[1]
|
蔡后荣. 2011年特发性肺纤维化诊断和治疗循证新指南解读[J]. 中国呼吸与危重监护杂志, 2011, 10(4): 313-316.
|
[2]
|
Maher, T.M., Bendstrup, E., Dron, L., Langley, J., Smith, G., Khalid, J.M., et al. (2021) Global Incidence and Prevalence of Idiopathic Pulmonary Fibrosis. Respiratory Research, 22, Article No. 197. https://doi.org/10.1186/s12931-021-01791-z
|
[3]
|
Alsomali, H., Palmer, E., Aujayeb, A. and Funston, W. (2023) Early Diagnosis and Treatment of Idiopathic Pulmonary Fibrosis: A Narrative Review. Pulmonary Therapy, 9, 177-193. https://doi.org/10.1007/s41030-023-00216-0
|
[4]
|
中华医学会呼吸病学分会间质性肺疾病学组. 特发性肺纤维化诊断和治疗中国Z专家共识[J]. 中华结核和呼吸杂志, 2016, 39(6): 427-432.
|
[5]
|
Thomson, C.C., Duggal, A., Bice, T., Lederer, D.J., Wilson, K.C. and Raghu, G. (2018) 2018 Clinical Practice Guideline Summary for Practicing Clinicians: Diagnosis of Idiopathic Pulmonary Fibrosis. Annals of the American Thoracic Society, 16, 285-290. https://doi.org/10.1513/annalsats.201809-604cme
|
[6]
|
Richeldi, L., Collard, H.R. and Jones, M.G. (2017) Idiopathic Pulmonary Fibrosis. The Lancet, 389, 1941-1952. https://doi.org/10.1016/s0140-6736(17)30866-8
|
[7]
|
Raghu, G. and Selman, M. (2015) Nintedanib and Pirfenidone. New Antifibrotic Treatments Indicated for Idiopathic Pulmonary Fibrosis Offer Hopes and Raises Questions. American Journal of Respiratory and Critical Care Medicine, 191, 252-254. https://doi.org/10.1164/rccm.201411-2044ed
|
[8]
|
Gulati, S. and Luckhardt, T.R. (2020) Updated Evaluation of the Safety, Efficacy and Tolerability of Pirfenidone in the Treatment of Idiopathic Pulmonary Fibrosis. Drug, Healthcare and Patient Safety, 12, 85-94. https://doi.org/10.2147/dhps.s224007
|
[9]
|
梁佳龙, 陈静瑜, 郑明峰, 等. 肺移植治疗特发性肺纤维化的研究进展[J]. 医学综述, 2022, 28(8): 1573-1578.
|
[10]
|
Fu, J., Lu, L., Wang, H., Hou, Y. and Dou, H. (2021) Hirsutella sinensis Mycelium Regulates Autophagy of Alveolar Macrophages via TLR4/NF-κB Signaling Pathway. International Journal of Medical Sciences, 18, 1810-1823. https://doi.org/10.7150/ijms.51654
|
[11]
|
Wynn, T. (2007) Cellular and Molecular Mechanisms of Fibrosis. The Journal of Pathology, 214, 199-210. https://doi.org/10.1002/path.2277
|
[12]
|
Desai, O., Winkler, J., Minasyan, M. and Herzog, E.L. (2018) The Role of Immune and Inflammatory Cells in Idiopathic Pulmonary Fibrosis. Frontiers in Medicine, 5, Article 43. https://doi.org/10.3389/fmed.2018.00043
|
[13]
|
Dong, J. and Ma, Q. (2018) Macrophage Polarization and Activation at the Interface of Multi-Walled Carbon Nanotube-Induced Pulmonary Inflammation and Fibrosis. Nanotoxicology, 12, 153-168. https://doi.org/10.1080/17435390.2018.1425501
|
[14]
|
dos Santos, G., Kutuzov, M.A. and Ridge, K.M. (2012) The Inflammasome in Lung Diseases. American Journal of Physiology-Lung Cellular and Molecular Physiology, 303, L627-L633. https://doi.org/10.1152/ajplung.00225.2012
|
[15]
|
Li, G., Jin, F., Du, J., He, Q., Yang, B. and Luo, P. (2019) Macrophage-Secreted TSLP and MMP9 Promote Bleomycin-Induced Pulmonary Fibrosis. Toxicology and Applied Pharmacology, 366, 10-16. https://doi.org/10.1016/j.taap.2019.01.011
|
[16]
|
蔡泽慧, 赵鹏, 张蓝熙, 等. 巨噬细胞活化参与肺纤维化机制研究进展[J]. 中国老年学杂志, 2022, 42(15): 3853-3857.
|
[17]
|
Mou, Y., Wu, G., Wang, Q., Pan, T., Zhang, L., Xu, Y., et al. (2022) Macrophage‐Targeted Delivery of siRNA to Silence Mecp2 Gene Expression Attenuates Pulmonary Fibrosis. Bioengineering & Translational Medicine, 7, e10280. https://doi.org/10.1002/btm2.10280
|
[18]
|
van der Vliet, A., Janssen-Heininger, Y.M.W. and Anathy, V. (2018) Oxidative Stress in Chronic Lung Disease: From Mitochondrial Dysfunction to Dysregulated Redox Signaling. Molecular Aspects of Medicine, 63, 59-69. https://doi.org/10.1016/j.mam.2018.08.001
|
[19]
|
McGuinness, A. and Sapey, E. (2017) Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms. Journal of Clinical Medicine, 6, Article 21. https://doi.org/10.3390/jcm6020021
|
[20]
|
Hara, H., Kuwano, K. and Araya, J. (2018) Mitochondrial Quality Control in COPD and IPF. Cells, 7, Article 86. https://doi.org/10.3390/cells7080086
|
[21]
|
Zorov, D.B., Juhaszova, M. and Sollott, S.J. (2014) Mitochondrial Reactive Oxygen Species (ROS) and Ros-Induced ROS Release. Physiological Reviews, 94, 909-950. https://doi.org/10.1152/physrev.00026.2013
|
[22]
|
Veith, C., Drent, M., Bast, A., van Schooten, F.J. and Boots, A.W. (2017) The Disturbed Redox-Balance in Pulmonary Fibrosis Is Modulated by the Plant Flavonoid Quercetin. Toxicology and Applied Pharmacology, 336, 40-48. https://doi.org/10.1016/j.taap.2017.10.001
|
[23]
|
蒋怡芳, 范晓杰, 刘晓, 等. 柚皮素对博莱霉素诱导的小鼠肺纤维化的改善作用及其作用机制[J]. 安徽医科大学学报, 2021, 56(2): 202-207.
|
[24]
|
Estornut, C., Milara, J., Bayarri, M.A., Belhadj, N. and Cortijo, J. (2022) Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.794997
|
[25]
|
He, C., Larson-Casey, J.L., Gu, L., Ryan, A.J., Murthy, S. and Carter, A.B. (2016) Cu, Zn-Superoxide Dismutase-Mediated Redox Regulation of Jumonji Domain Containing 3 Modulates Macrophage Polarization and Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 55, 58-71. https://doi.org/10.1165/rcmb.2015-0183oc
|
[26]
|
Kurundkar, A. and Thannickal, V.J. (2016) Redox Mechanisms in Age-Related Lung Fibrosis. Redox Biology, 9, 67-76. https://doi.org/10.1016/j.redox.2016.06.005
|
[27]
|
Peng, L., Wen, L., Shi, Q., Gao, F., Huang, B., Meng, J., et al. (2020) Scutellarin Ameliorates Pulmonary Fibrosis through Inhibiting NF-κB/NLRP3-Mediated Epithelial-Mesenchymal Transition and Inflammation. Cell Death & Disease, 11, Article No. 978. https://doi.org/10.1038/s41419-020-03178-2
|
[28]
|
Yang, J., Antin, P., Berx, G., et al. (2020) EMT International Association (TEMTIA). Guidelines and Definitions for Research on Epithelial-Mesenchymal Transition. Nature Reviews Molecular Cell Biology, 21, 341-352. https://doi.org/10.1038/s41580-020-0237-9
|
[29]
|
Wolters, P.J., Collard, H.R. and Jones, K.D. (2014) Pathogenesis of Idiopathic Pulmonary Fibrosis. Annual Review of Pathology: Mechanisms of Disease, 9, 157-179. https://doi.org/10.1146/annurev-pathol-012513-104706
|
[30]
|
Movahednia, M.M., Kidwai, F.K., Zou, Y., Tong, H.J., Liu, X., Islam, I., et al. (2015) Differential Effects of the Extracellular Microenvironment on Human Embryonic Stem Cell Differentiation into Keratinocytes and Their Subsequent Replicative Life Span. Tissue Engineering Part A, 21, 1432-1443. https://doi.org/10.1089/ten.tea.2014.0551
|
[31]
|
Tanjore, H., Blackwell, T.S. and Lawson, W.E. (2012) Emerging Evidence for Endoplasmic Reticulum Stress in the Pathogenesis of Idiopathic Pulmonary Fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 302, L721-L729. https://doi.org/10.1152/ajplung.00410.2011
|
[32]
|
Burman, A., Tanjore, H. and Blackwell, T.S. (2018) Endoplasmic Reticulum Stress in Pulmonary Fibrosis. Matrix Biology, 68, 355-365. https://doi.org/10.1016/j.matbio.2018.03.015
|
[33]
|
Byrne, A.J., Maher, T.M. and Lloyd, C.M. (2016) Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease? Trends in Molecular Medicine, 22, 303-316. https://doi.org/10.1016/j.molmed.2016.02.004
|
[34]
|
Yanai, H., Shteinberg, A., Porat, Z., Budovsky, A., Braiman, A., Zeische, R., et al. (2015) Cellular Senescence-Like Features of Lung Fibroblasts Derived from Idiopathic Pulmonary Fibrosis Patients. Aging, 7, 664-672. https://doi.org/10.18632/aging.100807
|
[35]
|
Wang, B., Han, J., Elisseeff, J.H. and Demaria, M. (2024) The Senescence-Associated Secretory Phenotype and Its Physiological and Pathological Implications. Nature Reviews Molecular Cell Biology, 25, 958-978. https://doi.org/10.1038/s41580-024-00727-x
|
[36]
|
Chakravarti, D., LaBella, K.A. and DePinho, R.A. (2021) Telomeres: History, Health, and Hallmarks of Aging. Cell, 184, 306-322. https://doi.org/10.1016/j.cell.2020.12.028
|
[37]
|
Armanios, M.Y., Chen, J.L., Cogan, J.D., Alder, J.K., Ingersoll, R.G., Markin, C., et al. (2007) Telomerase Mutations in Families with Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 356, 1317-1326. https://doi.org/10.1056/nejmoa066157
|
[38]
|
Mushiroda, T., Wattanapokayakit, S., Takahashi, A., Nukiwa, T., Kudoh, S., Ogura, T., et al. (2008) A Genome-Wide Association Study Identifies an Association of a Common Variant in TERT with Susceptibility to Idiopathic Pulmonary Fibrosis. Journal of Medical Genetics, 45, 654-656. https://doi.org/10.1136/jmg.2008.057356
|
[39]
|
García-Prat, L., Martínez-Vicente, M., Perdiguero, E., Ortet, L., Rodríguez-Ubreva, J., Rebollo, E., et al. (2016) Autophagy Maintains Stemness by Preventing Senescence. Nature, 529, 37-42. https://doi.org/10.1038/nature16187
|
[40]
|
Araya, J., Kojima, J., Takasaka, N., Ito, S., Fujii, S., Hara, H., et al. (2013) Insufficient Autophagy in Idiopathic Pulmonary Fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 304, L56-L69. https://doi.org/10.1152/ajplung.00213.2012
|
[41]
|
Bueno, M., Lai, Y., Romero, Y., Brands, J., St. Croix, C.M., Kamga, C., et al. (2014) PINK1 Deficiency Impairs Mitochondrial Homeostasis and Promotes Lung Fibrosis. Journal of Clinical Investigation, 125, 521-538. https://doi.org/10.1172/jci74942
|