miRNA介导巨噬细胞极化在脊髓损伤修复中的研究进展与展望
Research Progress and Prospects of miRNA-Mediated Macrophage Polarization in the Repair of Spinal Cord Injury
摘要: SCI是一个严重的公共卫生问题,目前缺乏有效的治疗方法。巨噬细胞极化在SCI修复中起着关键作用,而miRNA对巨噬细胞极化的调节为SCI治疗提供了新的思路。该综述总结了该领域的最新研究进展,有助于研究者更好地理解SCI的病理机制,并为开发新的治疗策略提供参考。
Abstract: Spinal cord injury (SCI) is a serious public health problem, and currently there is a lack of effective treatment methods. Macrophage polarization plays a crucial role in SCI repair, and the regulation of macrophage polarization by miRNA provides new ideas for SCI treatment. This review summarizes the latest research progress in this field, which helps researchers better understand the pathological mechanism of SCI and provides references for the development of new treatment strategies.
文章引用:麦麦提敏·斯玛依力, 木热提·卡哈尔, 阿克力江·吾卜力, 阿里木江·吾布力. miRNA介导巨噬细胞极化在脊髓损伤修复中的研究进展与展望[J]. 临床医学进展, 2025, 15(2): 100-108. https://doi.org/10.12677/acm.2025.152321

1. 引言

脊髓损伤(SCI)是一种导致感觉、运动和自主神经功能严重受损的中枢神经系统损伤[1]。尽管现有治疗方法取得了一定进展,但神经功能恢复效果仍不理想[2]。因此,寻找新的治疗靶点和策略对于改善SCI预后至关重要[3]。巨噬细胞作为中枢神经系统中重要的免疫细胞,在SCI后迅速激活并发生极化,分为促炎的M1型和抗炎的M2型,对SCI后的炎症反应、细胞凋亡和组织修复具有重要调节作用[4]。miRNA是一类内源性的非编码RNA,通过与靶mRNA的互补配对调节基因表达,在多种生理过程中发挥重要作用[5]。研究表明miRNA在巨噬细胞极化的调节中起着关键作用,影响巨噬细胞的表型和功能,参与SCI修复过程[6]

2. 检索策略与数据的收集

本研究于2024年10月20日在PubMed、Web of science、中国知网数据库中以“SCI”、“macrophage polarization”、“signaling pathway”、“miRNA”等为主题的英文检索词;以“脊髓损伤”、“巨噬细胞极化”、“信号通路”、“环状RNA”为主题的中文检索词进行检索,检索文献类型设定为综述及研究原著。排除与研究目的及内容无关的文献以及重复性研究。通过上述检索策略进行检索(见表1),共检索出1109篇文献,英文文献1052篇,中文文献57篇,排除与本综述相关性差及文献质量不高并且内容重复的文献1051篇,纳入58篇符合标准的文献进行综述(见图1)。

Table 1. Literature retrieval strategies

1. 文献检索策略

PubMed数据库

中国知网数据库

#1SCI[Title/Abstract]

#1脊髓损伤[主题]

#2macrophage polarization [Title/Abstract]

#2巨噬细胞极化[主题]

#3signaling pathway [Title/Abstract]

#3信号通路[主题]

#4miRNA [Title/Abstract]

#4环状RNA[主题]

#5#1And#2

#5#1And#2And#3

#6#2And#3

#6#1And#2And#4

#7#2And#4

#7#1And#3And#4

#8#1And#3And#4

#8#5OR#6OR#7

#9#5And#6And#7And#8

Figure 1. Flow chart of literature screening

1. 文献筛选流程图

3. 脊髓损伤后的炎症反应

3.1. 脊髓损伤的病理生理过程

脊髓损伤包括原发性与继发性损伤,原发性损伤引发脊髓出血和细胞死亡,继发性损伤中炎症反应持续久,参与愈合进程,涉及炎性细胞浸润、炎症介质释放及信号通路激活等复杂环节[7]-[9]

3.2. 中性粒细胞浸润在脊髓损伤炎症反应中的作用

中性粒细胞在伤后4~6小时大量浸润损伤部位,24小时内达峰值,释放弹性蛋白酶(Neutrophil Elastase, NE)和髓过氧化物酶(Myeloperoxidase, MPO)等[10]。NE增加炎症因子表达、促进瘢痕形成[11];MPO增强氧化应激、释放炎症介质、阻碍修复,但早期浸润也有促进微循环建立等修复作用[12] [13]

3.3. 小胶质细胞及巨噬细胞活化在脊髓损伤炎症反应中的作用

脊髓损伤后,小胶质细胞及巨噬细胞7天左右活化达峰,释放多种蛋白激活受体,引发炎症级联和神经毒性反应,致神经元死亡与轴突损伤[14]-[16]。早期两者多呈M1型极化,后期部分向M2型转化,小胶质细胞多在病灶中心及边缘,血源性巨噬细胞在病灶边缘,二者在不同阶段发挥不同免疫调节功能[17]

4. 脊髓损伤后的巨噬细胞极化

4.1. 巨噬细胞的来源与分化

血源性巨噬细胞源自骨髓造血干细胞,经分化为单核细胞,受炎症或损伤信号趋化至组织再分化为巨噬细胞,获吞噬与分泌功能[18]。巨噬细胞在人体免疫防御中至关重要[19]。极化是其响应刺激的表型转变关键过程[20]。Mills等[21]人研究将巨噬细胞分为M1型(促炎型)和M2型(抗炎型):M1型由Th1型细胞因子,如干扰素-γ (Interferon-γ, IFN-γ)、脂多糖(Lipopolysaccharide, LPS)诱导,可产生大量活性氧等促炎物质,能清除病原体,但过度激活可致组织损伤;M2型由Th2型细胞因子(如IL-4、IL-13)诱导,在组织修复和重塑中起重要作用,可促伤口愈合、减炎症反应。

4.2. 巨噬细胞极化的分类与特点

M1型巨噬细胞:SCI初期,血–脊髓屏障破坏,M1型巨噬细胞被激活,凭借吞噬功能清除病原体[22]。但随后其持续分泌TNF-α、IL-1β等促炎和毒性物质,破坏微环境,加重神经元损伤[23]。SUN等[24]人构建TCRδ-小鼠脊髓损伤模型发现,γδT细胞缺失可改变其极化比例。

M2型巨噬细胞脊髓损伤后期,M2型巨噬细胞释放大量抗炎因子(如IL-10、TGF-β等)抑制促炎因子,还释放多种神经营养因子,促进神经干细胞增殖分化、轴突生长和髓鞘修复[25]。Kobashi等[26]人通过小鼠SCI模型实验表明,静脉注射M2型偏离巨噬细胞后,小鼠运动功能显著改善,包括后肢力量增强、协调性提高、脊髓损伤减轻、胶质瘢痕减少、神经元存活和轴突再生增加等。M2型巨噬细胞来源主要有体内直接提取和体外诱导分化两种,但体内提取量有限,体外诱导分化过程复杂,成功率和纯度难以保证[27]。但MA等[28]人设计制备的人工M2型巨噬细胞用于骨关节炎治疗取得良好效果。

4.3. 参与巨噬细胞极化的相关信号通路及其作用

Wnt、Nuclear Factor-kappa B (NF-κB)、Phosphatidylinositol3-Kinase/Protein Kinase B (PI3K/Akt)、Mitogen-Activated Protein Kinases (MAPK)、Janus Kinase-Signal Transducers and Activators of Transcription (JAK-STAT)、Mammalian Target Of Rapamycin (mTOR)等信号通路紧密交织,共同构成精密调控网络,确保巨噬细胞极化准确进行[43] (见表2)。

Table 2. Related signal pathways involved in macrophage polarization and their functions

2. 参与巨噬细胞极化的相关信号通路及其作用

信号通路

M1型巨噬细胞

M2型巨噬细胞

Wnt通路[29]

调节炎症反应,促进炎症因子释放加剧炎症;影响细胞存活和凋亡平衡。

促进极化,激活经典通路促分化;抑制炎症,减少炎症因子产生;促进细胞存活和修复。

NF-κB通路[30]

促进极化,调节促炎基因表达;维持极化状态。

抑制极化,阻碍分化和功能;促进炎症消退。

PI3K/Akt通路[31]

调节代谢和存活,提供能量支持;抑制凋亡。

促进极化,激活下游基因表达;调节细胞功能,促进修复。

MAPK通路[32]

激活JNK和p38信号通路,促进活化和炎症因子产生;调节极化平衡,抑制M1过度活化,促进M2分化;促进抗炎反应。

调节极化平衡,抑制M1活化,促进M2功能;促进抗炎因子表达。

JAK-STAT通路[33]

激活信号通路,调节促炎基因表达,促进极化。

调节极化,激活STAT6,促进分化和功能。

mTOR通路[34]

调节代谢和功能,增强代谢活性;抑制自噬。

促进极化,调节营养代谢;调节免疫反应,增强吞噬和清除能力。

注:c-Jun氨基末端激酶(c-Jun N-terminal kinases, JNK);丝裂原活化蛋白激酶(p38)。

5. miRNA在脊髓损伤修复中的作用

5.1. miRAN分子结构特征以及生物合成

miRNA是约21-25核苷酸的非编码单链RNA,前体pre-miRNA经转录与加工形成成熟体,通过与靶基因mRNA 3'UTR不完全互补配对,引导RISC调控靶基因表达[35]-[37]。目前主要通过构建转基因动物模型和miRNA过表达试验来验证其生物学特征[38]。miRNA具有多靶点调控特性,一个miRNA可调控多个不同靶基因,多个miRNA也能共同调控同一靶基因,敲除小鼠一种或多种保守型miRNA不一定完全影响其行为及发育[39]

5.2. miRNA介导的巨噬细胞极化

miRNA在多种疾病中发挥重要作用[40]。通过微阵列分析和RNA-seq技术明确了人和小鼠M1、M2型巨噬细胞极化中的miRNA表达谱,证实miR-9等可促进M1极化,miR-124等可诱导M2极化[41]。LU等[42]人通过配对RNA-Seq和miRNA-Seq实验,鉴定出31个M1和M2型巨噬细胞间差异表达的miRNA,M1中高表达有miR-155-3p等,M2中高表达有miR-27a-5p等,且M1型miRNA分为两个亚簇,分别为早期和晚期响应miRNA。miRNA-mRNA网络分析表明,M1极化中富集的miRNA参与免疫反应和信号转导,M2极化中富集的miRNA参与细胞周期和代谢[43]。Essandoh等[44]人研究发现,M1极化在诱导后1~4小时关键基因和miRNA显著变化,是早期干预关键窗口;M2极化在2~8小时相关变化逐渐明显,4~8小时相关分子变化更突出。此外,miRNA参与巨噬细胞极化类型、信号通路及作用如下(见表3)。

Table 3. miRNA mediating macrophage polarization and their functions

3. 介导巨噬细胞极化的miRNA及其作用

miRAN

极化类型

靶点/信号通路

作用

miR-27a [45]

M2

Sprouty2、ERK

miR-27通过作用于特定靶点和信号通路,促进巨噬细胞向M2型极化,M2型巨噬细胞具有抗炎和促进组织修复的作用,在炎症消退、组织再生等过程中发挥重要功能。

miR-223 [46]

M1

NFI-A、PI3K/Akt

miR-223通过激活PI3K/Akt信号通路促进巨噬细胞向M2型极化并且在炎症调节、造血系统调控和心血管疾病等生理病理过程中都发挥着重要的作用。

miR-181 [47]

M2

PU.1、PI3K/Akt

miR-181通过抑制靶向转录因子PU.1的表达,促进M2型巨噬细胞极化并且在免疫系统调节、神经系统疾病和肿瘤发生发展等生理病理过程中都发挥着重要的作用。

miR-1246 [48]

M2

PI3K/Akt

miR-1246通过靶向激活PI3K/Akt信号通路,通过诱导M2相关基因的表达,如Arg1、Fizz1和Ym1等,促进M2型巨噬细胞极化。

miR-100 [49]

M1

mTOR、PI3K/Akt/mTOR

miR-100通过靶向抑制哺乳动物雷帕霉素靶蛋白(mTOR)的活性促进巨噬细胞向M1型极化,在肥胖和糖尿病等代谢性疾病中表达异常,通过调节脂肪细胞和肝细胞的代谢过程,影响代谢平衡。

miR-155 [50]

M1

SHIP1、C/EBPβ、 NF-κB

miR-155通过调节NF-κB信号通路促进M1型巨噬细胞极化,在免疫系统调节、炎症性疾病和肿瘤发生发展等生理病理过程中都发挥着重要作用。

miR-145 [50]

M2

KLF5、PPARγ

miR-145通过靶向抑制Krüppel样因子5 (KLF5)的表达,促进巨噬细胞向M2型极化,并且通过调节神经炎症、神经元凋亡和突触可塑性等过程,参与神经系统疾病的病理生理过程。

miR-Let-7b [51]

M1

PAK1、 NIK-IKK-NF-κB

Let-7b-3p通过靶向激活NIK-IKK-NF-κB信号通路促进M1型巨噬细胞极化,影响糖代谢、脂肪酸代谢等代谢途径。

miR-93 [52]

M1

PI3Kγ、 PI3K/AKT/NF-κB

miR-93-3p通过抑制PI3K/AKT信号传导和激活NF-κB信号传导来靶向和抑制PI3Kγ的表达并促进M1巨噬细胞极化从而促进炎症进展及细胞凋亡。

miR-26a [53]

M2

KLF4、CREB-C/EBPβ

miR-26a的下调促进靶基因Kruppel样因子4 (KLF4)表达,间接促进巨噬细胞向M2极化,提高精氨酸酶的活性并降低诱导型一氧化氮合酶(iNOS)的活性,从而影响巨噬细胞的功能和极化状态。

注:精氨酸酶1 (Arginase1, Arg1);炎症相关蛋白(Foundininflammatoryzone1, Fizz1);几丁质酶3样蛋白3 (Chitinase-3-like-3, Ym1)。

6. miRNA调控巨噬细胞极化在脊髓损伤修复中的潜在治疗策略

脊髓损伤修复过程复杂,miRNA参与调控SCI后的多种病理生理过程,通过巨噬细胞极化的修复治疗仅处于动物模型实验阶段[54]。miRNA作为神经系统疾病潜在靶点及药物递送系统是研究热点,miRNA模拟物和抑制剂是研究其功能和开发治疗策略的重要工具[55]。研究表明,鞘内注射miRNA-101a-3p模拟物可改善缺血再灌注损伤脊髓状况;过表达miR-223的神经干细胞移植可能治疗脊髓损伤[56];壳聚糖载体递送miR-124可降低小胶质细胞相关指标[57];联合间充质干细胞和miRAN-146a模拟物等多种联合方式也对脊髓损伤修复有积极作用[58]

7. 现有研究局限性与未来研究方向

虽然目前针对miRNA调控巨噬细胞极化的研究成果较多且获得了很大的进展,但仍存在局限性。1) 不同miRNA之间的相互关系及在SCI复杂病理微环境下动态变化的机制不明确。2) 大量的动物模型仍无法完全模拟人体SCI的病理生理过程,导致研究成果无法向临床转化。3) 临床中缺乏足够的样本量以及临床对照研究,无法准确评估miRNA治疗的安全性及有效性。未来研究应向以下几个方面进行:一是利用多组学技术深入分析miRNA、巨噬细胞极化、SCI三者之间形成的修复网络,明确关键的miRNA以及其调控节点;二是进行更为精准的动物模型试验,优化给药途径与剂量,提高miRNA的治疗效果;三是积极开展临床研究,收集临床资料,评估miRNA治疗的可行性与可靠性,加速其在临床中的应用,为SCI患者带来新希望。

8. 小结与展望

脊髓损伤修复中巨噬细胞极化与miRNA调控至关重要。炎症反应驱动巨噬细胞极化,受多种信号通路调控并且miRNA深度参与其中。虽然现有研究取得了一定进展,但仍存在挑战。未来通过深化机制研究、优化动物模型以及给药策略,进一步开展临床研究,有望突破瓶颈,实现miRNA介导巨噬细胞极化调控治疗SCI的临床转化,显著改善患者预后。

NOTES

*通讯作者。

参考文献

[1] Eli, I., Lerner, D.P. and Ghogawala, Z. (2021) Acute Traumatic Spinal Cord Injury. Neurologic Clinics, 39, 471-488.
https://doi.org/10.1016/j.ncl.2021.02.004
[2] 夏宇, 丁璐, 邓宇斌. 小胶质细胞在脊髓损伤中的作用机制研究进展[J]. 神经损伤与功能重建, 2023, 18(2): 593-596.
[3] Shang, J., Jiang, C., Cai, J., Chen, Z., Jin, S., Wang, F., et al. (2023) Knowledge Mapping of Macrophage in Spinal Cord Injury: A Bibliometric Analysis. World Neurosurgery, 180, e183-e197.
https://doi.org/10.1016/j.wneu.2023.09.022
[4] Fu, S., Chen, S., Pang, Q., Zhang, M., Wu, X., Wan, X., et al. (2022) Advances in the Research of the Role of Macrophage/Microglia Polarization-Mediated Inflammatory Response in Spinal Cord Injury. Frontiers in Immunology, 13, Article ID: 1014013.
https://doi.org/10.3389/fimmu.2022.1014013
[5] Feng, J., Zhang, Y., Zhu, Z., Gu, C., Waqas, A. and Chen, L. (2021) Emerging Exosomes and Exosomal MiRNAs in Spinal Cord Injury. Frontiers in Cell and Developmental Biology, 9, Article ID: 703989.
https://doi.org/10.3389/fcell.2021.703989
[6] Wang, J., Tian, F., Cao, L., Du, R., Tong, J., Ding, X., et al. (2023) Macrophage Polarization in Spinal Cord Injury Repair and the Possible Role of MicroRNAs: A Review. Heliyon, 9, e22914.
https://doi.org/10.1016/j.heliyon.2023.e22914
[7] 曹宁, 封亚平, 谢佳芯. 《脊髓损伤神经修复治疗临床指南(中国版)2021》解读[J]. 中国现代神经疾病杂志, 2022, 22(8): 655-661.
[8] 田婷, 李晓光. 脊髓损伤再生修复中的问题与挑战[J]. 中国组织工程研究, 2021, 25(19): 3039-3048.
[9] Anjum, A., Yazid, M.D., Fauzi Daud, M., Idris, J., Ng, A.M.H., Selvi Naicker, A., et al. (2020) Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. International Journal of Molecular Sciences, 21, Article No. 7533.
https://doi.org/10.3390/ijms21207533
[10] 杨溢珂, 任亚锋, 李冰, 等. 脊髓损伤后细胞自噬的调控治疗机制及策略[J]. 中国组织工程研究, 2025, 29(12): 3885-3896.
[11] 赵书杰, 郑子洋, 戴思名, 等. 中性粒细胞在脊髓损伤中作用的研究进展[J]. 中国脊柱脊髓杂志, 2023, 33(5): 463-467.
[12] Tu, H., Ren, H., Jiang, J., Shao, C., Shi, Y. and Li, P. (2023) Dying to Defend: Neutrophil Death Pathways and Their Implications in Immunity. Advanced Science, 11, Article ID: 2306457.
https://doi.org/10.1002/advs.202306457
[13] Islam, M.M. and Takeyama, N. (2023) Role of Neutrophil Extracellular Traps in Health and Disease Pathophysiology: Recent Insights and Advances. International Journal of Molecular Sciences, 24, Article No. 15805.
https://doi.org/10.3390/ijms242115805
[14] Brennan, F.H., Li, Y., Wang, C., Ma, A., Guo, Q., Li, Y., et al. (2022) Microglia Coordinate Cellular Interactions during Spinal Cord Repair in Mice. Nature Communications, 13, Article No. 4096.
https://doi.org/10.1038/s41467-022-31797-0
[15] Hellenbrand, D.J., Quinn, C.M., Piper, Z.J., Morehouse, C.N., Fixel, J.A. and Hanna, A.S. (2021) Inflammation after Spinal Cord Injury: A Review of the Critical Timeline of Signaling Cues and Cellular Infiltration. Journal of Neuroinflammation, 18, Article No. 284.
https://doi.org/10.1186/s12974-021-02337-2
[16] Dalmau Gasull, A., Glavan, M., Samawar, S.K.R., Kapupara, K., Kelk, J., Rubio, M., et al. (2024) The Niche Matters: Origin, Function and Fate of CNS-Associated Macrophages during Health and Disease. Acta Neuropathologica, 147, Article No. 37.
https://doi.org/10.1007/s00401-023-02676-9
[17] Tang, H., Gu, Y., Jiang, L., Zheng, G., Pan, Z. and Jiang, X. (2023) The Role of Immune Cells and Associated Immunological Factors in the Immune Response to Spinal Cord Injury. Frontiers in Immunology, 13, Article ID: 1070540.
https://doi.org/10.3389/fimmu.2022.1070540
[18] Yu, Q., Cai, Z., Liu, X., Lin, S., Li, P., Ruan, Y., et al. (2024) Research Progress on Treating Spinal Cord Injury by Modulating the Phenotype of Microglia. Journal of Integrative Neuroscience, 23, Article No. 171.
https://doi.org/10.31083/j.jin2309171
[19] Kloc, M., Ghobrial, R.M., Wosik, J., Lewicka, A., Lewicki, S. and Kubiak, J.Z. (2018) Macrophage Functions in Wound Healing. Journal of Tissue Engineering and Regenerative Medicine, 13, 99-109.
https://doi.org/10.1002/term.2772
[20] Kadomoto, S., Izumi, K. and Mizokami, A. (2021) Macrophage Polarity and Disease Control. International Journal of Molecular Sciences, 23, Article No. 144.
https://doi.org/10.3390/ijms23010144
[21] Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J. and Hill, A.M. (2000) M-1/M-2 Macrophages and the Th1/Th2 Paradigm. The Journal of Immunology, 164, 6166-6173.
https://doi.org/10.4049/jimmunol.164.12.6166
[22] Yuan, Z., Jiang, D., Yang, M., Tao, J., Hu, X., Yang, X., et al. (2024) Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthopaedic Surgery, 16, 532-550.
https://doi.org/10.1111/os.13993
[23] Zubova, S.G., Suvorova, I.I. and Karpenko, M.N. (2022) Macrophage and Microglia Polarization: Focus on Autophagy-Dependent Reprogramming. Frontiers in Bioscience-Scholar, 14, Article No. 3.
https://doi.org/10.31083/j.fbs1401003
[24] Sun, G., Yang, S., Cao, G., Wang, Q., Hao, J., Wen, Q., et al. (2017) γδ T Cells Provide the Early Source of IFN-γ to Aggravate Lesions in Spinal Cord Injury. Journal of Experimental Medicine, 215, 521-535.
https://doi.org/10.1084/jem.20170686
[25] Lv, J., Wang, Z., Wang, B., Deng, C., Wang, W. and Sun, L. (2024) S100A9 Induces Macrophage M2 Polarization and Immunomodulatory Role in the Lesion Site after Spinal Cord Injury in Rats. Molecular Neurobiology, 61, 5525-5540.
https://doi.org/10.1007/s12035-024-03920-3
[26] Kobashi, S., Terashima, T., Katagi, M., Nakae, Y., Okano, J., Suzuki, Y., et al. (2020) Transplantation of M2-Deviated Microglia Promotes Recovery of Motor Function after Spinal Cord Injury in Mice. Molecular Therapy, 28, 254-265.
https://doi.org/10.1016/j.ymthe.2019.09.004
[27] Jankovic, M.G., Stojkovic, M., Bojic, S., Jovicic, N., Kovacevic, M.M., Ivosevic, Z., et al. (2023) Scaling up Human Mesenchymal Stem Cell Manufacturing Using Bioreactors for Clinical Uses. Current Research in Translational Medicine, 71, Article ID: 103393.
https://doi.org/10.1016/j.retram.2023.103393
[28] Ma, Y., Yang, H., Zong, X., Wu, J., Ji, X., Liu, W., et al. (2021) Artificial M2 Macrophages for Disease-Modifying Osteoarthritis Therapeutics. Biomaterials, 274, Article ID: 120865.
https://doi.org/10.1016/j.biomaterials.2021.120865
[29] Li, K., Chen, Z., Chang, X., Xue, R., Wang, H. and Guo, W. (2024) WNT Signaling Pathway in Spinal Cord Injury: From Mechanisms to Potential Applications. Frontiers in Molecular Neuroscience, 17, Article ID: 1427054.
https://doi.org/10.3389/fnmol.2024.1427054
[30] Kijima, K., Ono, G., Kobayakawa, K., Saiwai, H., Hara, M., Yoshizaki, S., et al. (2023) Zinc Deficiency Impairs Axonal Regeneration and Functional Recovery after Spinal Cord Injury by Modulating Macrophage Polarization via NF-κB Pathway. Frontiers in Immunology, 14, Article ID: 1290100.
https://doi.org/10.3389/fimmu.2023.1290100
[31] Xiao, C., Yin, W., Zhong, Y., Luo, J., Liu, L., Liu, W., et al. (2022) The Role of PI3K/Akt Signalling Pathway in Spinal Cord Injury. Biomedicine & Pharmacotherapy, 156, Article ID: 113881.
https://doi.org/10.1016/j.biopha.2022.113881
[32] Huang, S., Zhang, Y., Shu, H., Liu, W., Zhou, X. and Zhou, X. (2024) Advances of the MAPK Pathway in the Treatment of Spinal Cord Injury. CNS Neuroscience & Therapeutics, 30, e14807.
https://doi.org/10.1111/cns.14807
[33] Guo, X., Jiang, C., Chen, Z., Wang, X., Hong, F. and Hao, D. (2023) Regulation of the JAK/STAT Signaling Pathway in Spinal Cord Injury: An Updated Review. Frontiers in Immunology, 14, Article ID: 1276445.
https://doi.org/10.3389/fimmu.2023.1276445
[34] Ding, Y. and Chen, Q. (2022) mTOR Pathway: A Potential Therapeutic Target for Spinal Cord Injury. Biomedicine & Pharmacotherapy, 145, Article ID: 112430.
https://doi.org/10.1016/j.biopha.2021.112430
[35] Deng, Z. and Chen, Y. (2023) Research Progress of MicroRNAs in Spinal Cord Injury. Journal of Integrative Neuroscience, 22, Article No. 31.
https://doi.org/10.31083/j.jin2202031
[36] Sintakova, K. and Romanyuk, N. (2024) The Role of Small Extracellular Vesicles and MicroRNA as Their Cargo in the Spinal Cord Injury Pathophysiology and Therapy. Frontiers in Neuroscience, 18, Article ID: 1400413.
https://doi.org/10.3389/fnins.2024.1400413
[37] Silvestro, S. and Mazzon, E. (2022) MiRNAs as Promising Translational Strategies for Neuronal Repair and Regeneration in Spinal Cord Injury. Cells, 11, Article No. 2177.
https://doi.org/10.3390/cells11142177
[38] Kishore, A. and Petrek, M. (2021) Roles of Macrophage Polarization and Macrophage-Derived MiRNAs in Pulmonary Fibrosis. Frontiers in Immunology, 12, Article ID: 678457.
https://doi.org/10.3389/fimmu.2021.678457
[39] Park, C.Y., Choi, Y.S. and McManus, M.T. (2010) Analysis of MicroRNA Knockouts in Mice. Human Molecular Genetics, 19, R169-R175.
https://doi.org/10.1093/hmg/ddq367
[40] Shen, Y. and Cai, J. (2022) The Importance of Using Exosome-Loaded Mirna for the Treatment of Spinal Cord Injury. Molecular Neurobiology, 60, 447-459.
https://doi.org/10.1007/s12035-022-03088-8
[41] Deng, Z. and Chen, Y. (2023) Research Progress of MicroRNAs in Spinal Cord Injury. Journal of Integrative Neuroscience, 22, Article No. 31.
https://doi.org/10.31083/j.jin2202031
[42] Lu, L., McCurdy, S., Huang, S., Zhu, X., Peplowska, K., Tiirikainen, M., et al. (2016) Time Series miRNA-mRNA Integrated Analysis Reveals Critical MiRNAs and Targets in Macrophage Polarization. Scientific Reports, 6, Article No. 37446.
https://doi.org/10.1038/srep37446
[43] Sprenkle, N.T., Serezani, C.H. and Pua, H.H. (2023) MicroRNAs in Macrophages: Regulators of Activation and Function. The Journal of Immunology, 210, 359-368.
https://doi.org/10.4049/jimmunol.2200467
[44] Essandoh, K., Li, Y., Huo, J. and Fan, G. (2016) Mirna-Mediated Macrophage Polarization and Its Potential Role in the Regulation of Inflammatory Response. Shock, 46, 122-131.
https://doi.org/10.1097/shk.0000000000000604
[45] Xie, N., Cui, H., Banerjee, S., Tan, Z., Salomao, R., Fu, M., et al. (2014) Mir-27a Regulates Inflammatory Response of Macrophages by Targeting Il-10. The Journal of Immunology, 193, 327-334.
https://doi.org/10.4049/jimmunol.1400203
[46] Jiao, P., Wang, X., Luoreng, Z., Yang, J., Jia, L., Ma, Y., et al. (2021) Mir-223: An Effective Regulator of Immune Cell Differentiation and Inflammation. International Journal of Biological Sciences, 17, 2308-2322.
https://doi.org/10.7150/ijbs.59876
[47] Curtale, G., Rubino, M. and Locati, M. (2019) MicroRNAs as Molecular Switches in Macrophage Activation. Frontiers in Immunology, 10, Article No. 799.
https://doi.org/10.3389/fimmu.2019.00799
[48] Aili, Y., Maimaitiming, N., Mahemuti, Y., Qin, H., Wang, Y. and Wang, Z. (2021) The Role of Exosomal MiRNAs in Glioma: Biological Function and Clinical Application. Frontiers in Oncology, 11, Article ID: 686369.
https://doi.org/10.3389/fonc.2021.686369
[49] Wang, T., Zhong, D., Qin, Z., He, S., Gong, Y., Li, W., et al. (2020) Mir-100-3p Inhibits the Adipogenic Differentiation of HMSCS by Targeting PIK3R1 via the PI3K/AKT Signaling Pathway. Aging, 12, 25090-25100.
https://doi.org/10.18632/aging.104074
[50] Hu, J., Huang, C., Rao, P., Zhou, J., Wang, X., Tang, L., et al. (2019) Inhibition of Microrna-155 Attenuates Sympathetic Neural Remodeling Following Myocardial Infarction via Reducing M1 Macrophage Polarization and Inflammatory Responses in Mice. European Journal of Pharmacology, 851, 122-132.
https://doi.org/10.1016/j.ejphar.2019.02.001
[51] Bassett, C., Triplett, H., Lott, K., Howard, K.M. and Kingsley, K. (2023) Differential Expression of MicroRNA (MiR-27, MiR-145) among Dental Pulp Stem Cells (DPSCs) Following Neurogenic Differentiation Stimuli. Biomedicines, 11, Article No. 3003.
https://doi.org/10.3390/biomedicines11113003
[52] Mohapatra, S., Pioppini, C., Ozpolat, B. and Calin, G.A. (2021) Non-Coding RNAs Regulation of Macrophage Polarization in Cancer. Molecular Cancer, 20, Article No. 24.
https://doi.org/10.1186/s12943-021-01313-x
[53] Tan, W., Dai, F., Yang, D., Deng, Z., Gu, R., Zhao, X., et al. (2022) Mir-93-5p Promotes Granulosa Cell Apoptosis and Ferroptosis by the NF-κB Signaling Pathway in Polycystic Ovary Syndrome. Frontiers in Immunology, 13, Article ID: 967151.
https://doi.org/10.3389/fimmu.2022.967151
[54] Visintin, R. and Ray, S.K. (2022) Specific MicroRNAs for Modulation of Autophagy in Spinal Cord Injury. Brain Sciences, 12, Article No. 247.
https://doi.org/10.3390/brainsci12020247
[55] Hu, Z., Zhang, L., Wang, H., Wang, Y., Tan, Y., Dang, L., et al. (2020) Targeted Silencing of MiRNA-132-3p Expression Rescues Disuse Osteopenia by Promoting Mesenchymal Stem Cell Osteogenic Differentiation and Osteogenesis in Mice. Stem Cell Research & Therapy, 11, Article No. 58.
https://doi.org/10.1186/s13287-020-1581-6
[56] Chen, F., Zhang, Z. and Wang, D. (2022) MicroRNA-101a-3p Mimic Ameliorates Spinal Cord Ischemia/Reperfusion Injury. Neural Regeneration Research, 17, 2022-2028.
https://doi.org/10.4103/1673-5374.335164
[57] Louw, A.M., Kolar, M.K., Novikova, L.N., Kingham, P.J., Wiberg, M., Kjems, J., et al. (2016) Chitosan Polyplex Mediated Delivery of MiRNA-124 Reduces Activation of Microglial Cells in Vitro and in Rat Models of Spinal Cord Injury. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 643-653.
https://doi.org/10.1016/j.nano.2015.10.011
[58] Shao, Y., Wang, Q., Liu, L., Wang, J. and Wu, M. (2023) Exosomes from MicroRNA 146a Overexpressed Bone Marrow Mesenchymal Stem Cells Protect against Spinal Cord Injury in Rats. Journal of Orthopaedic Science, 28, 1149-1156.
https://doi.org/10.1016/j.jos.2022.07.013