[1]
|
Eli, I., Lerner, D.P. and Ghogawala, Z. (2021) Acute Traumatic Spinal Cord Injury. Neurologic Clinics, 39, 471-488. https://doi.org/10.1016/j.ncl.2021.02.004
|
[2]
|
夏宇, 丁璐, 邓宇斌. 小胶质细胞在脊髓损伤中的作用机制研究进展[J]. 神经损伤与功能重建, 2023, 18(2): 593-596.
|
[3]
|
Shang, J., Jiang, C., Cai, J., Chen, Z., Jin, S., Wang, F., et al. (2023) Knowledge Mapping of Macrophage in Spinal Cord Injury: A Bibliometric Analysis. World Neurosurgery, 180, e183-e197. https://doi.org/10.1016/j.wneu.2023.09.022
|
[4]
|
Fu, S., Chen, S., Pang, Q., Zhang, M., Wu, X., Wan, X., et al. (2022) Advances in the Research of the Role of Macrophage/Microglia Polarization-Mediated Inflammatory Response in Spinal Cord Injury. Frontiers in Immunology, 13, Article ID: 1014013. https://doi.org/10.3389/fimmu.2022.1014013
|
[5]
|
Feng, J., Zhang, Y., Zhu, Z., Gu, C., Waqas, A. and Chen, L. (2021) Emerging Exosomes and Exosomal MiRNAs in Spinal Cord Injury. Frontiers in Cell and Developmental Biology, 9, Article ID: 703989. https://doi.org/10.3389/fcell.2021.703989
|
[6]
|
Wang, J., Tian, F., Cao, L., Du, R., Tong, J., Ding, X., et al. (2023) Macrophage Polarization in Spinal Cord Injury Repair and the Possible Role of MicroRNAs: A Review. Heliyon, 9, e22914. https://doi.org/10.1016/j.heliyon.2023.e22914
|
[7]
|
曹宁, 封亚平, 谢佳芯. 《脊髓损伤神经修复治疗临床指南(中国版)2021》解读[J]. 中国现代神经疾病杂志, 2022, 22(8): 655-661.
|
[8]
|
田婷, 李晓光. 脊髓损伤再生修复中的问题与挑战[J]. 中国组织工程研究, 2021, 25(19): 3039-3048.
|
[9]
|
Anjum, A., Yazid, M.D., Fauzi Daud, M., Idris, J., Ng, A.M.H., Selvi Naicker, A., et al. (2020) Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. International Journal of Molecular Sciences, 21, Article No. 7533. https://doi.org/10.3390/ijms21207533
|
[10]
|
杨溢珂, 任亚锋, 李冰, 等. 脊髓损伤后细胞自噬的调控治疗机制及策略[J]. 中国组织工程研究, 2025, 29(12): 3885-3896.
|
[11]
|
赵书杰, 郑子洋, 戴思名, 等. 中性粒细胞在脊髓损伤中作用的研究进展[J]. 中国脊柱脊髓杂志, 2023, 33(5): 463-467.
|
[12]
|
Tu, H., Ren, H., Jiang, J., Shao, C., Shi, Y. and Li, P. (2023) Dying to Defend: Neutrophil Death Pathways and Their Implications in Immunity. Advanced Science, 11, Article ID: 2306457. https://doi.org/10.1002/advs.202306457
|
[13]
|
Islam, M.M. and Takeyama, N. (2023) Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. International Journal of Molecular Sciences, 24, Article No. 15805. https://doi.org/10.3390/ijms242115805
|
[14]
|
Brennan, F.H., Li, Y., Wang, C., Ma, A., Guo, Q., Li, Y., et al. (2022) Microglia Coordinate Cellular Interactions during Spinal Cord Repair in Mice. Nature Communications, 13, Article No. 4096. https://doi.org/10.1038/s41467-022-31797-0
|
[15]
|
Hellenbrand, D.J., Quinn, C.M., Piper, Z.J., Morehouse, C.N., Fixel, J.A. and Hanna, A.S. (2021) Inflammation after Spinal Cord Injury: A Review of the Critical Timeline of Signaling Cues and Cellular Infiltration. Journal of Neuroinflammation, 18, Article No. 284. https://doi.org/10.1186/s12974-021-02337-2
|
[16]
|
Dalmau Gasull, A., Glavan, M., Samawar, S.K.R., Kapupara, K., Kelk, J., Rubio, M., et al. (2024) The Niche Matters: Origin, Function and Fate of CNS-Associated Macrophages during Health and Disease. Acta Neuropathologica, 147, Article No. 37. https://doi.org/10.1007/s00401-023-02676-9
|
[17]
|
Tang, H., Gu, Y., Jiang, L., Zheng, G., Pan, Z. and Jiang, X. (2023) The Role of Immune Cells and Associated Immunological Factors in the Immune Response to Spinal Cord Injury. Frontiers in Immunology, 13, Article ID: 1070540. https://doi.org/10.3389/fimmu.2022.1070540
|
[18]
|
Yu, Q., Cai, Z., Liu, X., Lin, S., Li, P., Ruan, Y., et al. (2024) Research Progress on Treating Spinal Cord Injury by Modulating the Phenotype of Microglia. Journal of Integrative Neuroscience, 23, Article No. 171. https://doi.org/10.31083/j.jin2309171
|
[19]
|
Kloc, M., Ghobrial, R.M., Wosik, J., Lewicka, A., Lewicki, S. and Kubiak, J.Z. (2018) Macrophage Functions in Wound Healing. Journal of Tissue Engineering and Regenerative Medicine, 13, 99-109. https://doi.org/10.1002/term.2772
|
[20]
|
Kadomoto, S., Izumi, K. and Mizokami, A. (2021) Macrophage Polarity and Disease Control. International Journal of Molecular Sciences, 23, Article No. 144. https://doi.org/10.3390/ijms23010144
|
[21]
|
Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J. and Hill, A.M. (2000) M-1/M-2 Macrophages and the Th1/Th2 Paradigm. The Journal of Immunology, 164, 6166-6173. https://doi.org/10.4049/jimmunol.164.12.6166
|
[22]
|
Yuan, Z., Jiang, D., Yang, M., Tao, J., Hu, X., Yang, X., et al. (2024) Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthopaedic Surgery, 16, 532-550. https://doi.org/10.1111/os.13993
|
[23]
|
Zubova, S.G., Suvorova, I.I. and Karpenko, M.N. (2022) Macrophage and Microglia Polarization: Focus on Autophagy-Dependent Reprogramming. Frontiers in Bioscience-Scholar, 14, Article No. 3. https://doi.org/10.31083/j.fbs1401003
|
[24]
|
Sun, G., Yang, S., Cao, G., Wang, Q., Hao, J., Wen, Q., et al. (2017) γδ T Cells Provide the Early Source of IFN-γ to Aggravate Lesions in Spinal Cord Injury. Journal of Experimental Medicine, 215, 521-535. https://doi.org/10.1084/jem.20170686
|
[25]
|
Lv, J., Wang, Z., Wang, B., Deng, C., Wang, W. and Sun, L. (2024) S100A9 Induces Macrophage M2 Polarization and Immunomodulatory Role in the Lesion Site after Spinal Cord Injury in Rats. Molecular Neurobiology, 61, 5525-5540. https://doi.org/10.1007/s12035-024-03920-3
|
[26]
|
Kobashi, S., Terashima, T., Katagi, M., Nakae, Y., Okano, J., Suzuki, Y., et al. (2020) Transplantation of M2-Deviated Microglia Promotes Recovery of Motor Function after Spinal Cord Injury in Mice. Molecular Therapy, 28, 254-265. https://doi.org/10.1016/j.ymthe.2019.09.004
|
[27]
|
Jankovic, M.G., Stojkovic, M., Bojic, S., Jovicic, N., Kovacevic, M.M., Ivosevic, Z., et al. (2023) Scaling up Human Mesenchymal Stem Cell Manufacturing Using Bioreactors for Clinical Uses. Current Research in Translational Medicine, 71, Article ID: 103393. https://doi.org/10.1016/j.retram.2023.103393
|
[28]
|
Ma, Y., Yang, H., Zong, X., Wu, J., Ji, X., Liu, W., et al. (2021) Artificial M2 Macrophages for Disease-Modifying Osteoarthritis Therapeutics. Biomaterials, 274, Article ID: 120865. https://doi.org/10.1016/j.biomaterials.2021.120865
|
[29]
|
Li, K., Chen, Z., Chang, X., Xue, R., Wang, H. and Guo, W. (2024) WNT Signaling Pathway in Spinal Cord Injury: From Mechanisms to Potential Applications. Frontiers in Molecular Neuroscience, 17, Article ID: 1427054. https://doi.org/10.3389/fnmol.2024.1427054
|
[30]
|
Kijima, K., Ono, G., Kobayakawa, K., Saiwai, H., Hara, M., Yoshizaki, S., et al. (2023) Zinc Deficiency Impairs Axonal Regeneration and Functional Recovery after Spinal Cord Injury by Modulating Macrophage Polarization via NF-κB Pathway. Frontiers in Immunology, 14, Article ID: 1290100. https://doi.org/10.3389/fimmu.2023.1290100
|
[31]
|
Xiao, C., Yin, W., Zhong, Y., Luo, J., Liu, L., Liu, W., et al. (2022) The Role of PI3K/Akt Signalling Pathway in Spinal Cord Injury. Biomedicine & Pharmacotherapy, 156, Article ID: 113881. https://doi.org/10.1016/j.biopha.2022.113881
|
[32]
|
Huang, S., Zhang, Y., Shu, H., Liu, W., Zhou, X. and Zhou, X. (2024) Advances of the MAPK Pathway in the Treatment of Spinal Cord Injury. CNS Neuroscience & Therapeutics, 30, e14807. https://doi.org/10.1111/cns.14807
|
[33]
|
Guo, X., Jiang, C., Chen, Z., Wang, X., Hong, F. and Hao, D. (2023) Regulation of the JAK/STAT Signaling Pathway in Spinal Cord Injury: An Updated Review. Frontiers in Immunology, 14, Article ID: 1276445. https://doi.org/10.3389/fimmu.2023.1276445
|
[34]
|
Ding, Y. and Chen, Q. (2022) mTOR Pathway: A Potential Therapeutic Target for Spinal Cord Injury. Biomedicine & Pharmacotherapy, 145, Article ID: 112430. https://doi.org/10.1016/j.biopha.2021.112430
|
[35]
|
Deng, Z. and Chen, Y. (2023) Research Progress of MicroRNAs in Spinal Cord Injury. Journal of Integrative Neuroscience, 22, Article No. 31. https://doi.org/10.31083/j.jin2202031
|
[36]
|
Sintakova, K. and Romanyuk, N. (2024) The Role of Small Extracellular Vesicles and MicroRNA as Their Cargo in the Spinal Cord Injury Pathophysiology and Therapy. Frontiers in Neuroscience, 18, Article ID: 1400413. https://doi.org/10.3389/fnins.2024.1400413
|
[37]
|
Silvestro, S. and Mazzon, E. (2022) MiRNAs as Promising Translational Strategies for Neuronal Repair and Regeneration in Spinal Cord Injury. Cells, 11, Article No. 2177. https://doi.org/10.3390/cells11142177
|
[38]
|
Kishore, A. and Petrek, M. (2021) Roles of Macrophage Polarization and Macrophage-Derived MiRNAs in Pulmonary Fibrosis. Frontiers in Immunology, 12, Article ID: 678457. https://doi.org/10.3389/fimmu.2021.678457
|
[39]
|
Park, C.Y., Choi, Y.S. and McManus, M.T. (2010) Analysis of MicroRNA Knockouts in Mice. Human Molecular Genetics, 19, R169-R175. https://doi.org/10.1093/hmg/ddq367
|
[40]
|
Shen, Y. and Cai, J. (2022) The Importance of Using Exosome-Loaded Mirna for the Treatment of Spinal Cord Injury. Molecular Neurobiology, 60, 447-459. https://doi.org/10.1007/s12035-022-03088-8
|
[41]
|
Deng, Z. and Chen, Y. (2023) Research Progress of MicroRNAs in Spinal Cord Injury. Journal of Integrative Neuroscience, 22, Article No. 31. https://doi.org/10.31083/j.jin2202031
|
[42]
|
Lu, L., McCurdy, S., Huang, S., Zhu, X., Peplowska, K., Tiirikainen, M., et al. (2016) Time Series miRNA-mRNA Integrated Analysis Reveals Critical MiRNAs and Targets in Macrophage Polarization. Scientific Reports, 6, Article No. 37446. https://doi.org/10.1038/srep37446
|
[43]
|
Sprenkle, N.T., Serezani, C.H. and Pua, H.H. (2023) MicroRNAs in Macrophages: Regulators of Activation and Function. The Journal of Immunology, 210, 359-368. https://doi.org/10.4049/jimmunol.2200467
|
[44]
|
Essandoh, K., Li, Y., Huo, J. and Fan, G. (2016) Mirna-Mediated Macrophage Polarization and Its Potential Role in the Regulation of Inflammatory Response. Shock, 46, 122-131. https://doi.org/10.1097/shk.0000000000000604
|
[45]
|
Xie, N., Cui, H., Banerjee, S., Tan, Z., Salomao, R., Fu, M., et al. (2014) Mir-27a Regulates Inflammatory Response of Macrophages by Targeting Il-10. The Journal of Immunology, 193, 327-334. https://doi.org/10.4049/jimmunol.1400203
|
[46]
|
Jiao, P., Wang, X., Luoreng, Z., Yang, J., Jia, L., Ma, Y., et al. (2021) Mir-223: An Effective Regulator of Immune Cell Differentiation and Inflammation. International Journal of Biological Sciences, 17, 2308-2322. https://doi.org/10.7150/ijbs.59876
|
[47]
|
Curtale, G., Rubino, M. and Locati, M. (2019) MicroRNAs as Molecular Switches in Macrophage Activation. Frontiers in Immunology, 10, Article No. 799. https://doi.org/10.3389/fimmu.2019.00799
|
[48]
|
Aili, Y., Maimaitiming, N., Mahemuti, Y., Qin, H., Wang, Y. and Wang, Z. (2021) The Role of Exosomal MiRNAs in Glioma: Biological Function and Clinical Application. Frontiers in Oncology, 11, Article ID: 686369. https://doi.org/10.3389/fonc.2021.686369
|
[49]
|
Wang, T., Zhong, D., Qin, Z., He, S., Gong, Y., Li, W., et al. (2020) Mir-100-3p Inhibits the Adipogenic Differentiation of HMSCS by Targeting PIK3R1 via the PI3K/AKT Signaling Pathway. Aging, 12, 25090-25100. https://doi.org/10.18632/aging.104074
|
[50]
|
Hu, J., Huang, C., Rao, P., Zhou, J., Wang, X., Tang, L., et al. (2019) Inhibition of Microrna-155 Attenuates Sympathetic Neural Remodeling Following Myocardial Infarction via Reducing M1 Macrophage Polarization and Inflammatory Responses in Mice. European Journal of Pharmacology, 851, 122-132. https://doi.org/10.1016/j.ejphar.2019.02.001
|
[51]
|
Bassett, C., Triplett, H., Lott, K., Howard, K.M. and Kingsley, K. (2023) Differential Expression of MicroRNA (MiR-27, MiR-145) among Dental Pulp Stem Cells (DPSCs) Following Neurogenic Differentiation Stimuli. Biomedicines, 11, Article No. 3003. https://doi.org/10.3390/biomedicines11113003
|
[52]
|
Mohapatra, S., Pioppini, C., Ozpolat, B. and Calin, G.A. (2021) Non-Coding RNAs Regulation of Macrophage Polarization in Cancer. Molecular Cancer, 20, Article No. 24. https://doi.org/10.1186/s12943-021-01313-x
|
[53]
|
Tan, W., Dai, F., Yang, D., Deng, Z., Gu, R., Zhao, X., et al. (2022) Mir-93-5p Promotes Granulosa Cell Apoptosis and Ferroptosis by the NF-κB Signaling Pathway in Polycystic Ovary Syndrome. Frontiers in Immunology, 13, Article ID: 967151. https://doi.org/10.3389/fimmu.2022.967151
|
[54]
|
Visintin, R. and Ray, S.K. (2022) Specific MicroRNAs for Modulation of Autophagy in Spinal Cord Injury. Brain Sciences, 12, Article No. 247. https://doi.org/10.3390/brainsci12020247
|
[55]
|
Hu, Z., Zhang, L., Wang, H., Wang, Y., Tan, Y., Dang, L., et al. (2020) Targeted Silencing of MiRNA-132-3p Expression Rescues Disuse Osteopenia by Promoting Mesenchymal Stem Cell Osteogenic Differentiation and Osteogenesis in Mice. Stem Cell Research & Therapy, 11, Article No. 58. https://doi.org/10.1186/s13287-020-1581-6
|
[56]
|
Chen, F., Zhang, Z. and Wang, D. (2022) MicroRNA-101a-3p Mimic Ameliorates Spinal Cord Ischemia/Reperfusion Injury. Neural Regeneration Research, 17, 2022-2028. https://doi.org/10.4103/1673-5374.335164
|
[57]
|
Louw, A.M., Kolar, M.K., Novikova, L.N., Kingham, P.J., Wiberg, M., Kjems, J., et al. (2016) Chitosan Polyplex Mediated Delivery of MiRNA-124 Reduces Activation of Microglial Cells in Vitro and in Rat Models of Spinal Cord Injury. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 643-653. https://doi.org/10.1016/j.nano.2015.10.011
|
[58]
|
Shao, Y., Wang, Q., Liu, L., Wang, J. and Wu, M. (2023) Exosomes from MicroRNA 146a Overexpressed Bone Marrow Mesenchymal Stem Cells Protect against Spinal Cord Injury in Rats. Journal of Orthopaedic Science, 28, 1149-1156. https://doi.org/10.1016/j.jos.2022.07.013
|