二维斑点追踪成像对于非瓣膜性心房颤动患者左心功能的评估
Two-Dimensional Speckle Tracking Echocardiography for Evaluating Left Heart Function in Patients with Non-Valvular Atrial Fibrillation
DOI: 10.12677/acm.2025.152312, PDF, HTML, XML,   
作者: 柳雪晨, 廖梦倩, 潘俊翔, 王廉一*:清华大学临床医学院,北京;清华大学第一附属医院心内科,北京;杨 雷:清华大学临床医学院,北京
关键词: 非瓣膜性心房颤动超声心动图二维斑点追踪成像左心功能Non-Valvular Atrial Fibrillation Echocardiogram Two-Dimensional Speckle Tracking Echocardiography Left Heart Function
摘要: 心房颤动是临床中一种极为常见的心律失常,这种心律失常可以导致心脏结构与功能发生改变。在临床评估中,尽管超声心动图技术可用于评估心脏的相关改变,但对于心房颤动患者而言,其应用具有一定的局限性,而二维斑点追踪成像对心房颤动患者的左心功能评估与预防不良临床事件的发生扮演着重要角色。本综述旨在探讨二维斑点追踪成像对于非瓣膜性心房颤动患者左心功能评估中的应用。
Abstract: Atrial fibrillation is a common cardiac arrhythmia frequently encountered in clinical settings, associated with alterations in both the structure and function of the heart. Echocardiography is a wildly utilized modality for evaluating these cardiac modifications. However, its utility in patients with atrial fibrillation is subject to limitations. Two-dimensional speckle tracking imaging has been identified as a beneficial technique for assessing left heart function in patients with atrial fibrillation, potentially influencing the prevention of adverse clinical outcomes. This review delves into the application of two-dimensional speckle tracking imaging to evaluate left heart function in patients with non-valvular atrial fibrillation.
文章引用:柳雪晨, 杨雷, 廖梦倩, 潘俊翔, 王廉一. 二维斑点追踪成像对于非瓣膜性心房颤动患者左心功能的评估[J]. 临床医学进展, 2025, 15(2): 37-44. https://doi.org/10.12677/acm.2025.152312

1. 引言

心房颤动(房颤)是一种正常的窦房结节律被心房紊乱的电生理脉冲打乱,导致心脏的搏动变得快速而不规律,在临床实践中十分常见,且患者存在较高的血栓栓塞风险,尤其是脑栓塞,常可危及患者的生命。心房无序的颤动使心脏失去了有效的收缩与舒张功能,并可引发一系列的心脏结构改变,因此在临床评估中,通过特定的技术手段检测相关参数对于评价患者的心功能至关重要。识别各项参数十分重要,这些参数不仅可以较早地检测心脏结构和功能的改变,也可以预测房颤的发生以降低房颤的致残率。在窦性心律中,左心室的大小、心室壁厚度、左心室射血分数(LVEF)、左心房容积等均可在一定程度上反映左心功能情况[1]。常规评估左心功能时,主要依靠E、e’、E/A、LVEF等参数,但房颤时存在A波消失情况,并且房颤时心动周期长短不一、心室律绝对不齐,造成不同周期的E峰不断发生变化,使得某些常规测量参数受到限制,使房颤患者左心功能的评估十分困难,这成为临床上亟待解决的问题[2],受到临床医师的广泛关注。本文旨在综述二维斑点追踪成像技术评估非瓣膜性心房颤动患者左心功能方面的应用。

2. 心房颤动与心脏结构改变的关系

房颤的发生是由于异位电活动引起的。异位电活动是指心房组织中除窦房结以外的部分以高于窦性心律的速率自发去极化。房颤期间,心房激动频率可达350~600次/分,虽然房室结存在一定的阻滞作用,但兴奋仍可以不等比传导至心室,造成心率整体加快致心室充盈时间缩短,进而使左心室舒张期缩短,冠状动脉充盈减少,从而可能导致心肌缺血,可发生心脏功能及结构的改变。此外,房颤患者心房失去有效的收缩,使血液无法正常从心房进入到心室,加之左心室射血功能降低造成血液淤积于心室,增加左心房压力负荷,使心房向心室的射血量进一步减少,加重左心房血液淤积而导致肺静脉高压、肺动脉高压,加重了右心室的压力负荷,并促使右心室为适应增加的后负荷而发生结构上的改变[3]。鉴于房颤可导致心脏发生一系列的结构改变,并且房颤持续时间越长,心脏结构变化程度和心功能恶化越明显[4],因此在临床实践中,有必要采用相应的方法对心脏的结构与功能改变进行测量与评估。近年来,二维斑点追踪成像测量的相关应变参数受到广泛关注。

3. 有创评估与常规超声在房颤患者左心功能评估中的应用

对于左心室功能的测量,临床中的有创手段一般指Swan-Ganz气囊漂浮导管和左心导管。Swan-Ganz气囊漂浮导管仍然是确定肺血流动力学的金标准,虽然导管不能直接进入左心室,它主要通过测量肺动脉压、肺毛细血管楔压(PCWP)等指标来间接反映左心室充盈压情况,在反映左心室舒张功能方面有一定意义[5]。左心导管技术则可以直接进入左心房、左心室来测量相关参数,被认为是测量左心室充盈压的金标准。然而由于这两种技术均为侵入性检查,存在一定的风险和并发症,因此在临床实践中不宜作为常规检查手段[5] [6],且随着无创的超声心动图的发展与进步,漂浮导管与左心导管逐渐被超声心动图所取代。常规超声心动图虽然可通过心房与心室的容积、E峰、A峰、E/A等指标评估左心功能,但在房颤患者中,由于二尖瓣、三尖瓣口血流频谱常表现为单峰,且房颤患者心动周期长短不一,不同周期的E峰是不断变化的,存在A波消失的情况,而常规超声心动图对于某些指标的测量需要建立在规律的心房波形上[1],评估受限,因此在房颤患者中其评估左心功能的作用受到限制,故在此不再详细讨论其在房颤患者中的应用。

4. 二维斑点追踪成像(2D-STI)

二维斑点追踪成像是近些年来一种新兴的超声心动图技术,具有较高的时间与空间分辨率,且观察者之间差异不明显[7] [8],作为一种评估心功能的新工具,尤其是在房颤患者中,一些应变参数也可以很好地反映左心功能的情况。因其可以在不同的心动周期中追踪各阶段的心肌运动,并与上一帧的图像位置进行比较而生成心肌各节段及总的应变和应变率曲线、定量检测心肌运动速度,对心肌整体与节段均能进行较准确分析[9] [10],已成为应变评估的标准,且心房与心室是相互依赖的,左心房的相关参数可以代替左心室的情况[11] [12],左心房与左心室相关的应变指标均能较好地反映左心功能的情况。

鉴于房颤心脏节律的特殊性,既往我们选择RR间期相对恒定的3个心动周期的数值,并取平均值,以尽量减少测量误差[13]。然而,目前最受关注的数据采集方法是指数搏动法,通常从15个存储的心动周期中选择两个几乎相等的心动周期之后的心动周期,即选择前一RR间期(RR1)与RR1前一RR间期(RR2)比值约为1的后一心动周期进行分析,要注意RR1与RR2间期必须>500 ms,且两者之间的差值必须<60 ms,选择的心动周期RR间期也需>500 ms,研究发现使用指数搏动法测定的指标与常规平均法具有良好的一致性,甚至比常规方法更省时、与心率有更好的相关性[14]-[16]

在临床中常使用NT-pro BNP、NYHA心功能分级来反映患者的心功能情况。有研究发现,二维斑点追踪成像测量的应变指标,如左心房整体峰值纵向应变(PALS),与其有良好的一致性,且对于射血分数保留型心力衰竭患者的房颤发生具有一定的预测作用[17] [18]。除此之外,在患者心功能改善方面,PALS还可作为预测因子[19],甚至可以在常规超声指标及NT-pro BNP还未发生变化前检测到心功能的改变,可对于治疗效果进行提前评估。

在临床中,较多研究推荐将左心房应变及左室整体纵向应变(LVGLS)纳入左心功能评估的指标中。研究发现,在房颤患者左心功能评估中,GLS、整体圆周应变(GCS)与左心室射血分数(LVEF)之间呈明显负相关性[20],由于LVEF在反映心功能变化方面具有一定的滞后性[21],二维斑点追踪成像在LVEF正常时,已经可以检测出GLS的细微异常,这一发现提示我们,应变指标能够更早地检测到房颤引发的心功能变化,从而起到预警作用[22],可尽早进行临床干预与临床决策,改善患者的临床结局,但是LVGLS主要反映左心室的相关变化,对于体现房颤引发的心功能改变敏感性与特异性不如左心房应变。

近段时间,左心房应变越来越受到临床重视,有研究发现,反映左心房结构与功能改变的左心房应变指标能够明显提高CHARGE-AF评分对于房颤发生的预测,且敏感性高于上文提到的GLS指标[23]。研究表明,左心房应变与左心房压力升高相关,且房颤持续时间越长,左心房压力升高越明显,左心房应变越低,且左心房压力评估对于是否选择行射频消融治疗的患者及后续围术期管理具有重要意义[24],但是由于房颤患者心脏节律的特殊性,房颤患者应变结果分析只具有PALS指标,而不具备左心房峰值收缩应变(PACS),对于房颤患者左心功能的评估重点多在于PALS指标。相关研究发现,与无复发房颤患者相比,多次复发的房颤患者左心房储备期应变明显减低(18.4% [范围8.8%~24.5%] vs 25.3% [13.6%~32.7%],p < 0.001),且左心房应变 < 22.8%时易发生房颤的复发,这些发现提示我们,应变相关指标不仅能反映左心功能,还能对房颤的复发具有一定的预测价值[25]-[27],可作为房颤复发的独立预测因子,此类患者需更密切地监测与消融后管理,以降低房颤复发的风险。但是也有研究认为应变临界值 < 20%时方能提示心功能异常,应变指标阈值的不同可能由于机器的差异,值得我们更多的探索与研究。对于持续性房颤患者的射频消融,其术后房颤复发率可达30%~40%,而左心房储备期应变及前文提到的PALS指标,均可作为射频消融术后患者疗效的随访指标[28],且射频消融术前较低的左心房纵向应变可作为患者房颤复发的独立预测因素[29]。且有研究对射频消融术后的房颤患者分别进行3个月、6个月的随访,研究发现在患者常规超声指标及化验结果改善不明显时,患者的应变指标已经得到了较可观的好转[30]。在不明原因栓塞性卒中(ESUS)患者人群中,左心房应变降低与未来房颤的发生之间存在显著相关性,发生房颤的患者左心房储备期应变远远低于未发生房颤的患者(25.15 ± 13.57 VS 32.95 ± 16.20, p = 0.05) [31]。研究表明,应变指标可作为非瓣膜性房颤患者卒中风险的预测因素,可结合患者年龄、CHA2DS2VASc评分等因素在心脏复律或电生理手术前作为预测房颤患者卒中风险的一种方法[32],这意味着发生过卒中的房颤患者心脏情况更加糟糕,因此,在评估房颤患者发生脑卒中风险时,纳入左心房应变这一指标可以增加评分的适用性,更好地预测房颤患者脑卒中发生。研究发现,在射血分数保留的窦性心律心力衰竭患者中,PALS、PACS指标对于预测房颤的发生具有显著价值,有助于指导临床医师进行房颤筛查并进一步监测人群中房颤发生的风险,且将PALS与PACS加入到CHARGE-AF评分模型中可提高预测新发房颤的能力,但是,左心房应变在血栓栓塞并发症方面的预测价值相关临床证据并不充分,有待临床医师进行进一步探索[33]。其他研究指出,左心房应变指标比其他常规反映心脏功能的指标可更好地预测房颤的发生[23],且应用左心房应变来评估左心功能的特异性与准确性是优于我们上文提到的三尖瓣返流速度的[34]。根据在健康人群中的测量结果显示,左心房应变 < 23%不仅可以提示左心功能异常,而且左心房应变的降低程度还可以反映左心室舒张功能障碍的严重程度,且在左室充盈压升高的患者中,左心房应变异常的发生率高于在2DE中提到的LAVi异常的发生率,甚至在LAVi正常时,左心房应变的异常已可以检测到早期左心室舒张功能的改变,并且左心房应变与有创性金标准舒张压的测量有强相关性[35]。在反映心脏功能障碍与预测房颤发生中,虽然LAVi是比较重要的指标,但其敏感性与特异性远远低于左心房储存阶段纵向应变(LASr),LASr可作为预测房颤发生的独立指标[36]。左心房应变在反映心室舒张功能上具有高灵敏度与准确度,对心力衰竭评估有一定意义,应变技术能较敏感地检测到十分细微的定量改变并灵敏反映心肌发生损伤的程度,并且在房颤患者心腔容积无明显扩大时已经可以提示房颤组应变及应变率较对照组的下降[20] [23] [37],表明在心脏结构发生改变以前,应变已经可以提示临床医师房颤患者心功能的改变,使临床医师及早进行正确的干预。此外,相关前瞻性研究发现,左心房应变,尤其是左心房收缩期应变,对于亚临床房颤还具有一定的预测作用,且应变数值的降低与未来房颤发生风险相关[38]

应变指标不仅可以反映心功能变化情况,而且在判断心肌纤维化方面,也具有一定的价值。心肌纤维化是心房重构的早期征象[31],它可能导致心肌收缩与舒张功能受损,且房颤患者易发生心肌纤维化的改变,极大地增加了不良心血管事件的风险,所以早期发现与诊断心肌结构的改变对于房颤患者具有重要的预后价值,而二维斑点追踪成像的应变参数不仅能揭示心肌纤维化引起的心肌运动和变形能力的减低[22],且左心房应变可作为射频消融术后房颤复发的独立预测因子[39]。尽管延迟增强心脏磁共振(CMR)成像被认为是评估心肌纤维化的无创金标准,但是已证实左心房应变与心脏核磁之间有良好的一致性[40] [41],且超声相较于核磁,具有成本低、可重复性高的优势。尤其是左心房储存阶段纵向应变(LASr)不仅可以评估患者心肌纤维化的程度,对于患者是否适合行射频消融术及术后患者维持窦性心律的可能性也有一定的评估作用,可影响房颤患者的治疗决策[42] [43]。化验指标Gal-3、sST2是目前与心肌纤维化相关的重要指标,其指标的升高与心脏不良事件相关[44]-[46],而应变技术不仅能较敏感地检测到十分细微的定量改变并灵敏反映心肌发生形变的程度[47],还与反映心肌纤维化的敏感指标sST2有良好的一致性,可以使房颤患者在最终纤维化发生之前得到正确的治疗。

由于2D-STI具有可重复性、无角度依赖性及评估的准确性、灵敏性的优势,它在房颤患者心功能的早期诊断、疗效评价及预后评估方面发挥重要作用[32]。但不足的是,心脏是一个三维立体的结构,并且心肌运动十分复杂,二维斑点追踪成像可能存在一定的平面限制,且2D-STI对于标记的跟踪依赖于帧速度,也受到图像质量的影响[7],然而这些局限性不能否认二维斑点追踪成像在房颤患者左心功能评估中的显著作用,我们旨在向广大临床医师强调,对于房颤患者心功能的评估,超声心动图技术并非束手无策,在后续的临床工作中会有更多的应变指标加入到评估房颤患者心功能的工作中。

5. 三维斑点追踪成像(3D-STI)

三维斑点追踪成像通过跟踪三维空间中的散斑来分析整个左室的功能,它突破了2D-STI的平面限制,它不仅可以检测心脏周期的体积变化,还能够扩展至局部乃至整体的心肌应变分析[48]。与2D-STI相同,3D-STI技术没有角度偏倚,对于心肌的功能变化也比较敏感。然而3D-STI在空间与时间分辨率上,低于2D-STI,并且3D-STI极易受心率变异性、呼吸等情况的影响[49] [50],因此本综述不对3D-STI进行详尽讨论。

6. 讨论

近年来,随着无创的超声心动图技术的发展,涌现出越来越多用于评估心功能的指标,使得心房与心室结构和功能的改变得以直观展现,并为我们提供了预测心功能进展趋势的能力。但是,鉴于房颤患者心脏节律的特殊性,多种参数在评估房颤患者心功能中显得不足,导致临床医师对超声心动图技术的应用范围难以把握。但是,经过研究发现,二维斑点追踪成像可以弥补超声对于房颤患者心功能评估的不足,因此该技术值得我们进一步研究与探索。

对于临床中简便易行的二维超声心动图与实时三维超声心动图,它们的测量受到心律限制,在评估房颤患者左心功能时难以充分发挥作用。而组织多普勒超声虽然可较准确地反映心动周期内左心功能的相关评估,在指南中也有针对房颤患者的明确参数推荐,但是房颤患者心动周期长短不一,不同周期的E峰和e’峰是不断变化的,也会造成测量结果的不稳定及不准确。

而作为评估心功能的新兴技术,二维斑点追踪成像不仅可以评估患者心功能的受损情况,还可反映心脏亚临床的改变,尤其是左心房各项应变指标在近些年体现出较大的价值,其不仅可以较准确地反映左心房、左心室的功能及心肌纤维化的改变,还可以在NT-pro BNP、LVEF等常规测量指标尚未出现异常时,提示心功能的变化,从而揭示心脏的亚临床状态,甚至对于脑卒中的复发及射频消融术后房颤的复发还有一定的预见作用,从而使得临床医师能够更早地进行适当的临床干预与治疗,改善患者的临床结局,因此该技术值得临床医生进行更深入的研究。

综上所述,对于非瓣膜性房颤患者左心功能的评估,大多常规指标会受到多种因素的影响,单一参数无法准确反映左心功能改变的严重程度,但并不是束手无策。二维斑点追踪成像技术能够精准地揭示患者心功能及病理生理的变化,值得临床医师广泛应用,但应变指标降低的阈值仍需要更多的临床实验数据支持,也需临床医师共同探究更多的应变指标来更加准确、全面地评估房颤患者左心功能的情况,深入挖掘房颤对左心功能影响的内在机制,为未来的研究拓展新的视野。

NOTES

*通讯作者。

参考文献

[1] Otto, A.S., Daniel, A.M., Nuno, C., et al. (2021) Multimodality Imaging in Patients with Heart Failure and Preserved Ejection Fraction: An Expert Consensus Document of the European Association of Cardiovascular Imaging. European Heart JournalCardiovascular Imaging, 23, e34-e61.
[2] Sitges, M., Ajmone Marsan, N., Cameli, M., D’Andrea, A., Carvalho, R.F., Holte, E., et al. (2021) EACVI Survey on the Evaluation of Left Ventricular Diastolic Function. European Heart JournalCardiovascular Imaging, 22, 1098-1105.
https://doi.org/10.1093/ehjci/jeab087
[3] Lyon, A., van Mourik, M., Cruts, L., Heijman, J., Bekkers, S.C.A.M., Schotten, U., et al. (2021) Both Beat-To-Beat Changes in Rr-Interval and Left Ventricular Filling Time Determine Ventricular Function during Atrial Fibrillation. EP Europace, 23, i21-i28.
https://doi.org/10.1093/europace/euaa387
[4] Khan, H.R., Yakupoglu, H.Y., Kralj-Hans, I., Haldar, S., Bahrami, T., Clague, J., et al. (2023) Left Atrial Function Predicts Atrial Arrhythmia Recurrence Following Ablation of Long-Standing Persistent Atrial Fibrillation. Circulation: Cardiovascular Imaging, 16, e015352.
https://doi.org/10.1161/circimaging.123.015352
[5] Telly, K. and Lukman Hakim, M. (2023) The Role of New Pulmonary Artery Wedge Pressure Formula to Predict Diastolic Dysfunction in Obstructive Sleep Apnea. Acta Medica Indonesiana, 55, 40-51.
[6] Dickinson, M.G., Lam, C.S., Rienstra, M., Vonck, T.E., Hummel, Y.M., Voors, A.A., et al. (2017) Atrial Fibrillation Modifies the Association between Pulmonary Artery Wedge Pressure and Left Ventricular End‐diastolic Pressure. European Journal of Heart Failure, 19, 1483-1490.
https://doi.org/10.1002/ejhf.959
[7] Mora, V., Roldán, I., Romero, E., Romero, D., Bertolín, J., Ugalde, N., et al. (2018) Comprehensive Assessment of Left Ventricular Myocardial Function by Two-Dimensional Speckle-Tracking Echocardiography. Cardiovascular Ultrasound, 16, Article No. 16.
https://doi.org/10.1186/s12947-018-0135-x
[8] Brian, D.H. (2022) Left Atrial Reservoir Strain: Its Time Has Come. JACC Cardiovasc Imaging, 15, 392-394.
[9] Cameli, M., Miglioranza, M.H., Magne, J., Mandoli, G.E., Benfari, G., Ancona, R., et al. (2020) Multicentric Atrial Strain Comparison between Two Different Modalities: MASCOT HIT Study. Diagnostics, 10, Article 946.
https://doi.org/10.3390/diagnostics10110946
[10] Santoro, C., Donal, E., Magne, J., Sade, L.E., Penicka, M., Katbeh, A., et al. (2023) Inter‐center Reproducibility of Standard and Advanced Echocardiographic Parameters in the EACVI‐AFib Echo Registry. Echocardiography, 40, 775-783.
https://doi.org/10.1111/echo.15640
[11] Silva, M.R., Sampaio, F., Braga, J., Ribeiro, J. and Fontes-Carvalho, R. (2023) Left Atrial Strain Evaluation to Assess Left Ventricle Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction: A Guide to Clinical Practice. The International Journal of Cardiovascular Imaging, 39, 1083-1096.
https://doi.org/10.1007/s10554-023-02816-y
[12] Nagueh, S.F. and Khan, S.U. (2023) Left Atrial Strain for Assessment of Left Ventricular Diastolic Function: Focus on Populations with Normal LVEF. JACC: Cardiovascular Imaging, 16, 691-707.
https://doi.org/10.1016/j.jcmg.2022.10.011
[13] 韩蕊, 梅迎晨, 郑梅, 等. 实时三维超声心动图联合二维斑点追踪成像评价心房颤动患者左心结构及功能[J]. 中国医药导报, 2022, 19(4): 14-17, 27.
[14] Ma, G., Fang, L., Lin, X., Gao, P. and Fang, Q. (2023) Validation of E/e’ Using the Index-Beat Method as an Estimate of Left Atrial Pressure in Patients with Atrial Fibrillation. Cardiology, 148, 418-426.
https://doi.org/10.1159/000532071
[15] Bunting, K.V., Gill, S.K., Sitch, A., Mehta, S., O’Connor, K., Lip, G.Y., et al. (2021) Improving the Diagnosis of Heart Failure in Patients with Atrial Fibrillation. Heart, 107, 902-908.
https://doi.org/10.1136/heartjnl-2020-318557
[16] Kong, L., Sun, L., Chen, L., Lv, X. and Liu, F. (2020) Value of Index Beat in Evaluating Left Ventricular Systolic and Diastolic Function in Patients with Atrial Fibrillation: A Dual Pulsed-Wave Doppler Study. Ultrasound in Medicine & Biology, 46, 255-262.
https://doi.org/10.1016/j.ultrasmedbio.2019.10.028
[17] Xiao, L., Sixu, C., Hong, P., et al. (2024) Predictive Value of NT pro BNP for New-Onset Atrial Fibrillation in Heart Failure and Preserved Ejection Fraction. ESC Heart Fail, 11, 4296-4307.
[18] Yu, T., Cui, H., Chang, W., Li, Y., Cui, X. and Li, G. (2022) Real‐Time Three‐dimensional Echocardiography and Two‐Dimensional Speckle Tracking Imaging in the Evaluation of Left Atrial Function in Patients with Triple‐Vessel Coronary Artery Disease without Myocardial Infarction. Journal of Clinical Ultrasound, 50, 445-454.
https://doi.org/10.1002/jcu.23188
[19] Giulia Elena, M., Maria Concetta, P., Alberto, G., et al. (2022) Deformation Imaging by Strain in Chronic Heart Failure Over Sacubitril-Valsartan: A Multicenter Echocardiographic Registry. ESC Heart Fail, 10, 846-857.
[20] 魏小红, 商鸿, 高建步. 二维超声心动图联合二维斑点追踪成像对老年心房颤动患者心功能的评估[J]. 中国老年学杂志, 2019, 39(14): 3348-3351.
[21] Jiang, H. and Yuan, X. (2023) Research Progress on Novel Ultrasound Techniques in Assessing Left Ventricular Myocardial Function in Patients with Chronic Aortic Regurgitation. The Journal of Practical Medicine, 39, 2446-2449.
[22] Taveras Hiraldo, A. and Canahuate Rodriguez, G. (2023) Speckle-Tracking Echocardiography in Atrial Fibrillation: Philosopher’s Stone or Integral Tool. International Journal of Cardiology, 385, 23-24.
https://doi.org/10.1016/j.ijcard.2023.05.037
[23] Inciardi, R.M., Wang, W., Alonso, A., Soliman, E.Z., Selvaraj, S., Gonçalves, A., et al. (2024) Cardiac Mechanics and the Risk of Atrial Fibrillation in a Community-Based Cohort of Older Adults. European Heart JournalCardiovascular Imaging, 25, 1686-1694.
https://doi.org/10.1093/ehjci/jeae162
[24] Xu, Y., Zhou, J., Su, B., Sun, Y., Zhou, J., Liu, Y., et al. (2024) Left Atrial Strain Parameters to Predicting Elevated Left Atrial Pressure in Patients with Atrial Fibrillation. Echocardiography, 41, e15876.
https://doi.org/10.1111/echo.15876
[25] Ma, X., Boldt, L., Zhang, Y., Zhu, M., Hu, B., Parwani, A., et al. (2016) Clinical Relevance of Left Atrial Strain to Predict Recurrence of Atrial Fibrillation after Catheter Ablation: A Meta‐Analysis. Echocardiography, 33, 724-733.
https://doi.org/10.1111/echo.13184
[26] Ewelina, J.S., Thomas, H.M., Erwan, D., et al. (2021) Prediction of AF in Heart Failure with Preserved Ejection Fraction: Incremental Value of Left Atrial Strain. JACC Cardiovasc Imaging, 14, 131-144.
[27] Gorcsan, J. (2021) Can Left Atrial Strain Forecast Future Fibrillation? JACC: Cardiovascular Imaging, 14, 145-147.
https://doi.org/10.1016/j.jcmg.2020.09.012
[28] Kahle, A., Jungen, C., Scherschel, K., Alken, F. and Meyer, C. (2022) Relationship between Early and Late Recurrences after Catheter Ablation for Atrial Tachycardia in Patients with a History of Atrial Fibrillation. Circulation: Arrhythmia and Electrophysiology, 15, e010727.
https://doi.org/10.1161/circep.121.010727
[29] Lu, Y., Ma, L., Yang, J., Jin, X., Wang, T., Gao, J., et al. (2024) Relationships between Biatrial Substrate and Recurrence after Radiofrequency Ablation in Patients with Persistent Atrial Fibrillation. Pacing and Clinical Electrophysiology, 47, 1157-1167.
https://doi.org/10.1111/pace.15054
[30] 于志琴, 李天亮, 张晓丽, 等. 二维斑点追踪成像技术评价阵发性房颤患者射频消融术前后左心房功能[J]. 中国医学影像技术, 2019, 35(7): 1008-1012.
[31] Bashir, Z., Chen, E.W., Wang, S., Shu, L., Goldstein, E.D., Rana, M., et al. (2024) Left Atrial Strain, Embolic Stroke of Undetermined Source, and Atrial Fibrillation Detection. Echocardiography, 41, e15738.
https://doi.org/10.1111/echo.15738
[32] Zheng, X., Ran, H., Ren, J., Ling, Z., Hou, L., Ao, M., et al. (2023) Two-Dimensional Speckle Tracking Imaging Analyses of the Correlations between Left Atrial Appendage Function and Stroke Risk in Nonvalvular Atrial Fibrillation Patients. The International Journal of Cardiovascular Imaging, 40, 613-623.
https://doi.org/10.1007/s10554-023-03031-5
[33] Jasic-Szpak, E., Marwick, T.H., Donal, E., Przewlocka-Kosmala, M., Huynh, Q., Gozdzik, A., et al. (2021) Prediction of AF in Heart Failure with Preserved Ejection Fraction: Incremental Value of Left Atrial Strain. JACC: Cardiovascular Imaging, 14, 131-144.
https://doi.org/10.1016/j.jcmg.2020.07.040
[34] Frydas, A., Morris, D.A., Belyavskiy, E., Radhakrishnan, A., Kropf, M., Tadic, M., et al. (2020) Left Atrial Strain as Sensitive Marker of Left Ventricular Diastolic Dysfunction in Heart Failure. ESC Heart Failure, 7, 1956-1965.
https://doi.org/10.1002/ehf2.12820
[35] Morris, D.A., Belyavskiy, E., Aravind-Kumar, R., Kropf, M., Frydas, A., Braunauer, K., et al. (2018) Potential Usefulness and Clinical Relevance of Adding Left Atrial Strain to Left Atrial Volume Index in the Detection of Left Ventricular Diastolic Dysfunction. JACC: Cardiovascular Imaging, 11, 1405-1415.
https://doi.org/10.1016/j.jcmg.2017.07.029
[36] Setouhi, A., Abdelrahman, T.M., Ali, A.M. and Abdelwahab, M.A. (2024) Assessment of Left Atrial Function Using Two-Dimensional Speckle Tracking Echocardiography in Cryptogenic Stroke Patients. The Egyptian Heart Journal, 76, Article No. 136.
https://doi.org/10.1186/s43044-024-00563-6
[37] Hirose, K., Nakanishi, K., Daimon, M., Iwama, K., Yoshida, Y., Mukai, Y., et al. (2024) Association of Atrial Fibrillation Progression with Left Atrial Functional Reserve and Its Reversibility. Journal of the American Heart Association, 13, e032215.
https://doi.org/10.1161/jaha.123.032215
[38] Flemming Javier, O., Søren Zöga, D., Peter Godsk, J., et al. (2024) Left Atrial Strain Predicts Subclinical Atrial Fibrillation Detected by Long-Term Continuous Monitoring in Elderly High-Risk Individuals. Circulation: Cardiovascular Imaging, 17, e016197.
[39] Zhong, X., Liu, D., Zheng, Y., Peng, G., Sheng, Y., Chen, L., et al. (2022) Left Atrial Reservoir and Pump Function after Catheter Ablation with Persistent Atrial Fibrillation: A Two-Dimensional Speckle Tracking Imaging Study. Acta Cardiologica, 78, 331-340.
https://doi.org/10.1080/00015385.2022.2076308
[40] Inciardi, R.M., Lupi, L. and Benussi, S. (2024) Left Atrial Strain Importance in Atrial Fibrillation Screening Process. Annals of Cardiothoracic Surgery, 13, 173-175.
https://doi.org/10.21037/acs-2023-afm-0061
[41] Muhammad Umer Riaz, G., Raja Sadam, M., Rahmeen Pervaiz, K., et al. (2024) Atrial Myopathy. Current Problems in Cardiology, 49, Article ID: 102381.
[42] Li, Y., Li, Y., Sun, L., Ye, X., Cai, Q., Zhu, W., et al. (2022) Left Atrial Strain for Predicting Recurrence in Patients with Non-Valvular Atrial Fibrillation after Catheter Ablation: A Single-Center Two-Dimensional Speckle Tracking Retrospective Study. BMC Cardiovascular Disorders, 22, Article No. 468.
https://doi.org/10.1186/s12872-022-02916-y
[43] Brás, P.G., Cunha, P.S., Timóteo, A.T., Portugal, G., Galrinho, A., Laranjo, S., et al. (2023) Evaluation of Left Atrial Strain Imaging and Integrated Backscatter as Predictors of Recurrence in Patients with Paroxysmal, Persistent, and Long-Standing Persistent Atrial Fibrillation Undergoing Catheter Ablation. Journal of Interventional Cardiac Electrophysiology, 67, 479-492.
https://doi.org/10.1007/s10840-023-01602-z
[44] Vértes, V., Porpáczy, A., Nógrádi, Á., Tőkés-Füzesi, M., Hajdu, M., Czirják, L., et al. (2022) Galectin-3 and sST2: Associations to the Echocardiographic Markers of the Myocardial Mechanics in Systemic Sclerosis—A Pilot Study. Cardiovascular Ultrasound, 20, Article No. 1.
https://doi.org/10.1186/s12947-022-00272-7
[45] Gottdiener, J.S., Seliger, S., deFilippi, C., Christenson, R., Baldridge, A.S., Kizer, J.R., et al. (2020) Relation of Biomarkers of Cardiac Injury, Stress, and Fibrosis with Cardiac Mechanics in Patients ≥ 65 Years of Age. The American Journal of Cardiology, 136, 156-163.
https://doi.org/10.1016/j.amjcard.2020.09.013
[46] Mariana Barros Melo da Silveira, M., Victor Batista Cabral, J., Tavares Xavier, A., Palmeira do Ó, K., Francisco de Moura Junior, J., Tavares de Carvalho, O., et al. (2023) The Role of Galectin-3 in Patients with Permanent and Paroxysmal Atrial Fibrillation and Echocardiographic Parameters of Left Atrial Fibrosis. Molecular Biology Reports, 50, 9019-9027.
https://doi.org/10.1007/s11033-023-08774-x
[47] Cameli, M., Mandoli, G.E., Loiacono, F., Sparla, S., Iardino, E. and Mondillo, S. (2016) Left Atrial Strain: A Useful Index in Atrial Fibrillation. International Journal of Cardiology, 220, 208-213.
https://doi.org/10.1016/j.ijcard.2016.06.197
[48] Kuraoka, A., Ishizu, T., Sato, M., Igarashi, M., Sato, K., Yamamoto, M., et al. (2021) Left Atrial Regional Strain Assessed by Novel Dedicated Three-Dimensional Speckle Tracking Echocardiography. Journal of Cardiology, 78, 517-523.
https://doi.org/10.1016/j.jjcc.2021.07.002
[49] Klaeboe, L.G. and Edvardsen, T. (2018) Echocardiographic Assessment of Left Ventricular Systolic Function. Journal of Echocardiography, 17, 10-16.
https://doi.org/10.1007/s12574-018-0405-5
[50] Bao, L., Cheng, L., Gao, X., Yan, F., Fan, H., Shan, Y., et al. (2022) Left Atrial Morpho-Functional Remodeling in Atrial Fibrillation Assessed by Three Dimensional Speckle Tracking Echocardiography and Its Value in Atrial Fibrillation Screening. Cardiovascular Ultrasound, 20, Article No. 13.
https://doi.org/10.1186/s12947-022-00282-5