上颌窦底提升术联合浓缩生长因子(CGF)提升空间成骨影响因素的研究进展
Research Progress on the Impact Factors of Sinus Floor Elevation Combined with Concentrated Growth Factors (CGF) for Space Augmentation and Osteogenesis
DOI: 10.12677/acm.2025.152316, PDF, HTML, XML,   
作者: 张莹莹, 黄元丁*:重庆医科大学附属口腔医院,口腔疾病与生物医学重庆市重点实验室,重庆市高校市级口腔生物医学工程重点实验室,重庆
关键词: 上颌窦底提升术引导骨再生浓缩生长因子种植体Osteotome Sinus Floor Elevation Guided Bone Regeneration Concentrated Growth Factor Implants
摘要: 当牙齿缺失时,种植体被认为是牙齿替换的高质量解决方案。上颌骨后牙长期缺失往往会导致上颌窦气化和牙槽嵴吸收,上颌后牙区磨牙缺失的患者往往牙槽骨量和质量不足,导致种植体支持的修复剩余牙槽骨高度(RBH)不足,使得种植牙的植入具有挑战性。获得骨增量最常见的手术方式有:上颌窦底提升术、引导骨再生术、植骨术、牙槽嵴扩大术、牙槽牵张成骨术等。上颌骨后部的种植体骨支持往往较差。这种情况可以采用上颌窦底提升术进行治疗。上颌窦底提升术联合骨增量材料的临床技术在骨量不足的病例中已大量应用和研究。因此,上颌窦底提升术后新骨形成的机制及影响因素的研究对于临床术式的选择及种植的远期成功具有重要意义。
Abstract: When teeth are missing, implants are considered be a high-quality solution for tooth replacement. Long-term loss of posterior maxillary teeth often leads to maxillary sinus pneumatization and alveolar ridge resorption. Patients with missing molar teeth in the posterior maxillary region often have insufficient alveolar bone volume and quality, resulting in insufficient restorative remaining alveolar bone height (RBH) for implant support, making dental implant placement challenging. The most common surgical procedures to obtain bone augmentation are maxillary sinus floor lift, guided bone regeneration, bone grafting, alveolar ridge expansion, and alveolar distraction osteogenesis. Bone support for implants in the posterior maxilla is often poor. This condition can be treated with maxillary sinus floor lift. The clinical technique of maxillary sinus floor elevation combined with bone augmentation materials has been used and studied extensively in cases of insufficient bone mass. Therefore, the study of the mechanism of new bone formation after maxillary sinus floor elevation and the factors affecting it are of great importance for the choice of clinical procedure and the long-term success of the implant.
文章引用:张莹莹, 黄元丁. 上颌窦底提升术联合浓缩生长因子(CGF)提升空间成骨影响因素的研究进展[J]. 临床医学进展, 2025, 15(2): 62-68. https://doi.org/10.12677/acm.2025.152316

1. 前言

缺失牙种植患者的修复治疗已成为比传统固定和或可摘式缺失牙修复更有吸引力和更有效的替代方法[1]。种植治疗一直是保证口腔修复成功和寿命的最安全可靠的治疗方法之一。牙种植体承受重复载荷,包括咀嚼和吞咽等功能性载荷,以及咬合、研磨和敲击运动等功能异常的载荷。另一方面,种植体植入后第一年每年小于0.2 mm的骨丢失是治疗成功的必要条件[2]。在目前的口腔医学中,拔牙后牙槽窝的愈合过程已成为研究、探讨的重要课题。其原因主要是由于在拔牙后,牙槽突会发生一些变化,这可能会使种植义齿修复困难[3]。对于无牙颌后牙区植入种植体是一项具有挑战性的手术,因为拔牙后骨质量差和上颌窦气化增加。为了增加骨量,几种外科植骨技术被使用,上颌窦底提升术(OSFE)是一种创伤较小的技术[4]

2. 牙齿缺失及拔牙后牙槽骨的改变

牙齿缺失导致牙齿周围牙周膜缺乏刺激,从而导致牙槽突吸收[5]。拔牙后,牙槽骨的基底部充满结缔组织和骨,牙槽嵴顶重新吸收。拔牙后伤口愈合并被上皮覆盖,无牙槽嵴残留。在上颌骨中,唇侧和颊侧牙槽骨板的骨吸收速度明显快于腭侧,而在下颌骨中,舌侧和唇侧牙槽骨板的骨吸收量大致相同[6]。由于拔牙导致的软硬组织的尺寸变化和牙槽骨轮廓的减少已被广泛研究[7]。拔牙后,自发愈合过程引起骨重建,从而导致初始牙槽骨轮廓的形状和体积丢失。改建过程在拔牙后即刻开始,2年后开始平均40%~60%的骨丢失发生在垂直和水平维度牙槽嵴改建在拔牙后立即进行,并可能干扰种植体在适当的3D位置,然后需要额外的骨增量过程,在上颌后部,由于拔牙或上颌窦充气后的骨吸收,骨的垂直高度往往受到限制,从而增加了种植失败的风险[8] [9]。拔牙后牙槽嵴的减少似乎与几个因素有关,包括手术创伤,缺乏对骨壁的功能性刺激,缺乏束骨和牙周膜以及遗传信息[10]

3. 血浆基质物的发展及应用

血浆基质物已被证明是组织再生中一种有前途的支架。血浆基质物是自体的,易于在椅旁制备,并且富含高浓度的生长因子[11]。体外研究证明了血浆基质物信号分子对细胞增殖、迁移、分化和基质合成的影响[12]。近年来,浓缩血小板在上颌窦底提升术和植骨术中得到应用。富血小板血浆(platelet-rich plasma, PRP)是第一代血浆基质物[13]。富血小板纤维蛋白(PRF)来源于第二代浓缩血小板产品。与PRP相比,PRF具有成骨能力强、制备过程简单、不需要外源性生物制剂、可持续释放生长因子等优点[14]。此外,其胶状的一致性有利于凝块和接枝材料的稳定性。这种天然材料似乎可以加速生理性伤口愈合,并与骨移植物一起加速新骨形成[15]。先前的研究揭示了PRF促进上颌窦内骨再生的潜力[16] [17]和减少窦底提升后的愈合时间[14]。浓缩生长因子(CGF)由Sacco公司于2006年开发。CGF是通过特殊的离心机设备(Medifuge,Silfradent,S. Sofia,意大利)离心血液样本产生的,类似于PRF。然而,不同的离心速度导致分离出的纤维蛋白基质更大、更致密,富含生长因子。因此,CGF有望具有更好的临床操作性能和再生潜能。有研究报道,在骨缺损的构建中应用CGF可以显著增加骨形成[18]。CGF在上颌窦底提术中也证明了其与引导骨再生相关的加速成骨的潜力[19]。关于CGF 在骨组织再生领域所呈现出的结果,已有相关报道。如在上颌窦内诱导活跃的新骨形成,且减少术后并发症[20] [21]。血浆基质物已用于牙槽嵴增强术、牙周手术、牙槽窝保存术、种植手术、牙髓再生术、窦道增强术、双膦酸盐相关性颌骨坏死(BRONJ)、放射性骨坏死、口鼻沟通(OAC)关闭和口腔溃疡中的骨和软组织愈[22] [23]。随着外科技术的进步,一些研究者也提出了血浆基质物与骨移植材料如合成骨、异种骨和同种异体骨的联合应用[24]。分别于2011年首次提出了利用富含浓缩生长因子(CGF)的自体富纤维蛋白块制备富含生长因子的骨移植基质的新概念,即“粘性骨”(sticky bone)。到2015年,Sohn等提供了一个完整的描述,用于生产由CGF膜和富含生长因子的骨移植基质组成的粘性骨的优化方案,并提供了一系列支持其使用的临床案例,指出在愈合期间有助于减少骨丢失的缺陷中的骨移植的稳定[25] [26]

4. 上颌窦底提升术的提出及应用

根据经典的赫希菲尔德研究,因牙周病而丧失的第一颗牙齿为上颌第一、第二磨牙[27]。后牙缺失后,牙槽突改建导致牙槽骨吸收和上颌窦气化,导致上颌后牙区骨高度降低。这些变化往往需要在尝试在该区域植入植入物之前使用再生技术[28]。由于上颌窦的解剖位置和骨小梁丰富的牙槽骨的特点,上颌后牙区的种植修复给临床医生带来了巨大的挑战。在后牙区缺牙数年的患者表现为牙槽骨尺寸减小和/或扩大的鼻窦。这些病例的治疗方式取决于剩余骨量、牙槽嵴的形态和假体可用的空间量。上颌窦底提升术旨在通过将上颌窦底部向上抬高重新定位来增加上颌后部剩余骨高度,以适应功能性牙种植体的植入,并将骨增量材料填充至上颌窦骨底和施耐德膜(Schneiderian membrane)之间增加牙槽骨高度。常规的侧方入路上颌窦外提升术需要广泛的手术操作。骨凿手术是作为上颌窦底外提升术的替代方法而发展起来的一种手术技术,它主要参与制备种植窝洞,而不进行任何截骨手术[29]。Tatum于1986年提出了上颌窦底外提升术(LSFE)。该手术通过在外侧壁创建的骨窗暴露上颌窦腔,然后进行施耐德膜提升和植骨。该技术耗时且创伤大,但已显示出可预测的成功率[30]。Summers于1994年提出了利用骨凿冲击法造成上颌窦底骨板的青枝骨折,然后借颗粒状骨移植材料经牙槽嵴顶入路植入并缓慢推移窦膜向上剥离、提升,利用窦底空间内的植骨材料(如:自体骨、异种骨、合成骨等)达到垂直向骨增量的目的[31]。与LSFE相比,OSFE可减少手术时间和术后不适感,增强种植体初期稳定性,促进骨结合[32]。一项前瞻性研究报道即使在RBH ≤ 4 mm的病例中,也可以通过经牙槽嵴顶上颌窦底提升术获得良好的垂直骨增量效果及90%以上的种植体存活率[33]。相较于侧壁入路的上颌窦底外提升术,上颌窦底内提升手术具有创伤小、术后并发症少、术后疼痛较轻等优点,且具有良好的垂直骨增量预期临床效果[34],故而更广泛地应用于临床。

5. 上颌窦提升术后窦腔的成骨机制及相关研究

5.1. 上颌窦底提升后窦腔内成骨的来源

上颌窦底提升后窦腔内成骨的来源包括一维成骨模式:上颌窦骨壁或者施耐德氏膜是窦腔成骨来源;二维成骨模式:上颌窦骨壁和施耐德膜均是窦腔成骨来源。上颌窦底提升后的成骨机制一直是学者关注的问题。有研究者提出上颌窦“窦底牙槽嵴骨壁–施耐德膜–种植体表面”三维成骨模式,并对相关位置的成骨潜力以及骨增量材料的促进作用进行阐述,为更好地认识三维空间成骨理论提供了参考[35]。上颌窦底提升后窦腔内成骨的生物学机制包括细胞生物学成骨机制,分子生物学成骨机制[36]

5.2. CGF应用于上颌窦底提升的相关研究

上颌窦底提升术中,Schneiderian膜内的小穿孔可能导致上颌窦和移植材料之间的直接接触。这种接触可能会导致感染和慢性鼻窦炎。更重要的是,这最终会导致移植物体积的损失和种植体的失败。因此,需要新的技术来克服上述问题。Lundgren等人建议用全血作为上颌窦提升术的唯一填充材料[37]。在这种方法中,种植体作为帐篷钉子,将抬高的上颌窦膜保持在合适的位置,而血凝块则作为骨形成的支架。这种手术方式能够减少侵入性。然而,要保持施耐德膜下的血凝块稳定是很困难的。血小板浓缩液等血液制剂因其从降解的血小板和白细胞中持续释放生长因子而具有促进骨形成的潜力,越来越受到关注。有研究者提出,在骨缺损处应用CGF可以明显增加新骨的形成。在上颌窦底提升术中使用CGF作为移植材料,不仅可以降低施奈德膜穿孔率,还可以增加新骨的形成[38]

黄娜等人的研究表明,在上颌窦底提升手术中单独使用CGF能够避免愈合时间长、适用范围有限等缺点,并可降低上颌窦黏膜穿孔率[39]。因此,在上颌窦底提升术中单独植入CGF被认为是一种可靠的治疗选择[40] [41]。根据引导骨再生原理,施耐德膜下方的空间维持对于新骨的形成高度至关重要[37],这一空间由突入窦腔的种植体根尖部及CGF共同维持。然而临床发现,在上颌窦底提升植入CGF的部分病例中,骨增量空间的维持效果并不十分理想(如:种植体根尖部周围出现窦膜的塌陷),这将削弱上颌窦底提升的骨增量效果,对种植义齿的长期成功具有潜在不良影响。而帐篷空间的维持则取决于CGF的空间维持能力及上颌窦底黏膜的张力,同时上颌窦骨壁与黏膜也参与术后新骨的形成过程[42]。有研究表明,上颌窦空间大小与上颌窦底黏膜剥离并提升后的张力大小有密切联系,上颌窦空间越大,剥离提升后的上颌窦底黏膜的张力也越大,术后上颌窦内的帐篷空间越不易于维持,最终会影响成骨效果[43]。同时研究表明上颌窦黏膜组织血供与新骨形成有密切关系,平均血供越丰富者,最终成骨量可能越多[44]。而上颌窦骨壁及黏膜的血供主要是由上颌动脉的分支:上牙槽后动脉、眶下动脉、腭大动脉及蝶腭动脉提供的,因此上颌窦空间越小,在上颌窦底黏膜剥离并提升后的平均血供越大,越有利于新骨形成。但上颌窦空间较小时,出现上颌窦黏膜穿孔的风险较高[45],而窦底黏膜穿孔会影响最终的成骨效果[46]

相关临床回顾性研究表明,上颌窦内提升不植骨病例最终窦内新骨高度与术后即刻种植体突入窦腔内高度呈正比[47] [48]。而种植体突入上颌窦内的高度在维持内提升后的帐篷空间中发挥重要作用[49],但突入高度过高时,会造成上颌窦底黏膜破损,反而不利于增加成骨[38] [50] [51]。目前有研究表明剩余牙槽骨高度与上颌窦内提升术后种植体根尖成骨高度成反比,即剩余牙槽骨高度越低,术后二期种植体根尖成骨高度越高[52] [53]

6. 总结

上颌窦底提升术技术是修复上颌骨后部萎缩患者的可靠方法。通过临床研究比较联合浓缩生长因子加植骨的同期植入种植体的上颌窦底内提升术的患者,术前,术后即刻平均高度及随访累积生存率。探讨研究联合浓缩生长因子植骨的上颌窦底内提升术患者是否可以获得良好的骨增量效果。上颌窦底提升术联合CGF的骨移植替代物研究有限且存在争议。因此,通过比较使用CGF加植骨进行上颌窦底内提升术患者的术前,即刻,术后半年,及随访的CBCT骨密度数据,来评估使用CGF加植骨进行上颌窦底内提升术对于种植体根部骨增量临床效果的可预测性。

NOTES

*通讯作者。

参考文献

[1] Javed, F. and Romanos, G.E. (2009) Impact of Diabetes Mellitus and Glycemic Control on the Osseointegration of Dental Implants: A Systematic Literature Review. Journal of Periodontology, 80, 1719-1730.
https://doi.org/10.1902/jop.2009.090283
[2] Albrektsson, T., Zarb, G., Worthington, P., et al. (1986) The Long-Term Efficacy of Currently Used Dental Implants: A Review and Pro-Posed Criteria of Success. The International Journal of Oral & Maxillofacial Implants, 1, 11-25.
[3] Buser, D., Martin, W. and Belser, U.C. (2004) Optimizing Esthetics for Implant Restorations in the Anterior Maxilla: Anatomic and Surgical Considerations. The International Journal of Oral & Maxillofacial Implants, 19, 43-61.
[4] Caban, J., Fermergård, R. and Abtahi, J. (2017) Long‐Term Evaluation of Osteotome Sinus Floor Elevation and Simultaneous Placement of Implants without Bone Grafts: 10‐year Radiographic and Clinical Follow‐Up. Clinical Implant Dentistry and Related Research, 19, 1023-1033.
https://doi.org/10.1111/cid.12530
[5] Wood, D.L., Hoag, P.M., Donnenfeld, O.W. and Rosenfeld, L.D. (1972) Alveolar Crest Reduction Following Full and Partial Thickness Flaps. Journal of Periodontology, 43, 141-144.
https://pubmed.ncbi.nlm.nih.gov/4501971/
[6] Pietrokovski, J. and Massler, M. (1967) Alveolar Ridge Resorption Following Tooth Extraction. The Journal of Prosthetic Dentistry, 17, 21-27.
https://doi.org/10.1016/0022-3913(67)90046-7
[7] Amler, M.H., Johnson, P.L. and Salman, I. (1960) Histological and Histochemical Investigation of Human Alveolar Socket Healing in Undisturbed Extraction Wounds. The Journal of the American Dental Association, 61, 32-44.
https://doi.org/10.14219/jada.archive.1960.0152
[8] Jung, R.E., Sapata, V.M., Hämmerle, C.H.F., Wu, H., Hu, X. and Lin, Y. (2018) Combined Use of Xenogeneic Bone Substitute Material Covered with a Native Bilayer Collagen Membrane for Alveolar Ridge Preservation: A Randomized Controlled Clinical Trial. Clinical Oral Implants Research, 29, 522-529.
https://doi.org/10.1111/clr.13149
[9] Al Qabbani, A., Al Kawas, S., A. Razak, N.H., Al Bayatti, S.W., Enezei, H.H., Samsudin, A.R., et al. (2018) Three-dimensional Radiological Assessment of Alveolar Bone Volume Preservation Using Bovine Bone Xenograft. Journal of Craniofacial Surgery, 29, e203-e209.
https://doi.org/10.1097/scs.0000000000004263
[10] Araújo, M.G., Silva, C.O., Misawa, M. and Sukekava, F. (2015) Alveolar Socket Healing: What Can We Learn? Periodontology 2000, 68, 122-134.
https://doi.org/10.1111/prd.12082
[11] Rosen, P.S., Summers, R., Mellado, J.R., et al. (1999) The Bone-Added Osteotome Sinus Floor Elevation Technique: Multicenter Retrospective Report of Consecutively Treated Patients. The International Journal of Oral & Maxillofacial Implants, 14, 853-858.
[12] Huang, F., Yang, S., Zhao, J. and Chang, Y. (2010) Platelet-Rich Fibrin Increases Proliferation and Differentiation of Human Dental Pulp Cells. Journal of Endodontics, 36, 1628-1632.
https://doi.org/10.1016/j.joen.2010.07.004
[13] Assoian, R.K., Grotendorst, G.R., Miller, D.M. and Sporn, M.B. (1984) Cellular Transformation by Coordinated Action of Three Peptide Growth Factors from Human Platelets. Nature, 309, 804-806.
https://doi.org/10.1038/309804a0
[14] Choukroun, J., Diss, A., Simonpieri, A., Girard, M., Schoeffler, C., Dohan, S.L., et al. (2006) Platelet-Rich Fibrin (PRF): A Second-Generation Platelet Concentrate. Part V: Histologic Evaluations of PRF Effects on Bone Allograft Maturation in Sinus Lift. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 101, 299-303.
https://doi.org/10.1016/j.tripleo.2005.07.012
[15] Tatullo, M., Marrelli, M., Cassetta, M., Pacifici, A., Stefanelli, L.V., Scacco, S., et al. (2012) Platelet Rich Fibrin (P.R.F.) in Reconstructive Surgery of Atrophied Maxillary Bones: Clinical and Histological Evaluations. International Journal of Medical Sciences, 9, 872-880.
https://doi.org/10.7150/ijms.5119
[16] Tajima, N., Ohba, S., Sawase, T. and Asahina, I. (2013) Evaluation of Sinus Floor Augmentation with Simultaneous Implant Placement Using Platelet-Rich Fibrin as Sole Grafting Material. The International Journal of Oral & Maxillofacial Implants, 28, 77-83.
https://doi.org/10.11607/jomi.2613
[17] Kanayama, T., Horii, K., Senga, Y. and Yasuyuki Shibuya, (2016) Crestal Approach to Sinus Floor Elevation for Atrophic Maxilla Using Platelet-Rich Fibrin as the Only Grafting Material: A 1-Year Prospective Study. Implant Dentistry, 25, 32-38.
https://pubmed.ncbi.nlm.nih.gov/26384097/
[18] Kim, T., Kim, S., Sándor, G.K. and Kim, Y. (2014) Comparison of Platelet-Rich Plasma (PRP), Platelet-Rich Fibrin (PRF), and Concentrated Growth Factor (CGF) in Rabbit-Skull Defect Healing. Archives of Oral Biology, 59, 550-558.
https://doi.org/10.1016/j.archoralbio.2014.02.004
[19] Sohn, D., Heo, J., Kwak, D., Kim, D., Kim, J., Moon, J., et al. (2011) Bone Regeneration in the Maxillary Sinus Using an Autologous Fibrin-Rich Block with Concentrated Growth Factors Alone. Implant Dentistry, 20, 389-395.
https://doi.org/10.1097/id.0b013e31822f7a70
[20] Kim, J., Sohn, D., Bae, M., Moon, J., Lee, J. and Park, I. (2014) Flapless Transcrestal Sinus Augmentation Using Hydrodynamic Piezoelectric Internal Sinus Elevation with Autologous Concentrated Growth Factors Alone. Implant Dentistry, 23, 168-174.
https://doi.org/10.1097/id.0000000000000053
[21] Ali, S., Bakry, S.A. and Abd-Elhakam, H. (2015) Platelet-rich Fibrin in Maxillary Sinus Augmentation: A Systematic Review. Journal of Oral Implantology, 41, 746-753.
https://doi.org/10.1563/aaid-joi-d-14-00167
[22] Al-Hamed, F.S., et al. (2019) Regenerative Effect of Platelet Concentrates in Oral and Craniofacial Regeneration. Frontiers in Cardiovascular Medicine, 6, Article 126.
https://pubmed.ncbi.nlm.nih.gov/31552270/
[23] Trybek, G., Rydlińska, J., Aniko-Włodarczyk, M. and Jaroń, A. (2021) Effect of Platelet-Rich Fibrin Application on Non-Infectious Complications after Surgical Extraction of Impacted Mandibular Third Molars. International Journal of Environmental Research and Public Health, 18, Article 8249.
https://doi.org/10.3390/ijerph18168249
[24] Mourão, C.F.d.A.B., Valiense, H., Melo, E.R., Mourão, N.B.M.F. and Maia, M.D. (2015) Obtention of Injectable Platelets Rich-Fibrin (I-PRF) and Its Polymerization with Bone Graft: Technical Note. Revista do Colégio Brasileiro de Cirurgiões, 42, 421-423.
https://doi.org/10.1590/0100-69912015006013
[25] Sohn, D.S., Huang, B., Kim, J., et al. (2015) Utilization of Autologous Concentrated Growth Factors (CGF) Enriched Bone Graft Matrix (Sticky Bone) and CGF-Enriched Fibrin Membrane in Implant Dentistry. The Journal of Implant & Advanced Clinical Dentistry, 7, 11-29.
[26] de Almeida Barros Mourão, C.F., Lourenço, E.S., Nascimento, J.R.B., Machado, R.C.M., Rossi, A.M., Leite, P.E.C., et al. (2018) Does the Association of Blood-Derived Growth Factors to Nanostructured Carbonated Hydroxyapatite Contributes to the Maxillary Sinus Floor Elevation? A Randomized Clinical Trial. Clinical Oral Investigations, 23, 369-379.
https://doi.org/10.1007/s00784-018-2445-7
[27] Hirschfeld, L. and Wasserman, B. (1978) A Long‐term Survey of Tooth Loss in 600 Treated Periodontal Patients. Journal of Periodontology, 49, 225-237.
https://doi.org/10.1902/jop.1978.49.5.225
[28] Andrés-García, R., Ríos-Santos, J.V., Herrero-Climent, M., Bullón, P., Fernández-Farhall, J., Gómez-Menchero, A., et al. (2021) Sinus Floor Elevation via an Osteotome Technique without Biomaterials. International Journal of Environmental Research and Public Health, 18, Article 1103.
https://doi.org/10.3390/ijerph18031103
[29] Leblebicioglu, B., Ersanli, S., Karabuda, C., Tosun, T. and Gokdeniz, H. (2005) Radiographic Evaluation of Dental Implants Placed Using an Osteotome Technique. Journal of Periodontology, 76, 385-390.
https://doi.org/10.1902/jop.2005.76.3.385
[30] Tatum, H. (1986) Maxillary and Sinus Implant Reconstructions. Dental Clinics of North America, 30, 207-229.
https://doi.org/10.1016/s0011-8532(22)02107-3
[31] Summers, R.B. (1994) A New Concept in Maxillary Implant Surgery: The Osteotome Technique. Compendium, 15, 152, 154-156, 158.
https://pubmed.ncbi.nlm.nih.gov/8055503/
[32] Jensen, O.T., Shulman, L.B., Block, M.S., et al. (1998) Report of the Sinus Consensus Conference of 1996. The International Journal of Oral & Maxillofacial Implants, 13, 11-45.
[33] Gonzalez, S., Tuan, M., Ahn, K.M. and Nowzari, H. (2013) Crestal Approach for Maxillary Sinus Augmentation in Patients with ≤4 mm of Residual Alveolar Bone. Clinical Implant Dentistry and Related Research, 16, 827-835.
https://doi.org/10.1111/cid.12067
[34] Corbella, S., Taschieri, S. and Del Fabbro, M. (2013) Long-Term Outcomes for the Treatment of Atrophic Posterior Maxilla: A Systematic Review of Literature. Clinical Implant Dentistry and Related Research, 17, 120-132.
https://doi.org/10.1111/cid.12077
[35] 周延民, 朱悦萌. 上颌窦三维成骨模式构建[J]. 中国口腔种植学杂志, 2023, 28(1): 9-18.
[36] 邓磊, 黄海涛. 上颌窦底提升术后窦腔内成骨机制的研究进展[J]. 中国口腔种植学杂志, 2023, 28(1): 53-57.
[37] Lundgren, S., Anderson, S., Gualini, F. and Sennerby, L. (2004) Bone Reformation with Sinus Membrane Elevation: A New Surgical Technique for Maxillary Sinus Floor Augmentation. Clinical Implant Dentistry and Related Research, 6, 165-173.
https://doi.org/10.1111/j.1708-8208.2004.tb00224.x
[38] Gargallo‐Albiol, J., Tattan, M., Sinjab, K.H., Chan, H. and Wang, H. (2018) Schneiderian Membrane Perforation via Transcrestal Sinus Floor Elevation: A Randomized Ex Vivo Study with Endoscopic Validation. Clinical Oral Implants Research, 30, 11-19.
https://doi.org/10.1111/clr.13388
[39] 黄娜, 吴锋, 李平, 刘子平, 林炬, 唐尤超, 王远勤. 应用浓缩生长因子行上颌窦内提升后种植体周围骨变化[J]. 中国组织工程研究, 2015, 19(47): 7575-7582.
[40] 高腾. 单独应用CGF行穿牙槽嵴顶上颌窦底提升术同期种植的临床效果评价[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2021.
[41] 戴晓玮, 段子文, 陈晨, 尼加提∙吐尔逊. 上颌窦内提升植入浓缩生长因子同期牙种植的临床分析[C]//中华口腔医学会全科口腔医学专业委员会, 中国国际科技交流中心. 中华口腔医学会第九次全科口腔医学学术会议论文汇编. 2018: 53.
[42] Guo, J., Weng, J., Rong, Q., Zhang, X., Zhu, S., Huang, D., et al. (2015) Investigation of Multipotent Postnatal Stem Cells from Human Maxillary Sinus Membrane. Scientific Reports, 5, Article No. 11660.
https://doi.org/10.1038/srep11660
[43] Zheng, X., Teng, M., Zhou, F., Ye, J., Li, G. and Mo, A. (2015) Influence of Maxillary Sinus Width on Transcrestal Sinus Augmentation Outcomes: Radiographic Evaluation Based on Cone Beam CT. Clinical Implant Dentistry and Related Research, 18, 292-300.
https://doi.org/10.1111/cid.12298
[44] Rosano, G., Taschieri, S., Gaudy, J., Weinstein, T. and Del Fabbro, M. (2010) Maxillary Sinus Vascular Anatomy and Its Relation to Sinus Lift Surgery. Clinical Oral Implants Research, 22, 711-715.
https://doi.org/10.1111/j.1600-0501.2010.02045.x
[45] 丁黔川, 冯红超, 叶彬, 韦敬. 上颌窦提升术中黏膜穿孔风险相关因素的研究进展[J]. 海南医学, 2022, 33(3): 378-383.
[46] Katranji, A., Fotek, P. and Wang, H. (2008) Sinus Augmentation Complications: Etiology and Treatment. Implant Dentistry, 17, 339-349.
https://doi.org/10.1097/id.0b013e3181815660
[47] Duan, D., Fu, J., Qi, W., Du, Y., Pan, J. and Wang, H. (2017) Graft‐Free Maxillary Sinus Floor Elevation: A Systematic Review and Meta‐Analysis. Journal of Periodontology, 88, 550-564.
https://doi.org/10.1902/jop.2017.160665
[48] Si, M., Shou, Y., Shi, Y., Yang, G., Wang, H. and He, F. (2016) Long‐Term Outcomes of Osteotome Sinus Floor Elevation without Bone Grafts: A Clinical Retrospective Study of 4-9 Years. Clinical Oral Implants Research, 27, 1392-1400.
https://doi.org/10.1111/clr.12752
[49] Si, M., Zhuang, L., Gu, Y., Mo, J., Qiao, S. and Lai, H. (2013) Osteotome Sinus Floor Elevation with or without Grafting: A 3‐Year Randomized Controlled Clinical Trial. Journal of Clinical Periodontology, 40, 396-403.
https://doi.org/10.1111/jcpe.12066
[50] Sul, S., Choi, B., Li, J., Jeong, S. and Xuan, F. (2008) Effects of Sinus Membrane Elevation on Bone Formation around Implants Placed in the Maxillary Sinus Cavity: An Experimental Study. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 105, 684-687.
https://doi.org/10.1016/j.tripleo.2007.09.024
[51] 刘晓芳. 闭合式上颌窦底提升术上颌窦黏膜力学研究[D]: [博士学位论文]. 广州: 南方医科大学, 2014.
[52] 李蓬, 朴牧子, 胡洪成, 王勇, 赵一姣, 申晓婧. 经嵴顶上颌窦底提升术后不植骨同期种植的影像研究[J]. 北京大学学报(医学版), 2021, 53(1): 95-101.
[53] Suk-Arj, P., Wongchuensoontorn, C. and Taebunpakul, P. (2019) Evaluation of Bone Formation Following the Osteotome Sinus Floor Elevation Technique without Grafting Using Cone Beam Computed Tomography: A Preliminary Study. International Journal of Implant Dentistry, 5, Article No. 27.
https://doi.org/10.1186/s40729-019-0181-7