特发性肺纤维化发病机制的研究进展
Advances in the Pathogenesis of Idiopathic Pulmonary Fibrosis
摘要: 特发性肺纤维化(IPF)是一种不明原因导致的慢性、进行性、间质性肺部疾病,以弥漫性肺泡炎和肺泡结构紊乱并最终导致肺间质纤维化为主要特征。IPF预后普遍较差,诊断后的中位生存时间仅为3~5年,约5%~20%的患者病程中可出现急性加重,急性加重后中位生存时间相较之前将进一步减少。目前现有的治疗手段无法彻底治愈IPF,治疗目的主要为延缓疾病进展。本文旨在对现有IPF的致病机制进行回顾与总结,以期为寻找合适的治疗靶点及新的治疗途径提供新的思路。
Abstract: Idiopathic pulmonary fibrosis (IPF) is an unexplained, chronic, progressive, interstitial lung disease characterized by diffuse alveolitis and alveolar structural disturbances that eventually lead to interstitial fibrosis. The prognosis of IPF is generally poor, with a median survival time of 3~5 years after diagnosis, with acute exacerbations occurring in about 5%~20% of patients. After acute exacerbation, the median survival time will be further reduced compared with the previous one. Currently available treatments do not provide a complete cure for IPF, and the main goal of treatment is to slow down the progression of the disease. The aim of this paper is to review and summarize the existing pathogenic mechanisms of IPF, with a view to providing new ideas for finding suitable therapeutic targets and new therapeutic pathways.
文章引用:赵姝文, 朱俞星, 王伟. 特发性肺纤维化发病机制的研究进展[J]. 临床个性化医学, 2025, 4(1): 39-45. https://doi.org/10.12677/jcpm.2025.41007

1. 引言

特发性肺纤维化(IPF)是一种不明原因导致的慢性、进行性、间质性肺部疾病,以弥漫性肺泡炎和肺泡结构紊乱并最终导致肺间质纤维化为特征,其主要以巨噬细胞活化、炎性介质释放、上皮–间质转化、成纤维细胞增殖、肌成纤维细胞分化为主要病理改变,从而导致细胞外基质大量沉积,引起肺泡结构破坏,最终导致不可逆性的肺功能丧失[1]。近年来,因人口老龄化、疾病意识提高和诊断工具改进等原因,IPF患者人数不断增加,IPF是间质性肺疾病中最常见的、最具有挑战性的疾病,统计资料显示其5年生存率低于50%。根据数据显示,2015~2022年,全球特发性肺纤维化患病人数由140万人增长至170万人,复合年增长率为3.0%,预计2025年患病人数将达到180万人;其中,中国特发性肺纤维化患病人数由21.7万人增长至26.4万人,复合年增长率为2.8%,预计到2025年患病人数将达到28.36万人。Maher等人通过对2009年至2020年间发表的IPF流行病学指标进行建模研究,发现在全球范围中IPF发病率为每10,000人0.09~1.30,患病率为每10,000人0.33~4.51 [2],人口老龄化、烟草消费和环境空气污染等都是IPF发病的危险因素,且发病率随着年龄的增加而增加[3]

临床上,IPF的患者多见于60岁以上的老年男性,主要表现为干咳、进行性呼吸困难且活动后加重,肺部听诊可闻及吸气末爆裂音(velcro啰音),超过半数可见杵状指(趾)。终末期可出现发绀、肺动脉高压、肺心病和右心功能不全的征象[4] [5]。IPF预后较差,诊断后的中位生存时间仅为3~5年,但约5%~20%的患者病程中可出现急性加重,急性加重型IPF中位生存时间仅为2~3个月,且住院后病死率超过60%,存活患者中,出院后6个月内的病死率高于90% [6]

目前,IPF无法彻底治愈,治疗目的主要为延缓疾病进展,改善患者生活质量。根据特发性肺纤维化诊断和治疗中国专家共识,IPF的治疗有药物治疗和非药物治疗两种方式,其治疗通常是一个长期过程。目前,临床上普遍采用抗纤维化的药物来治疗IPF,而现阶段国内已上市2种抗纤维化药物吡非尼酮和尼达尼布[7],虽然这两种药物在一定程度上可以缓解肺纤维化的进展,但不能有效地阻止和逆转肺纤维化的过程,这些抗纤维化药物只能减缓患者的肺功能下降问题,大部分患者最终仍死于呼吸衰竭[8]。在非药物治疗方面,主要包括氧疗、机械通气、肺康复和肺移植手术等,对于改善患者肺功能,尤其是对于特发性肺纤维化严重不能用药物治疗的患者,肺移植是现阶段最优的方案。肺移植作为最后的治疗手段,可以在一定程度上延长患者寿命,但存在肺源紧张、费用高、不良反应多等问题[9]。IPF患病人数的不断增加、预后不佳等问题,给人们带来了巨大的经济和社会负担,现有的治疗手段并没有使患者的生存率有所改善。因此,探究IPF的发病机制,并对现有的机制进行回顾与总结,寻找合适的治疗靶点及新的治疗途径对肺纤维化患者来说具有重大意义。

2. 肺纤维化的发病机制

2.1. 巨噬细胞的活化

巨噬细胞是固有免疫反应中重要的组成细胞,可以吞噬外源性物质、清除凋亡细胞和坏死组织,并在肺纤维化修复和体内平衡中发挥关键作用[10]。在特发性肺纤维化发生发展过程中,烟雾、药物、感染等外源性物质诱导肺泡上皮损伤,促进巨噬细胞向损伤部位募集、活化[11]。活化的巨噬细胞可分为经典活化的巨噬细胞(M1)和替代活化的巨噬细胞(M2)。M1型巨噬细胞主要是由脂多糖(lipopolysaccharide, LPS)、γ干扰素(interferon-γ, IFN-γ)、肿瘤坏死因子(tumor necrosis factor, TNF)等诱导产生,主要介导组织损伤和炎症反应。M2型巨噬细胞主要由白介素(interleukin, IL)-4、IL-10、IL-13、转化生长因子-β (transforming growth factor-β, TGF-β)等诱导产生,主要发挥抗炎反应、促进组织修复和伤口愈合[12]。Dong等人在碳纳米管构建的肺纤维化模型中发现,M1型巨噬细胞在被诱导的第1天显著升高,并在第3天达峰值,此后逐渐下降。而M2型巨噬细胞在被诱导的第1天仅轻度上升,第3天时显著升高,并在第7天达峰值[13]。因此说明在肺纤维疾病进展早期,巨噬细胞多被活化成M1型;在中晚期,肺巨噬细胞大量向M2型活化。M1型巨噬细胞可分泌IL-1ß、活性氧(reactive oxygen species, ROS)等物质。首先,IL-1β可以促进TGF-β的产生、促进CXC趋化因子和血小板源性生长因子(platelet-derived growth factor, PDGF)的分泌,进一步诱导纤维化。其次,TGF-β和IL-1β可以增加纤溶酶原激活物抑制剂1的表达,从而抑制细胞外机制的降解,促进更多炎症细胞的募集,并抑制抗纤维化生长因子的释放[14]。ROS可参与特发性肺纤维化的氧化应激过程,从而进一步导致肺纤维化的发生。特发性肺纤维化的中后期,M2巨噬细胞增多,并分泌TGF-β、PDGF、结缔组织生长因子(connective tissue growth factor, CTGF)、基质金属蛋白酶(matrix metalloproteinase, MMP)等促纤维化的因子[15] [16] [17]。综上,巨噬细胞不仅在特发性肺纤维化的早期阶段,还是中晚期阶段都发挥着重要的作用。因此,干预巨噬细胞的异常活化可能是减缓IPF进展的有效途径。

2.2. 氧化应激

肺是人体与外界进行气体交换的最大界面,这使得肺组织容易受到如烟草烟雾、空气颗粒物、粉尘等外源性氧化物的刺激[18]。在外源性氧化物的持续刺激下,气道自净功能产生破坏,从而产生慢性炎症,并活化吞噬细胞中NADPH氧化酶(reduced nicotinamide adenine dinucleotide phosphate oxidase, NOX)、一氧化氮(NO)合酶和髓过氧化物酶,产生包括超氧阴离子( O 2 )、过氧化氢(H2O2)、NO、次氯酸(HOCl)、脂质过氧化物等一系列内源性ROS [19]。随着病程的不断进展,细胞出现缺氧状况,从而造成线粒体损伤,进一步导致ROS激增[20] [21]。ROS的激增可以对肺泡上皮细胞、DNA,脂质和蛋白质的损伤,最终影响IPF的进展[22]。NOX活化产生的ROS可触发炎症细胞中的NALP3炎性小体的激活[23],从而促进胞质内IL-1β成熟与分泌,进一步促进肺纤维化的形成。ROS还可通过激活NF-κB、MAPK等信号通路,分泌TNF-α、IL-1β和IL-8等因子促进炎症的产生[24]。He等人在石棉诱导的小鼠模型中发现,线粒体氧化应激产生的Cu-SOD、Zn-SOD通过对组蛋白去甲基化酶Jmjd3的氧化还原反应调控来诱导M2型巨噬细胞的活化[25]。氧化应激通过激活关键的促纤维化因子TGF-β,参与了上皮–间质转化(epithelial-mesenchymal transition, EMT)的调控。TGF-β也可以通过上调NOX4从而介导H2O2的产生调控成纤维细胞向肌成纤维细胞的转化(fibroblast-myofibroblast transition, FMT) [26]。可见氧化应激可促进M2型巨噬细胞的活化、EMT、FMT,从而促进肺纤维化病程的进展。综上,氧化应激也在特发性肺纤维化的发生发展过程中承担着不可或缺的作用,未来针地相关氧化应激机制制定治疗策略,或许能缓解或有效的治疗IPF。

2.3. 上皮–间充质细胞转化

EMT是一种生物学过程,其中分化的肺泡上皮细胞失去上皮特征,同时获得间充质细胞形态以及迁移性[27]。这个过程涉及到上皮细胞失去顶端基底极性,减少细胞间黏附特性,获得间质标记物如α-平滑肌肌动蛋白(α-smooth muscle actin, α-SMA)、N钙黏蛋白(N-cadherin)、波形蛋白(vimentin)的表达,以及细胞骨架的重组[28]。在IPF中,EMT过程与成纤维细胞的活化、增殖以及细胞外基质的大量堆积紧密相关,导致肺组织的纤维化和结构重塑[29]。在IPF的发病机制中,EMT的激活可能与多种因素有关,包括组织微环境的变化(如乏氧、慢性炎症、氧化应激等)、内质网应激、胞外基质硬度增加等[30]-[32]。特别是TGF-β被认为是EMT的关键调节因子,它通过激活Smad依赖性和非依赖性的信号通路,促进上皮细胞向间充质细胞的转分化[33]。研究表明,IPF患者的肺泡上皮细胞在损伤刺激下可以发生EMT转化为成纤维细胞,而在非IPF患者的肺泡上皮细胞中,损伤刺激去除后可以逆向转化为肺泡上皮细胞,即发生间质–上皮细胞转化(mesenchymal-epithelial transition, MET)。然而,IPF患者肺泡上皮细胞的MET过程受阻,导致成纤维细胞表型的持续维持,这可能是IPF重要的发病机制之一。因此,针对EMT相关信号通路的研究,以及开发靶向EMT的药物,可能为IPF的治疗提供新的策略和方法。

2.4. 细胞衰老

细胞衰老在特发性肺纤维化(IPF)的发病机制中扮演着重要角色,涉及衰老相关分泌表型、端粒损伤、线粒体自噬受损等多个方面,这些衰老过程通过影响细胞功能和微环境,加速了IPF的发展进程。在健康组织中,衰老细胞普遍通过抑制自身增殖,分泌衰老相关分泌表型(senescence associated secretory phenotype, SASP),创造炎症微环境,招募吞噬细胞来协助清除受损细胞,促进组织再生。这种修复过程在病理状态或衰老组织中却出现异常,衰老细胞持续积累不被及时清除,破坏了正常组织微环境,导致异常的组织重塑。与年龄匹配的对照组相比,IPF患者肺组织中分离的成纤维细胞中SASP的水平增加,表现出明显的衰老特征[34]。SASP包括如IL-1β、TGF-β等多种细胞因子、趋化因子、生长因子和基质金属蛋白酶。这些因子诱导成纤维细胞活化和胶原沉积,并分泌基质金属蛋白酶重塑细胞外基质,从而形成肺部促纤维化的微环境[35]。端粒会随着年龄的增长而缩短,是人类和小鼠衰老的标志之一。端粒长度受到端粒酶的影响,端粒酶可以进行催化逆转录并提供所需的RNA模板,这两个功能都是正常端粒长度的基本保证。端粒酶由两部分组成:端粒酶RNA (telomerase RNA component, TERC)、端粒酶逆转录酶(telomerase reverse transcriptase, TERT) [36]。Armanios、Mushiroda等人均在IPF患者中发现了TERC和TERT基因的多种突变,这种基因的突变与肺泡上皮细胞中端粒缩短有关,表明这些基因变异可能通过破坏细胞内稳态机制来增加肺纤维化的风险[37] [38]。线粒体自噬可以选择性降解功能损伤的线粒体,维持干细胞处于静止状态,抵抗细胞衰老[39]。Araya等研究发现IPF患者肺组织中自噬缺乏,从而导致上皮细胞的衰老,并加速了肌成纤维细胞的分化[40]。在促进线粒体自噬、清除功能异常线粒体的过程中,研究发现PTEN-诱导假定激酶1 (PTEN-induced putative kinase 1, PINK1)发挥了重要作用。Marta等人将小鼠II型肺泡上皮细胞中的PINK1敲除,实验结果表面敲除PINK1可导致线粒体肿胀和功能失调,导致线粒体自噬受损,致使小鼠更易罹患肺纤维化[41]

3. 结语

IPF的预后较差,对患者造成的影响较严重,但其发病机制至今尚未完全阐明,且无特效药物。随着对IPF的深入研究,科研人员发现巨噬细胞活化、氧化应激、EMT、细胞衰老等过程均在特发性肺纤维化的发生发展中起着重要的作用。巨噬细胞活化后可通过M1型细胞释放大量炎症因子、M2型细胞释放大量促纤维化因子从而促进IPF疾病进程。氧化应激中释放的ROS可促进TNF-α、IL-1β和IL-8等因子的释放、还可促进M2型巨噬细胞的活化、EMT、FMT的过程,进而影响IPF的发生发展。组织微环境的变化、内质网应激、胞外基质硬度增加等情况可激活EMT,从而导致肺组织的纤维化和结构重塑。细胞衰老涉及衰老相关分泌表型、端粒损伤、线粒体自噬受损等多个方面,影响细胞功能和微环境,从而促进IPF的发展。针对各项机制研究特定药物用于治疗IPF,或将有效抑制IPF的发生发展。但各机制之间相互交错关联,机制间的关系错综复杂,目前尚未有足够清晰的认知和了解,亟待进一步深入展开研究。

NOTES

*通讯作者。

参考文献

[1] 蔡后荣. 2011年特发性肺纤维化诊断和治疗循证新指南解读[J]. 中国呼吸与危重监护杂志, 2011, 10(4): 313-316.
[2] Maher, T.M., Bendstrup, E., Dron, L., Langley, J., Smith, G., Khalid, J.M., et al. (2021) Global Incidence and Prevalence of Idiopathic Pulmonary Fibrosis. Respiratory Research, 22, Article No. 197.
https://doi.org/10.1186/s12931-021-01791-z
[3] Alsomali, H., Palmer, E., Aujayeb, A. and Funston, W. (2023) Early Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis: A Narrative Review. Pulmonary Therapy, 9, 177-193.
https://doi.org/10.1007/s41030-023-00216-0
[4] 中华医学会呼吸病学分会间质性肺疾病学组. 特发性肺纤维化诊断和治疗中国Z专家共识[J]. 中华结核和呼吸杂志, 2016, 39(6): 427-432.
[5] Thomson, C.C., Duggal, A., Bice, T., Lederer, D.J., Wilson, K.C. and Raghu, G. (2018) 2018 Clinical Practice Guideline Summary for Practicing Clinicians: Diagnosis of Idiopathic Pulmonary Fibrosis. Annals of the American Thoracic Society, 16, 285-290.
https://doi.org/10.1513/annalsats.201809-604cme
[6] Richeldi, L., Collard, H.R. and Jones, M.G. (2017) Idiopathic Pulmonary Fibrosis. The Lancet, 389, 1941-1952.
https://doi.org/10.1016/s0140-6736(17)30866-8
[7] Raghu, G. and Selman, M. (2015) Nintedanib and Pirfenidone. New Antifibrotic Treatments Indicated for Idiopathic Pulmonary Fibrosis Offer Hopes and Raises Questions. American Journal of Respiratory and Critical Care Medicine, 191, 252-254.
https://doi.org/10.1164/rccm.201411-2044ed
[8] Gulati, S. and Luckhardt, T.R. (2020) Updated Evaluation of the Safety, Efficacy and Tolerability of Pirfenidone in the Treatment of Idiopathic Pulmonary Fibrosis. Drug, Healthcare and Patient Safety, 12, 85-94.
https://doi.org/10.2147/dhps.s224007
[9] 梁佳龙, 陈静瑜, 郑明峰, 等. 肺移植治疗特发性肺纤维化的研究进展[J]. 医学综述, 2022, 28(8): 1573-1578.
[10] Fu, J., Lu, L., Wang, H., Hou, Y. and Dou, H. (2021) Hirsutella sinensis Mycelium Regulates Autophagy of Alveolar Macrophages via TLR4/NF-κB Signaling Pathway. International Journal of Medical Sciences, 18, 1810-1823.
https://doi.org/10.7150/ijms.51654
[11] Wynn, T. (2007) Cellular and Molecular Mechanisms of Fibrosis. The Journal of Pathology, 214, 199-210.
https://doi.org/10.1002/path.2277
[12] Desai, O., Winkler, J., Minasyan, M. and Herzog, E.L. (2018) The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis. Frontiers in Medicine, 5, Article 43.
https://doi.org/10.3389/fmed.2018.00043
[13] Dong, J. and Ma, Q. (2018) Macrophage Polarization and Activation at the Interface of Multi-Walled Carbon Nanotube-Induced Pulmonary Inflammation and Fibrosis. Nanotoxicology, 12, 153-168.
https://doi.org/10.1080/17435390.2018.1425501
[14] dos Santos, G., Kutuzov, M.A. and Ridge, K.M. (2012) The Inflammasome in Lung Diseases. American Journal of Physiology-Lung Cellular and Molecular Physiology, 303, L627-L633.
https://doi.org/10.1152/ajplung.00225.2012
[15] Li, G., Jin, F., Du, J., He, Q., Yang, B. and Luo, P. (2019) Macrophage-Secreted TSLP and MMP9 Promote Bleomycin-Induced Pulmonary Fibrosis. Toxicology and Applied Pharmacology, 366, 10-16.
https://doi.org/10.1016/j.taap.2019.01.011
[16] 蔡泽慧, 赵鹏, 张蓝熙, 等. 巨噬细胞活化参与肺纤维化机制研究进展[J]. 中国老年学杂志, 2022, 42(15): 3853-3857.
[17] Mou, Y., Wu, G., Wang, Q., Pan, T., Zhang, L., Xu, Y., et al. (2022) Macrophage‐Targeted Delivery of siRNA to Silence Mecp2 Gene Expression Attenuates Pulmonary Fibrosis. Bioengineering & Translational Medicine, 7, e10280.
https://doi.org/10.1002/btm2.10280
[18] van der Vliet, A., Janssen-Heininger, Y.M.W. and Anathy, V. (2018) Oxidative Stress in Chronic Lung Disease: From Mitochondrial Dysfunction to Dysregulated Redox Signaling. Molecular Aspects of Medicine, 63, 59-69.
https://doi.org/10.1016/j.mam.2018.08.001
[19] McGuinness, A. and Sapey, E. (2017) Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms. Journal of Clinical Medicine, 6, Article 21.
https://doi.org/10.3390/jcm6020021
[20] Hara, H., Kuwano, K. and Araya, J. (2018) Mitochondrial Quality Control in COPD and IPF. Cells, 7, Article 86.
https://doi.org/10.3390/cells7080086
[21] Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014) Mitochondrial Reactive Oxygen Species (ROS) and Ros-Induced ROS Release. Physiological Reviews, 94, 909-950.
https://doi.org/10.1152/physrev.00026.2013
[22] Veith, C., Drent, M., Bast, A., van Schooten, F.J. and Boots, A.W. (2017) The Disturbed Redox-Balance in Pulmonary Fibrosis Is Modulated by the Plant Flavonoid Quercetin. Toxicology and Applied Pharmacology, 336, 40-48.
https://doi.org/10.1016/j.taap.2017.10.001
[23] 蒋怡芳, 范晓杰, 刘晓, 等. 柚皮素对博莱霉素诱导的小鼠肺纤维化的改善作用及其作用机制[J]. 安徽医科大学学报, 2021, 56(2): 202-207.
[24] Estornut, C., Milara, J., Bayarri, M.A., Belhadj, N. and Cortijo, J. (2022) Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Frontiers in Pharmacology, 12.
https://doi.org/10.3389/fphar.2021.794997
[25] He, C., Larson-Casey, J.L., Gu, L., Ryan, A.J., Murthy, S. and Carter, A.B. (2016) Cu, Zn-Superoxide Dismutase-Mediated Redox Regulation of Jumonji Domain Containing 3 Modulates Macrophage Polarization and Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 55, 58-71.
https://doi.org/10.1165/rcmb.2015-0183oc
[26] Kurundkar, A. and Thannickal, V.J. (2016) Redox Mechanisms in Age-Related Lung Fibrosis. Redox Biology, 9, 67-76.
https://doi.org/10.1016/j.redox.2016.06.005
[27] Peng, L., Wen, L., Shi, Q., Gao, F., Huang, B., Meng, J., et al. (2020) Scutellarin Ameliorates Pulmonary Fibrosis through Inhibiting NF-κB/NLRP3-Mediated Epithelial-Mesenchymal Transition and Inflammation. Cell Death & Disease, 11, Article No. 978.
https://doi.org/10.1038/s41419-020-03178-2
[28] Yang, J., Antin, P., Berx, G., et al. (2020) EMT International Association (TEMTIA). Guidelines and Definitions for Research on Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 21, 341-352.
https://doi.org/10.1038/s41580-020-0237-9
[29] Wolters, P.J., Collard, H.R. and Jones, K.D. (2014) Pathogenesis of Idiopathic Pulmonary Fibrosis. Annual Review of Pathology: Mechanisms of Disease, 9, 157-179.
https://doi.org/10.1146/annurev-pathol-012513-104706
[30] Movahednia, M.M., Kidwai, F.K., Zou, Y., Tong, H.J., Liu, X., Islam, I., et al. (2015) Differential Effects of the Extracellular Microenvironment on Human Embryonic Stem Cell Differentiation into Keratinocytes and Their Subsequent Replicative Life Span. Tissue Engineering Part A, 21, 1432-1443.
https://doi.org/10.1089/ten.tea.2014.0551
[31] Tanjore, H., Blackwell, T.S. and Lawson, W.E. (2012) Emerging Evidence for Endoplasmic Reticulum Stress in the Pathogenesis of Idiopathic Pulmonary Fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 302, L721-L729.
https://doi.org/10.1152/ajplung.00410.2011
[32] Burman, A., Tanjore, H. and Blackwell, T.S. (2018) Endoplasmic Reticulum Stress in Pulmonary Fibrosis. Matrix Biology, 68, 355-365.
https://doi.org/10.1016/j.matbio.2018.03.015
[33] Byrne, A.J., Maher, T.M. and Lloyd, C.M. (2016) Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease? Trends in Molecular Medicine, 22, 303-316.
https://doi.org/10.1016/j.molmed.2016.02.004
[34] Yanai, H., Shteinberg, A., Porat, Z., Budovsky, A., Braiman, A., Zeische, R., et al. (2015) Cellular Senescence-Like Features of Lung Fibroblasts Derived from Idiopathic Pulmonary Fibrosis Patients. Aging, 7, 664-672.
https://doi.org/10.18632/aging.100807
[35] Wang, B., Han, J., Elisseeff, J.H. and Demaria, M. (2024) The Senescence-Associated Secretory Phenotype and Its Physiological and Pathological Implications. Nature Reviews Molecular Cell Biology, 25, 958-978.
https://doi.org/10.1038/s41580-024-00727-x
[36] Chakravarti, D., LaBella, K.A. and DePinho, R.A. (2021) Telomeres: History, Health, and Hallmarks of Aging. Cell, 184, 306-322.
https://doi.org/10.1016/j.cell.2020.12.028
[37] Armanios, M.Y., Chen, J.L., Cogan, J.D., Alder, J.K., Ingersoll, R.G., Markin, C., et al. (2007) Telomerase Mutations in Families with Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 356, 1317-1326.
https://doi.org/10.1056/nejmoa066157
[38] Mushiroda, T., Wattanapokayakit, S., Takahashi, A., Nukiwa, T., Kudoh, S., Ogura, T., et al. (2008) A Genome-Wide Association Study Identifies an Association of a Common Variant in TERT with Susceptibility to Idiopathic Pulmonary Fibrosis. Journal of Medical Genetics, 45, 654-656.
https://doi.org/10.1136/jmg.2008.057356
[39] García-Prat, L., Martínez-Vicente, M., Perdiguero, E., Ortet, L., Rodríguez-Ubreva, J., Rebollo, E., et al. (2016) Autophagy Maintains Stemness by Preventing Senescence. Nature, 529, 37-42.
https://doi.org/10.1038/nature16187
[40] Araya, J., Kojima, J., Takasaka, N., Ito, S., Fujii, S., Hara, H., et al. (2013) Insufficient Autophagy in Idiopathic Pulmonary Fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 304, L56-L69.
https://doi.org/10.1152/ajplung.00213.2012
[41] Bueno, M., Lai, Y., Romero, Y., Brands, J., St. Croix, C.M., Kamga, C., et al. (2014) PINK1 Deficiency Impairs Mitochondrial Homeostasis and Promotes Lung Fibrosis. Journal of Clinical Investigation, 125, 521-538.
https://doi.org/10.1172/jci74942