亿条核酸序列,可以检测出样本中包括细菌、病毒、真菌、寄生虫在内的所有微生物,在常合并多种病原体感染的免疫抑制患者中具有出色表现。既往有研究表明NGS诊断PJP的敏感性为100.0%,特异性为90.0%,曲线下面积最高为0.95,是当前首选的病原体检测方法[23]

以上三种检查均为侵入性检查,因HIV阴性的特发性炎性肌病患者较HIV阳性患者更易出现快速进展的呼吸功能不全,支气管镜检作为侵入性操作往往难以获得,会增加呼吸衰竭的风险。故大家寻找了一种简便且无创的指标:β-DG作为PJP的辅助诊断。

4.4. 血清学检查β-D-葡聚糖

β-D-葡聚糖是包括PJP在内的许多真菌细胞壁的多糖组分,它已成为一些侵袭性真菌疾病(IFD)的有用生物标志物,该检测通常在感染HIV的PJP患者中具有良好的灵敏度[25],并显示出较高的阴性预测值。但因为非HIV患者中真菌负荷较HIV患者低,非HIV-PJP的血清β-DG临界值被认为低于HIV-PJP且其灵敏度低。有研究纳入合并PJP的非HIV患者,得出β-DG的临界值为8.5 pg/mL,并以此为分界点,其敏感度、特异度、阳性预测值和NPV分别为76%、76%、57%和89% [26]。Ariel D. Szvalb等人纳入合并癌症的PJP患者,使用不同的β-DG阈值(≥80 pg/mL、200 pg/mL和400 pg/mL),灵敏度随着阈值的升高而降低,特异度随着阈值的升高而升高,当β-DG阈值为400 pg/mL时,特异性增加至93.2%,阴性预测值为97.7%,而灵敏度和阳性预测值分别为35.6%和15.2% [27]。在HIV患者中当β-DG截止水平为200 pg/ml时其敏感性和特异性分别为92%和90% [28]。虽然非HIV患者真菌负荷低,阴性结果不能用于排除,但有研究表明β-DG可区分PJP定植和感染。虽然β-DG不是PJP的特异性真菌标志物,其他真菌对气道的定殖也会使β-DG浓度升高,也可受到静脉输注免疫球蛋白、白蛋白和其他物质的影响[29]。但结合患者的临床背景、临床症状、影像学特征通常可以帮助区分PJP和其他致病因素,β-DG检测可用作诊断PJP的辅助手段[30]

5. 诊断标准

确诊PJP:1) 临床症状:发热、呼吸困难、咳嗽、低氧血症。2) 放射学标准:胸部计算机断层扫描(CT)中肺部双侧毛玻璃样阴影或胸部X线中双侧弥漫性肺泡浸润。3) 镜检阳性:通过显微镜检查,采用常规或免疫荧光染色法在呼吸道标本中发现肺孢子菌。

可能PJP:1) 适当的宿主因素:过去60天使用≥0.3 mg/kg的泼尼松大于2周或CD4+ T淋巴细胞计数 < 200个或合并不同的基础疾病(原发性免疫缺陷、非霍奇金淋巴瘤、实体瘤、实体器官移植、自身免疫性疾病、高炎性疾病等)。2) 与明确PJP定义中相同的临床症状和放射学标准。3) 镜检阴性但通过PCR检测到呼吸道标本(支气管肺泡灌洗液、诱导痰液或口腔洗液)中的肺孢子菌DNA或排除侵袭性真菌感染后血清中的β-D-葡聚糖阳性[31]

6. 特发性炎性肌病患者发生耶氏肺孢子虫肺炎的危险因素

6.1. 抗黑色素瘤分化相关基因5抗体

风湿性疾病患者接受强化免疫抑制治疗,因此免疫功能低下,经常遭受机会性感染[32]。最近的一项研究表明,潜在的多发性肌炎/皮肌炎(PM/DM)显著使患者易患耶氏肺孢子虫肺炎[33]。在免疫功能低下(非HIV)患者中死亡率为30-60%。抗黑色素瘤分化相关基因5抗体阳性皮肌炎(Anti-melanoma differentiation-related gene 5 antibody positive dermatomyositis,抗MDA5 + DM)是IIM的一种独特亚型。它的特点是皮肤表现、淋巴细胞减少和间质性肺疾病(Interstitial lung disease, ILD)。既往已有研究表明抗MDA5 + DM是发生PJP的独立危险因素[34]。可能是由于抗MDA5 + DM常并发ILD,尤其是快速进展ILD (Rapidly progressive interstitial lung disease, RP-ILD)导致肺基础结构异常,潜在的呼吸道疾病导致肺粘膜屏障受损从而为机会性病原体提供了更易感染的环境。

6.2. 间质性肺疾病

间质性肺疾病(Interstitial lung disease, ILD)是最常见的IIM肺部表现,主要特征是肺间质的炎症或纤维化导致气体交换受损,从而出现呼吸困难、运动耐量下降。在动物模型中,已经证明少量肺孢子虫生物体诱导肺泡巨噬细胞活化,增加促炎性白细胞介素水平,并引起肺表面活性成分的变化[35] [36]。这种肺部炎症以及肺孢子虫引起的肺泡损伤会引发适应性免疫反应,这种免疫反应可能在ILD的发病机制和疾病向纤维化的进展中发挥作用。IIM-ILD患者目前生存时间较前延长,但若是发展为RP-ILD可能预后不良。IIM-ILD患者通常会并发生咳嗽和呼吸困难,与PJP患者具有相似的临床症状,因此可能导致PJP被低估或误诊。胸部高分辨率CT (HRCT)是疑似间质性肺病患者的关键检查,故特发性炎性肌病患者应行HRCT以评估肺部病变。

6.3. 淋巴细胞

淋巴细胞是体内免疫反应的重要组成部分,是人体免疫功能的主要执行者之一。特发性炎性肌病患者大多处于免疫抑制状态,淋巴细胞计数可能是一个用于确定无HIV的免疫抑制患者PJP风险的有用指标。T淋巴细胞缺陷与PJP的发病机制有关。许多研究证明淋巴细胞绝对数减少是发生PJP的危险因素。可能是由于IIM患者多使用糖皮质激素治疗,糖皮质激素可以导致淋巴细胞绝对值减少[37]。但也有研究表明无论患者是否使用糖皮质激素,淋巴细胞减少都可能是PJP的危险因素[38]

6.4. 乳酸脱氢酶

乳酸脱氢酶(Lactate dehydrogenase, LDH)是一种普遍存在的酶,由于PJP损伤肺导致细胞质膜受损从而LDH从细胞中释放,因此LDH可能反应潜在的肺部炎症和损伤。回顾性研究发现,LDH是PJP患者疾病严重程度和死亡率的预测指标,也是治疗期间评估患者状况的标志物[39]。超过90%的HIV-PJP患者血清LDH水平升高[40]。但有研究表明在非HIV患者中LDH不会升高,故LDH对特发性炎性肌病合并PJP的诊断性能还有待进一步研究。

除了上述危险因素外,高炎症状态、低白蛋白血症、疾病严重程度、合并其他基础疾病等都是发生PJP的危险因素[41] [42]

7. 治疗及预防

由耶氏肺孢子虫引起的耶氏肺孢子虫肺炎是免疫功能低下患者可能危及生命的感染,非HIV感染者的肺孢子虫肺炎通常表现出比HIV感染者更严重的症状,死亡率也更高,故治疗及预防尤为重要。甲氧苄啶–磺胺甲恶唑(TMP-SMX)是治疗及预防PJP的一线药物,其作用于二氢叶酸合成酶和二氢叶酸还原酶,双重阻断叶酸合成,干扰病菌蛋白质的合成[43] [44]。除了磺胺甲恶唑,其他药物如阿托伐醌用于轻度PJP,喷他脒由于其显著的毒性是二线药物。一项系统性综述得出结论,肺孢子虫肺炎和免疫抑制之间的强相关性表明风险应集中在免疫抑制的净状态,而不是基础疾病,包括使用糖皮质激素和治疗条件,特别是损害T细胞介导的免疫[31]

特发性炎性肌病患者往往使用糖皮质激素、免疫抑制剂、生物制剂进行治疗,这些药物也在既往的研究中明确为非HIV感染者发生PJP的重要风险因素。全身大剂量类固醇治疗是对抗风湿性疾病最重要的武器之一,但激素的用量、持续用药时间对特发性炎性肌病发生PJP的危险程度不同。有研究表明类固醇治疗患者发生PJP的风险具有剂量依赖性。长期(≥4周)、高剂量泼尼松(>30 mg/天)与PJP发生相关[45] [46]。有研究表明接受≥60 mg/天泼尼松的患者中,TMP-SMX预防的获益超过风险。但在接受高剂量类固醇激素的非HIV患者中停止PJP预防的最佳时间仍不清楚。值得注意的是,大多数PJP病例(90%)发生在患者接受≥15 mg/天泼尼松或等效药物治疗时,这与先前研究的结果一致[17]。这表明,将类固醇剂量逐渐减少至<15 mg/kg,可能是考虑停止预防的相关时间点。但如果存在其他PJP风险因素,应强烈考虑继续使用[47]

虽然预防PJP的发生很重要,但TMP-SMX副作用也会导致严重后果甚至危及生命,TMP-SMX的潜在副作用包括恶心、腹泻、超敏反应(皮疹、发热)、肌酐升高、转氨酶升高、白细胞减少症和罕见的重度免疫介导反应[48]。所以需要降低剂量或者采用二线药物治疗来减少药物不良事件的发生,临床医生在进行耶氏肺孢子虫肺炎预防时要注意平衡收益与风险。

8. 总结

随着对自身免疫疾病的深入认识,IIM被大家所了解,目前有不少抗体及血清标志物对IIM诊断具有高度特异性,PJP作为IIM的一个容易出现严重后果的并发症,我们有必要进一步探索。因IIM患者的某些呼吸道临床症状与PJP感染时类似,这对临床医生判断疾病造成了干扰,可能导致诊断及治疗滞后。因此我们需要充分了解其发病机制、临床表现、诊断方法、危险因素等以早期识别出PJP患者从而进行预防及治疗。

NOTES

*通讯作者。

参考文献

[1] Lundberg, I.E., Fujimoto, M., Vencovsky, J., Aggarwal, R., Holmqvist, M., Christopher-Stine, L., et al. (2021) Idiopathic Inflammatory Myopathies. Nature Reviews Disease Primers, 7, Article No. 86.
https://doi.org/10.1038/s41572-021-00321-x
[2] Mariampillai, K., Granger, B., Amelin, D., Guiguet, M., Hachulla, E., Maurier, F., et al. (2018) Development of a New Classification System for Idiopathic Inflammatory Myopathies Based on Clinical Manifestations and Myositis-Specific Autoantibodies. JAMA Neurology, 75, 1528-1537.
https://doi.org/10.1001/jamaneurol.2018.2598
[3] Salzer, H.J.F., Schäfer, G., Hoenigl, M., Günther, G., Hoffmann, C., Kalsdorf, B., et al. (2018) Clinical, Diagnostic, and Treatment Disparities between HIV-Infected and Non-HIV-Infected Immunocompromised Patients with Pneumocystis jirovecii Pneumonia. Respiration, 96, 52-65.
https://doi.org/10.1159/000487713
[4] Bienvenu, A., Traore, K., Plekhanova, I., Bouchrik, M., Bossard, C. and Picot, S. (2016) Pneumocystis Pneumonia Suspected Cases in 604 Non-HIV and HIV Patients. International Journal of Infectious Diseases, 46, 11-17.
https://doi.org/10.1016/j.ijid.2016.03.018
[5] Chen, X., Shu, X., He, L., Yang, H., Lu, X., Wang, G., et al. (2023) High Prevalence and Mortality of Pneumocystis jirovecii Pneumonia in Anti-Mda5 Antibody-Positive Dermatomyositis. Rheumatology, 62, 3302-3309.
https://doi.org/10.1093/rheumatology/kead063
[6] Thompson, C., Piguet, V. and Choy, E. (2017) The Pathogenesis of Dermatomyositis. British Journal of Dermatology, 179, 1256-1262.
https://doi.org/10.1111/bjd.15607
[7] 郝伟丽, 周晓鸿. 免疫因素在特发性炎症性肌病中的作用机制[J]. 皮肤病与性病, 2010, 32(2): 17-19.
[8] Tournadre, A. and Miossec, P. (2009) Chemokines and Dendritic Cells in Inflammatory Myopathies. Annals of the Rheumatic Diseases, 68, 300-304.
https://doi.org/10.1136/ard.2008.095984
[9] Shamim, E.A., Rider, L.G., Pandey, J.P., O’Hanlon, T.P., Jara, L.J., Samayoa, E.A., et al. (2002) Differences in Idiopathic Inflammatory Myopathy Phenotypes and Genotypes between Mesoamerican Mestizos and North American Caucasians: Ethnogeographic Influences in the Genetics and Clinical Expression of Myositis. Arthritis & Rheumatism, 46, 1885-1893.
https://doi.org/10.1002/art.10358
[10] Apostolopoulou, A. and Fishman, J.A. (2022) The Pathogenesis and Diagnosis of Pneumocystis Jiroveci Pneumonia. Journal of Fungi, 8, Article 1167.
https://doi.org/10.3390/jof8111167
[11] Harris, J.R., Balajee, S.A. and Park, B.J. (2010) Pneumocystis jirovecii Pneumonia: Current Knowledge and Outstanding Public Health Issues. Current Fungal Infection Reports, 4, 229-237.
https://doi.org/10.1007/s12281-010-0029-3
[12] Groll, A.H., Ritter, J. and Müller, F.C. (2001) Empfehlungen zur Prävention der Pneumocystis-carinii-Pneumonie bei Kindern und Jugendlichen mit neoplastischen Erkrankungen. Klinische Pädiatrie, 213, A38-A49.
https://doi.org/10.1055/s-2001-17501
[13] O’Riordan, D.M., Standing, J.E. and Limper, A.H. (1995) Pneumocystis Carinii Glycoprotein A Binds Macrophage Mannose Receptors. Infection and Immunity, 63, 779-784.
https://doi.org/10.1128/iai.63.3.779-784.1995
[14] Ezekowitz, R.A.B., Williams, D.J., Koziel, H., Armstrong, M.Y.K., Warner, A., Richards, F.F., et al. (1991) Uptake of Pneumocystis Carinii Mediated by the Macrophage Mannose Receptor. Nature, 351, 155-158.
https://doi.org/10.1038/351155a0
[15] Steele, C., Marrero, L., Swain, S., Harmsen, A.G., Zheng, M., Brown, G.D., et al. (2003) Alveolar Macrophage-Mediated Killing of Pneumocystis carinii F. sp. Muris Involves Molecular Recognition by the Dectin-1 Β-Glucan Receptor. The Journal of Experimental Medicine, 198, 1677-1688.
https://doi.org/10.1084/jem.20030932
[16] Limper, A.H., Hoyte, J.S. and Standing, J.E. (1997) The Role of Alveolar Macrophages in Pneumocystis Carinii Degradation and Clearance from the Lung. Journal of Clinical Investigation, 99, 2110-2117.
https://doi.org/10.1172/jci119384
[17] Beck, J.M., Preston, A.M., Wagner, J.G., Wilcoxen, S.E., Hossler, P., Meshnick, S.R., et al. (1998) Interaction of Ratpneumocystis Cariniiand Rat Alveolar Epithelial Cells in Vitro. American Journal of Physiology-Lung Cellular and Molecular Physiology, 275, L118-L125.
https://doi.org/10.1152/ajplung.1998.275.1.l118
[18] Beck, J.M., Preston, A.M., Wilcoxen, S.E., Morris, S.B., White, E.S. and Paine, R. (2003) Pneumocystis Pneumonia Increases the Susceptibility of Mice to Sublethal Hyperoxia. Infection and Immunity, 71, 5970-5978.
https://doi.org/10.1128/iai.71.10.5970-5978.2003
[19] Limper, A.H., Offord, K.P., Smith, T.F. and Martin, W.J. (1989) Pneumocystis carinii Pneumonia: Differences in Lung Parasite Number and Inflammation in Patients with and without Aids. American Review of Respiratory Disease, 140, 1204-1209.
https://doi.org/10.1164/ajrccm/140.5.1204
[20] Khoo, T., Lilleker, J.B., Thong, B.Y., Leclair, V., Lamb, J.A. and Chinoy, H. (2023) Epidemiology of the Idiopathic Inflammatory Myopathies. Nature Reviews Rheumatology, 19, 695-712.
https://doi.org/10.1038/s41584-023-01033-0
[21] Roux, A., Canet, E., Valade, S., Gangneux-Robert, F., Hamane, S., Lafabrie, A., et al. (2014) Pneumocystis jirovecii Pneumonia in Patients with or without AIDS, France. Emerging Infectious Diseases, 20, 1490-1497.
https://doi.org/10.3201/eid2009.131668
[22] Thomas, C.F. and Limper, A.H. (2004) Pneumocystis Pneumonia. New England Journal of Medicine, 350, 2487-2498.
https://doi.org/10.1056/nejmra032588
[23] Liu, Y., Wang, X., Xu, J., Yang, Q., Zhu, H. and Yang, J. (2023) Diagnostic Value of Metagenomic Next-Generation Sequencing of Lower Respiratory Tract Specimen for the Diagnosis of Suspected Pneumocystis jirovecii Pneumonia. Annals of Medicine, 55, Article 2232358.
https://doi.org/10.1080/07853890.2023.2232358
[24] Bateman, M., Oladele, R. and Kolls, J.K. (2020) Diagnosing Pneumocystis jirovecii Pneumonia: A Review of Current Methods and Novel Approaches. Medical Mycology, 58, 1015-1028.
https://doi.org/10.1093/mmy/myaa024
[25] Mehta, P., Aggarwal, R., Porter, J.C. and Gunawardena, H. (2022) Management of Interstitial Lung Disease (ILD) in Myositis Syndromes: A Practical Guide for Clinicians. Best Practice & Research Clinical Rheumatology, 36, Article 101769.
https://doi.org/10.1016/j.berh.2022.101769
[26] Szvalb, A.D., Malek, A.E., Jiang, Y., Bhatti, M.M., Wurster, S. and Kontoyiannis, D.P. (2020) Serum (1,3)-Beta-D-Glucan Has Suboptimal Performance for the Diagnosis of Pneumocystis jirovecii Pneumonia in Cancer Patients and Correlates Poorly with Respiratory Burden as Measured by Quantitative PCR. Journal of Infection, 81, 443-451.
https://doi.org/10.1016/j.jinf.2020.07.003
[27] Taniguchi, J., Nakashima, K., Matsui, H., Watari, T., Otsuki, A., Ito, H., et al. (2021) Low Cut-Off Value of Serum (1,3)-Beta-D-Glucan for the Diagnosis of Pneumocystis Pneumonia in Non-HIV Patients: A Retrospective Cohort Study. BMC Infectious Diseases, 21, Article No. 1200.
https://doi.org/10.1186/s12879-021-06895-x
[28] Hammarström, H., Grankvist, A., Broman, I., Kondori, N., Wennerås, C., Gisslen, M., et al. (2019) Serum-Based Diagnosis of Pneumocystis Pneumonia by Detection of Pneumocystis jirovecii DNA and 1,3-Β-D-Glucan in HIV-Infected Patients: A Retrospective Case Control Study. BMC Infectious Diseases, 19, Article No. 658.
https://doi.org/10.1186/s12879-019-4289-4
[29] Liu, L., Yuan, M., Shi, Y. and Su, X. (2021) Clinical Performance of BAL Metagenomic Next-Generation Sequence and Serum (1,3)-Β-D-Glucan for Differential Diagnosis of Pneumocystis jirovecii Pneumonia and Colonisation. Frontiers in Cellular and Infection Microbiology, 11, Article 784236.
https://doi.org/10.3389/fc Pneumocystis jirovecii imb.2021.784236
[30] Karageorgopoulos, D.E., Qu, J.-M., Korbila, I.P., Zhu, Y.-G., Vasileiou, V.A. and Falagas, M.E. (2013) Accuracy of Β-D-Glucan for the Diagnosis of Pneumocystis jirovecii Pneumonia: A Meta-Analysis. Clinical Microbiology and Infection, 19, 39-49.
https://doi.org/10.1111/j.1469-0691.2011.03760.x
[31] Lagrou, K., Chen, S., Masur, H., Viscoli, C., Decker, C.F., Pagano, L., et al. (2021) Pneumocystis jirovecii Disease: Basis for the Revised EORTC/MSGERC Invasive Fungal Disease Definitions in Individuals without Human Immunodeficiency Virus. Clinical Infectious Diseases, 72, S114-S120.
https://doi.org/10.1093/cid/ciaa1805
[32] Tasaka, S. (2020) Recent Advances in the Diagnosis and Management of Pneumocystis Pneumonia. Tuberculosis and Respiratory Diseases, 83, Article 132.
https://doi.org/10.4046/trd.2020.0015
[33] Hsu, C., Ko, C., Wang, J., Hsu, T. and Lin, C. (2019) Comparing the Burdens of Opportunistic Infections among Patients with Systemic Rheumatic Diseases: A Nationally Representative Cohort Study. Arthritis Research & Therapy, 21, Article No. 211.
https://doi.org/10.1186/s13075-019-1997-5
[34] Sabbagh, S.E., Neely, J., Chow, A., DeGuzman, M., Lai, J., Lvovich, S., et al. (2020) Risk Factors Associated with Pneumocystis jirovecii Pneumonia in Juvenile Myositis in North America. Rheumatology, 60, 829-836.
https://doi.org/10.1093/rheumatology/keaa436
[35] Vassallo, R., Standing, J.E. and Limper, A.H. (2000) Isolated Pneumocystis Carinii Cell Wall Glucan Provokes Lower Respiratory Tract Inflammatory Responses. The Journal of Immunology, 164, 3755-3763.
https://doi.org/10.4049/jimmunol.164.7.3755
[36] Prévost, M. (1998) XV. Pneumocystosis Pathophysiology. FEMS Immunology and Medical Microbiology, 22, 123-128.
https://doi.org/10.1016/s0928-8244(98)00069-8
[37] Li, J., Wang, S., Zheng, J., Li, Q., Li, J. and Lu, L. (2022) Clinical Characteristics of and Risk Factors for Pneumocystis jirovecii Pneumonia in Anti-Melanoma Differentiation-Associated Gene 5 (Anti-Mda5) Antibody-Positive Dermatomyositis Patients: A Single-Center Retrospective Study. Clinical Rheumatology, 42, 453-462.
https://doi.org/10.1007/s10067-022-06403-9
[38] Mecoli, C.A. and Danoff, S.K. (2020) Pneumocystis jirovecii Pneumonia and Other Infections in Idiopathic Inflammatory Myositis. Current Rheumatology Reports, 22, Article No. 7.
https://doi.org/10.1007/s11926-020-0883-0
[39] Jin, F., Liu, X., Chen, W., Fan, Z. and Wang, H. (2019) High Initial (1, 3) Beta-D-Glucan Concentration May Be a Predictor of Satisfactory Response of C Aspofungin Combined with TMP/SMZ for HIV-Negative Patients with Moderate to Severe Pneumocystis jirovecii Pneumonia. International Journal of Infectious Diseases, 88, 141-148.
https://doi.org/10.1016/j.ijid.2019.08.015
[40] Quist, J. and Hill, A.R. (1995) Serum Lactate Dehydrogenase (LDH) in Pneumocystis Carinii Pneumonia, Tuberculosis, and Bacterial Pneumonia. Chest, 108, 415-418.
https://doi.org/10.1378/chest.108.2.415
[41] 孟淑艳. 血清铁蛋白、CYFRA21-1及ESR在肺癌诊断和病情评估中的应用价值[J]. 中国卫生工程学, 2024, 23(4): 546-548.
[42] 刘昕, 张晓萌, 马楠, 等. 甲功、ESR、WBC、NLR在SAT急性炎症期和恢复期的比较分析[J]. 标记免疫分析与临床, 2022, 29(8): 1280-1284.
[43] Kaplan, J.E., Benson, C., Holmes, K.K., Brooks, J.T., Pau, A., Masur, H. and HIV Medicine Association of the Infectious Diseases Society of America (2009) Guidelines for Prevention and Treatment of Opportunistic Infections in HIV-Infected Adults and Adolescents. MMWR Recommendations and Reports, 58, 1-207.
[44] Maschmeyer, G., Helweg-Larsen, J., Pagano, L., Robin, C., Cordonnier, C. and Schellongowski, P. (2016) ECIL Guidelines for Treatment of Pneumocystis jirovecii Pneumonia in Non-HIV-Infected Haematology Patients. Journal of Antimicrobial Chemotherapy, 71, 2405-2413.
https://doi.org/10.1093/jac/dkw158
[45] Park, J.W., Curtis, J.R., Kim, M.J., Lee, H., Song, Y.W. and Lee, E.B. (2019) Pneumocystis Pneumonia in Patients with Rheumatic Diseases Receiving Prolonged, Non-High-Dose Steroids—Clinical Implication of Primary Prophylaxis Using Trimethoprim-Sulfamethoxazole. Arthritis Research & Therapy, 21, Article No. 207.
https://doi.org/10.1186/s13075-019-1996-6
[46] Yale, S.H. and Limper, A.H. (1996) Pneumocystis Carinii Pneumonia in Patients without Acquired Immunodeficiency Syndrome: Associated Illnesses and Prior Corticosteroid Therapy. Mayo Clinic Proceedings, 71, 5-13.
https://doi.org/10.4065/71.1.5
[47] Winthrop, K.L. and Baddley, J.W. (2018) Pneumocystis and Glucocorticoid Use: To Prophylax or Not to Prophylax (and When). That Is the Question. Annals of the Rheumatic Diseases, 77, 631-633.
https://doi.org/10.1136/annrheumdis-2017-212588
[48] Sowden, E. and Carmichael, A.J. (2004) Autoimmune Inflammatory Disorders, Systemic Corticosteroids and Pneumocystis Pneumonia: A Strategy for Prevention. BMC Infectious Diseases, 4, Article No. 42.
https://doi.org/10.1186/1471-2334-4-42