[1]
|
Morgan, I.G., Ohno-Matsui, K. and Saw, S. (2012) Myopia. The Lancet, 379, 1739-1748. https://doi.org/10.1016/s0140-6736(12)60272-4
|
[2]
|
Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042. https://doi.org/10.1016/j.ophtha.2016.01.006
|
[3]
|
Dong, L., Kang, Y.K., Li, Y., Wei, W.B. and Jonas, J.B. (2020) Prevalence and Time Trends of Myopia in Children and Adolescents in China: A Systemic Review and Meta-Analysis. Retina, 40, 399-411. https://doi.org/10.1097/iae.0000000000002590
|
[4]
|
Fang, Y., Yokoi, T., Nagaoka, N., Shinohara, K., Onishi, Y., Ishida, T., et al. (2018) Progression of Myopic Maculopathy during 18-Year Follow-Up. Ophthalmology, 125, 863-877. https://doi.org/10.1016/j.ophtha.2017.12.005
|
[5]
|
Yan, Y.N., Wang, Y.X., Yang, Y., Xu, L., Xu, J., Wang, Q., et al. (2018) Ten-Year Progression of Myopic Maculopathy: The Beijing Eye Study 2001-2011. Ophthalmology, 125, 1253-1263. https://doi.org/10.1016/j.ophtha.2018.01.035
|
[6]
|
Ohno-Matsui, K., Kawasaki, R., Jonas, J.B., Cheung, C.M.G., Saw, S., Verhoeven, V.J.M., et al. (2015) International Photographic Classification and Grading System for Myopic Maculopathy. American Journal of Ophthalmology, 159, 877-883.e7. https://doi.org/10.1016/j.ajo.2015.01.022
|
[7]
|
Wildsoet, C.F., Chia, A., Cho, P., Guggenheim, J.A., Polling, J.R., Read, S., et al. (2019) IMI—Interventions for Controlling Myopia Onset and Progression Report. Investigative Opthalmology & Visual Science, 60, M106-M131. https://doi.org/10.1167/iovs.18-25958
|
[8]
|
Xiong, S., Sankaridurg, P., Naduvilath, T., Zang, J., Zou, H., Zhu, J., et al. (2017) Time Spent in Outdoor Activities in Relation to Myopia Prevention and Control: A Meta‐Analysis and Systematic Review. Acta Ophthalmologica, 95, 551-566. https://doi.org/10.1111/aos.13403
|
[9]
|
Guo, Y., Liu, L., Lv, Y., Tang, P., Feng, Y., Wu, M., et al. (2019) Outdoor Jogging and Myopia Progression in School Children from Rural Beijing: The Beijing Children Eye Study. Translational Vision Science & Technology, 8, 2. https://doi.org/10.1167/tvst.8.3.2
|
[10]
|
Wu, P., Chen, C., Lin, K., Sun, C., Kuo, C., Huang, H., et al. (2018) Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. Ophthalmology, 125, 1239-1250. https://doi.org/10.1016/j.ophtha.2017.12.011
|
[11]
|
Li, X., Schaeffel, F., Kohler, K. and Zrenner, E. (1992) Dose-Dependent Effects of 6-Hydroxy Dopamine on Deprivation Myopia, Electroretinograms, and Dopaminergic Amacrine Cells in Chickens. Visual Neuroscience, 9, 483-492. https://doi.org/10.1017/s0952523800011287
|
[12]
|
Schaeffel, F., Hagel, G., Bartmann, M., Kohler, K. and Zrenner, E. (1994) 6-Hydroxy Dopamine Does Not Affect Lens-Induced Refractive Errors but Suppresses Deprivation Myopia. Vision Research, 34, 143-149. https://doi.org/10.1016/0042-6989(94)90327-1
|
[13]
|
Bartmann, M., Schaeffel, F., Hagel, G. and Zrenner, E. (1994) Constant Light Affects Retinal Dopamine Levels and Blocks Deprivation Myopia but Not Lens-Induced Refractive Errors in Chickens. Visual Neuroscience, 11, 199-208. https://doi.org/10.1017/s0952523800001565
|
[14]
|
Zhu, X. and Wallman, J. (2009) Temporal Properties of Compensation for Positive and Negative Spectacle Lenses in Chicks. Investigative Opthalmology & Visual Science, 50, 37-46. https://doi.org/10.1167/iovs.08-2102
|
[15]
|
Ang, M., Flanagan, J.L., Wong, C.W., Müller, A., Davis, A., Keys, D., et al. (2020) Review: Myopia Control Strategies Recommendations from the 2018 WHO/IAPB/BHVI Meeting on Myopia. British Journal of Ophthalmology, 104, 1482-1487. https://doi.org/10.1136/bjophthalmol-2019-315575
|
[16]
|
Shih, Y., Chen, C., Chou, A., Ho, T., Lin, L.L. and Hung, P. (1999) Effects of Different Concentrations of Atropine on Controlling Myopia in Myopic Children. Journal of Ocular Pharmacology and Therapeutics, 15, 85-90. https://doi.org/10.1089/jop.1999.15.85
|
[17]
|
Tong, L., Huang, X.L., Koh, A.L.T., Zhang, X., Tan, D.T.H. and Chua, W. (2009) Atropine for the Treatment of Childhood Myopia: Effect on Myopia Progression after Cessation of Atropine. Ophthalmology, 116, 572-579. https://doi.org/10.1016/j.ophtha.2008.10.020
|
[18]
|
Yi, S., Huang, Y., Yu, S., Chen, X., Yi, H. and Zeng, X. (2015) Therapeutic Effect of Atropine 1% in Children with Low Myopia. Journal of American Association for Pediatric Ophthalmology and Strabismus, 19, 426-429. https://doi.org/10.1016/j.jaapos.2015.04.006
|
[19]
|
Chia, A., Lu, Q. and Tan, D. (2016) Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2: Myopia Control with Atropine 0.01% Eye Drops. Ophthalmology, 123, 391-399. https://doi.org/10.1016/j.ophtha.2015.07.004
|
[20]
|
Pineles, S.L., Kraker, R.T., VanderVeen, D.K., Hutchinson, A.K., Galvin, J.A., Wilson, L.B., et al. (2017) Atropine for the Prevention of Myopia Progression in Children: A Report by the American Academy of Ophthalmology. Ophthalmology, 124, 1857-1866. https://doi.org/10.1016/j.ophtha.2017.05.032
|
[21]
|
Wu, P., Chuang, M., Choi, J., Chen, H., Wu, G., Ohno-Matsui, K., et al. (2018) Update in Myopia and Treatment Strategy of Atropine Use in Myopia Control. Eye, 33, 3-13. https://doi.org/10.1038/s41433-018-0139-7
|
[22]
|
Yam, J.C., Li, F.F., Zhang, X., Tang, S.M., Yip, B.H.K., Kam, K.W., et al. (2020) Two-Year Clinical Trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study: Phase 2 Report. Ophthalmology, 127, 910-919. https://doi.org/10.1016/j.ophtha.2019.12.011
|
[23]
|
Walline, J.J., Lindsley, K.B., Vedula, S.S., Cotter, S.A., Mutti, D.O., Ng, S.M., et al. (2020) Interventions to Slow Progression of Myopia in Children. Cochrane Database of Systematic Reviews, 2021, CD004916. https://doi.org/10.1002/14651858.cd004916.pub4
|
[24]
|
Logan, N.S. and Wolffsohn, J.S. (2020) Role of Un‐Correction, Under‐Correction and Over‐Correction of Myopia as a Strategy for Slowing Myopic Progression. Clinical and Experimental Optometry, 103, 133-137. https://doi.org/10.1111/cxo.12978
|
[25]
|
Wildsoet, C. and Wallman, J. (1995) Choroidal and Scleral Mechanisms of Compensation for Spectacle Lenses in Chicks. Vision Research, 35, 1175-1194. https://doi.org/10.1016/0042-6989(94)00233-c
|
[26]
|
Nevin, S.T., Schmid, K.L. and Wildsoet, C.F. (1998) Sharp Vision: A Prerequisite for Compensation to Myopic Defocus in the Chick? Current Eye Research, 17, 322-331. https://doi.org/10.1076/ceyr.17.3.322.5220
|
[27]
|
Smith III, E.L. and Hung, L. (1999) The Role of Optical Defocus in Regulating Refractive Development in Infant Monkeys. Vision Research, 39, 1415-1435. https://doi.org/10.1016/s0042-6989(98)00229-6
|
[28]
|
Mutti, D.O., Sinnott, L.T., Reuter, K.S., Walker, M.K., Berntsen, D.A., Jones-Jordan, L.A., et al. (2019) Peripheral Refraction and Eye Lengths in Myopic Children in the Bifocal Lenses in Nearsighted Kids (BLINK) Study. Translational Vision Science & Technology, 8, 17. https://doi.org/10.1167/tvst.8.2.17
|
[29]
|
Sankaridurg, P., Donovan, L., Varnas, S., Ho, A., Chen, X., Martinez, A., et al. (2010) Spectacle Lenses Designed to Reduce Progression of Myopia: 12-Month Results. Optometry and Vision Science, 87, 631-641. https://doi.org/10.1097/opx.0b013e3181ea19c7
|
[30]
|
Hasebe, S., Jun, J. and Varnas, S.R. (2014) Myopia Control with Positively Aspherized Progressive Addition Lenses: A 2-Year, Multicenter, Randomized, Controlled Trial. Investigative Opthalmology & Visual Science, 55, 7177-7188. https://doi.org/10.1167/iovs.12-11462
|
[31]
|
Kanda, H., Oshika, T., Hiraoka, T., Hasebe, S., Ohno-Matsui, K., Ishiko, S., et al. (2018) Effect of Spectacle Lenses Designed to Reduce Relative Peripheral Hyperopia on Myopia Progression in Japanese Children: A 2-Year Multicenter Randomized Controlled Trial. Japanese Journal of Ophthalmology, 62, 537-543. https://doi.org/10.1007/s10384-018-0616-3
|
[32]
|
Sankaridurg, P., Holden, B., Smith, E., Naduvilath, T., Chen, X., de la Jara, P.L., et al. (2011) Decrease in Rate of Myopia Progression with a Contact Lens Designed to Reduce Relative Peripheral Hyperopia: One-Year Results. Investigative Opthalmology & Visual Science, 52, 9362-9367. https://doi.org/10.1167/iovs.11-7260
|
[33]
|
Walline, J.J., Greiner, K.L., McVey, M.E. and Jones-Jordan, L.A. (2013) Multifocal Contact Lens Myopia Control. Optometry and Vision Science, 90, 1207-1214. https://doi.org/10.1097/opx.0000000000000036
|
[34]
|
Sankaridurg, P., Bakaraju, R.C., Naduvilath, T., Chen, X., Weng, R., Tilia, D., et al. (2019) Myopia Control with Novel Central and Peripheral Plus Contact Lenses and Extended Depth of Focus Contact Lenses: 2 Year Results from a Randomised Clinical Trial. Ophthalmic and Physiological Optics, 39, 294-307. https://doi.org/10.1111/opo.12621
|
[35]
|
Chamberlain, P., Peixoto-de-Matos, S.C., Logan, N.S., Ngo, C., Jones, D. and Young, G. (2019) A 3-Year Randomized Clinical Trial of MiSight Lenses for Myopia Control. Optometry and Vision Science, 96, 556-567. https://doi.org/10.1097/opx.0000000000001410
|
[36]
|
Walline, J.J., Walker, M.K., Mutti, D.O., Jones-Jordan, L.A., Sinnott, L.T., Giannoni, A.G., et al. (2020) Effect of High Add Power, Medium Add Power, or Single-Vision Contact Lenses on Myopia Progression in Children: The BLINK Randomized Clinical Trial. JAMA, 324, 571-580. https://doi.org/10.1001/jama.2020.10834
|
[37]
|
Bressler, N.M. (2020) Reducing the Progression of Myopia. JAMA, 324, 558-559. https://doi.org/10.1001/jama.2020.10953
|
[38]
|
Walline, J.J., Holden, B.A., Bullimore, M.A., Rah, M.J., Asbell, P.A., Barr, J.T., et al. (2005) The Current State of Corneal Reshaping. Eye & Contact Lens: Science & Clinical Practice, 31, 209-214. https://doi.org/10.1097/01.icl.0000179709.76832.4f
|
[39]
|
Nichols, J.J., Marsich, M.M., Nguyen, M., Barr, J.T. and Bullimore, M.A. (2000) Overnight Orthokeratology. Optometry and Vision Science, 77, 252-259. https://doi.org/10.1097/00006324-200005000-00012
|
[40]
|
Huang, J., Wen, D., Wang, Q., McAlinden, C., Flitcroft, I., Chen, H., et al. (2016) Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-Analysis. Ophthalmology, 123, 697-708. https://doi.org/10.1016/j.ophtha.2015.11.010
|
[41]
|
Bullimore, M.A. and Brennan, N.A. (2019) Myopia Control: Why Each Diopter Matters. Optometry and Vision Science, 96, 463-465. https://doi.org/10.1097/opx.0000000000001367
|
[42]
|
Wolffsohn, J.S., Kollbaum, P.S., Berntsen, D.A., Atchison, D.A., Benavente, A., Bradley, A., et al. (2019) IMI—Clinical Myopia Control Trials and Instrumentation Report. Investigative Opthalmology & Visual Science, 60, M132-M160. https://doi.org/10.1167/iovs.18-25955
|
[43]
|
McCullough, S., Adamson, G., Breslin, K.M.M., McClelland, J.F., Doyle, L. and Saunders, K.J. (2020) Axial Growth and Refractive Change in White European Children and Young Adults: Predictive Factors for Myopia. Scientific Reports, 10, Article No. 15189. https://doi.org/10.1038/s41598-020-72240-y
|