C反应蛋白/白蛋白比值(CAR)在急性冠脉综合征患者病情评估及预后的价值
The Value of C-Reactive Protein/Albumin Ratio (CAR) in the Evaluation and Prognosis of Patients with Acute Coronary Syndrome
DOI: 10.12677/acm.2025.152324, PDF, HTML, XML,   
作者: 程雅林:重庆医科大学第一临床学院,重庆;蔡国强*:重庆医科大学第一临床学院,重庆;重庆市垫江县人民医院心血管内科,重庆
关键词: C反应蛋白白蛋白急性冠脉综合征预后C-Reactive Protein Albumin Acute Coronary Syndrome Prognosis
摘要: 急性冠脉综合征(ACS)是心血管疾病中常见且严重的一类疾病,其早期诊断和准确的预后评估对于改善患者结局至关重要。近年来,C反应蛋白(CRP)和白蛋白(ALB)作为炎症和营养状态的指标,逐渐受到重视,相关研究揭示了二者在炎症相关性疾病中的价值。C反应蛋白/白蛋白比值(CAR)则是基于这两者衍生出的一个综合性指标,能够更全面地反映个体的炎症状态和全身状况,且有研究证实CAR在ACS患者中有较好的病情评估和预后预测价值。本文对此主题进行综述,探讨CRP、ALB及CAR在ACS患者病情评估及预后中的价值。
Abstract: Acute coronary syndrome (ACS) is a common and serious type of cardiovascular disease. Its early diagnosis and accurate prognosis evaluation are crucial to improving the outcome of patients. In recent years, C-reactive protein (CRP) and albumin (ALB) have been paid more and more attention as indicators of inflammation and nutritional status. Related studies have revealed the value of both in inflammation-related diseases. C-reactive protein to albumin ratio (CAR) is a comprehensive index derived from these two, which can reflect the individual’s inflammatory state and systemic condition more comprehensively. The existing evidence shows that CAR shows certain potential value in the evaluation of ACS, including its application in the severity assessment and prognosis prediction of coronary artery disease. This article aims to briefly explore the importance of CRP, ALB and CAR in ACS, in order to provide new ideas for the development and prognosis evaluation of ACS patients.
文章引用:程雅林, 蔡国强. C反应蛋白/白蛋白比值(CAR)在急性冠脉综合征患者病情评估及预后的价值[J]. 临床医学进展, 2025, 15(2): 120-128. https://doi.org/10.12677/acm.2025.152324

1. 引言

急性冠脉综合征(acute coronary syndrome, ACS)是一组由急性心肌缺血而引起的临床综合征,主要包括不稳定型心绞痛(UA)、非ST段抬高型心肌梗死(NSTEMI)以及ST段抬高型心肌梗死(STEMI)。该病是全球范围内导致死亡的主要原因之一,其发病率在我国逐年增加,且相较于拉丁美洲国家,我国ACS发病时间提前了5年[1]。鉴于ACS的严重性及其对个人和社会造成的巨大影响,迫切需要有效的指标来评估ACS患者的病情及其预后。现已明确ACS的病理特征包括冠状动脉粥样斑块破裂、炎症状态、活化的血小板黏附/聚集、血管痉挛、血栓形成等[2]-[4]。炎症在动脉粥样硬化斑块的进展和不稳定中发挥着重要作用[4] [5]。而炎症状态可以使用急性期反应物(acute phase reactants, APRs)来测量,常用参数C-反应蛋白(C-reactive protein, CRP)和白蛋白(Albumin, ALB) (分别称为阳性和阴性APRs)与ACS严重程度和主要不良心血管事件(major adverse cardiovascular events, MACE)相关。CRP通过激活补体系统,诱导细胞凋亡,促进血管活化、白细胞募集、脂质堆积以及血小板聚集,从而加速斑块和血栓的形成[6] [7]。ALB具有抗氧化/抗凝活性、抗炎和血管扩张作用,能够促进脂类、溶血素和保护素等抗炎介质的形成[8]。C反应蛋白/白蛋白比值(C-reactive protein to albumin ratio, CAR)作为CRP和ALB的衍生指标,已被证实在脓毒症、炎症性肠病、急性胰腺炎、肿瘤、心血管疾病等多种疾病中具有预测预后价值,且在ACS中的临床价值可能大于单独的CRP和ALB [9] [10]。本文旨在总结CAR在ACS中的诊断、治疗决策及预后评估等方面的研究进展,为临床实践提供参考和指导。

2. C-反应蛋白

2.1. C-反应蛋白(C-Reactive Protein, CRP)

C-反应蛋白(C-reactive protein, CRP)是一种由肝细胞合成的急性期蛋白。1930年,Tillet等研究人员在对感染肺炎链球菌患者进行研究时,首次发现患者血浆中存在一种能够与肺炎链球菌细胞壁上的C-多糖(Streptococcus pneumonia C-polysaccharide)结合的蛋白质,并将其命名为C-反应蛋白(C-reactive protein, CRP) [11]。随后的一些早期研究揭示了CRP的特异性,其半衰期为19小时,在组织损伤或感染的早期阶段即会显著升高,而当刺激因素消失后,CRP水平会在18~20小时内呈指数下降,接近其半衰期[12]。在严重的组织损伤(如创伤和进展性癌症)发生后的24~72小时内,CRP血浆浓度可从约1 µg/mL迅速上升至超过500 µg/mL [13]。此外,冠状动脉粥样硬化的炎症加剧可诱导斑块破裂,形成血栓,从而引起组织损伤并导致CRP水平的进一步升高。

2.2. CRP与ACS

2.2.1. CRP与ACS病理生理

研究表明CRP作为炎症标志物,在动脉粥样硬化中有直接生物学作用。Forte L等[14]通过对比冠脉正常、稳定型心绞痛以及急性冠脉综合征(ACS)三组患者结果,发现ACS组冠脉循环中CRP水平显著升高,斑块中CRP mRNA表达也显著增加,证实CRP在不稳定斑块中合成释放,这提示了其与ACS新的病理生理联系。而Cirillo P等[15]的研究首次揭示了CRP通过激活P44/P42 MAPK通路诱导内皮细胞(EC)和平滑肌细胞(SMC)的增殖,鉴于血管壁中SMC的迁移和增殖在动脉粥样硬化的发展中扮演着重要角色,CRP可能通过此机制加速疾病进程。此外,Holzknecht M等[16]对316名接受 PCI的STEMI患者进行研究,发现CRP水平快速上升与患者微血管阻塞(MVO)相关。因此,CRP可评估ACS患者心血管风险的增加。

2.2.2. CRP与ACS预后

相关研究表明,CRP与ACS预后之间存在联系。Milwidsky A等[17]纳入492例STEMI患者,根据入院后30天的存活率,将患者分为两组。结果发现入院30天内死亡的患者的CRP明显高于存活组(1.42 mg/L vs 0.18 mg/L, P < 0.001),且CRP与STEMI患者30天死亡率独立相关(OR 1.39, 95%CI: 1.20~1.62, P < 0.001)。由此认为CRP可能是STEMI患者短期死亡率的独立预测因素。Dimitrijević O等[18]连续监测31名STEMI患者住院期间的CRP,并进行了为期1年的随访,发现早期(HR 5.54, 95%CI: 2.05~25.40; P = 0.007)和晚期急性CRP (HR 9.01, 95%CI: 1.66~19.56; P = 0.005)升高的患者心血管事件发生率较高。同时早期急性CRP还是患者一年预后的独立预测因素(HR 8.00, 95%CI: 1.15~55.60; P = 0.04)。Pietilä KO等[19]对188例使用了溶栓药物治疗的心肌梗死患者进行研究,发现血清CRP浓度升高,可预测梗死后6个月死亡率升高。Ferreirós ER等[20]纳入了194名UA患者,分别在入院、48小时和出院时测定血清CRP,发现在UA患者中,CRP是90天风险增加的一个强有力的独立标志。

因此,对ACS患者定期进行CRP测量可能对其预后有一定价值,但目前仍缺乏直接证据表明降低的CRP与复发性心血管事件发生率降低相关,且CRP受到感染、风湿性疾病、自身免疫性疾病、肿瘤等多种疾病因素影响,这可能也是CRP在心血管事件测量中受限的原因。

3. 白蛋白

3.1. 白蛋白(Albumin, ALB)

白蛋白(Albumin, ALB)是人血浆中最主要的蛋白质,其半衰期约为19天,承担着维持血浆渗透压和毛细血管通透性等重要功能。正常成人血清白蛋白(serum albumin, SA)水平通常在3.5至5.0 g/dl之间波动。当SA水平低于3.5 g/dl时,通常被定义为低蛋白血症。因其易于获取且检测成本较低,SA常被用作营养状况的量化指标。然而,SA水平不仅受到营养状况的影响,还受到多种临床现象的干扰。作为主要的负性急性期反应物,SA在慢性全身性疾病和急性危重疾病期间,其水平会因对炎症的反应而降低[21]。这种降低主要是由于肝脏合成减少、间质渗漏增加以及分解代谢加速所致。此外,SA还具有基本的抗氧化特性,其浓度较低已被证明与心血管死亡风险增加相关[22]

3.2. ALB与ACS

3.2.1. ALB与ACS病理生理

ALB通过多种机制参与ACS病理生理过程。炎症在ACS病理中具有重要作用,而细胞表达的黏附分子是介导炎症的重要分子基础,有研究表明ALB可影响黏附分子的表达。Zhang WJ等[23]研究了牛血清白蛋白(BSA)对培养的人主动脉内皮细胞(HAEC)中肿瘤坏死因子-α (TNF-α)诱导的黏附分子表达的影响,发现生理浓度的ALB选择性抑制TNF-α诱导的血管细胞黏附分子-1 (VCAM-1)表达上调和单核细胞黏附。ALB还具有抗氧化作用,且提供正常血浆总抗氧化剂的50%以上[24],这主要归因于ALB中大量的还原巯基,这些巯基已被证明可以清除各种氧自由基。此外,血小板的聚集也是ACS病理机制中的关键步骤,Mikhailidis DP [25]提出ALB可通过减少花生四烯酸(AA)向血栓素A2 (TXA2)的转化及增加前列腺素H2 (PGH2)转为前列腺素D2 (PGD2)等机制抑制血小板聚集。此外,血小板活化因子(PAF)的聚集能力也可能被ALB抑制[26]。综上,ALB通过多种机制对ACS病理生理产生影响。

3.2.2. ALB与ACS预后

ALB在ACS患者长期及短期预后中均有一定价值。Plakht等人[27]随访了8750例因急性心肌梗死入院的患者,发现入院时较低的SA水平,与长期全因死亡率显著相关。Polat N等[28]对403名诊断为UA/NSTEMI的患者进行随访(中位随访期为35个月),也得出了相似的结论,同时发现低白蛋白血症患者的全因长期死亡率比SA正常患者大约高出4倍。Kurtul A等[29]的研究纳入了1303例接受PCI的ACS患者,将患者分为高SYNTAX评分(≥33)和低SYNTAX评分(<32)两组,发现ACS患者入院时SA浓度与SYNTAX评分和住院死亡率呈负相关。Zhu L等[30]对8项研究中的21667例ACS患者进行荟萃分析后发现,SA水平低的ACS患者全因死亡风险增加。此外,亚组分析显示,低SA水平相较长期全因死亡率(RR 1.75; 95%CI: 1.54~1.98)对住院死亡率的影响更大(RR 3.09; 95%CI: 1.70~5.61)。该荟萃分析表明,低SA水平是ACS患者全因死亡率的有力预测因子,即使在调整了通常的混杂因素后也是如此。

以上研究表明,ALB是预测ACS患者死亡风险增加的一个简单且容易测量的生物标志物,但白蛋白合成受营养摄入、胶体渗透压变化、胰岛素水平、糖尿病、肝脏疾病等因素的影响,且目前缺乏临床试验来证明通过静脉输注纠正SA水平可以降低ACS患者升高的死亡风险,因此ALB在预测ACS患者预后方面的价值仍有限。

4. C反应蛋白/白蛋白比值

综上,CRP是炎症反应的敏感标志物,其水平的升高表明机体存在炎症激活状态,而ALB是反映营养状态的重要指标,同时也具有一定的抗炎作用。二者在预测ACS患者预后方面均有一定作用,但受到多种因素的影响,存在一定局限性。而CRP/ALB比值(CAR)可以指示CRP和ALB的平衡,它的变化可能暗示着炎症与机体应对炎症能力之间的平衡被打破,可综合评估机体炎症及营养状态,比单独的CRP或ALB更全面。

4.1. C反应蛋白/白蛋白比值(C-Reactive Protein to Albumin Ratio, CAR)

在炎症条件下,CRP趋于升高,而ALB浓度趋于下降,有研究[31] [32]发现ALB和CRP水平之间存在负相关性,也就是说,当CRP水平升高时,ALB水平下降,反之亦然。ALB和CRP之间的相互作用是最近几项研究的重点,CAR即是基于炎症和营养状况被提出的新标志物,已被确定为感染、风湿病、恶性肿瘤和危重疾病的预后标志物[33]-[37]。炎症与动脉粥样硬化之间存在着错综复杂的关联,作为反映全身炎症状态的生物标志物,CRP升高和ALB水平降低被发现是心血管不良事件的预测指标,而CAR在心血管疾病方面的价值也正被进一步揭示,且可能优于单独的CRP或ALB。

4.2. CAR与ACS

4.2.1. CAR与ACS病理生理

Duman H等[38]纳入了347名患有ACS并接受经皮冠状动脉介入(PCI)的患者,包括169名NSTEMI患者和178名STEMI,患者分为高血栓负荷和低血栓负荷两组。结果提示较高的CAR是血栓负荷增加的独立预测因素(OR: 1.13; 95% CI: 1.03~1.23; P = 0.008)。Gayretli Yayla K等[39]对1047名在症状出现后12小时内接受直接PCI的STEMI患者进行研究,探寻STEMI患者的CAR与梗死相关动脉(IRA)通畅性之间的关系,发现CAR是IRA通畅性的独立预测因子(0.003 [0.001~0.029]; P < 0.001)。Kaplangoray M [40]等回顾性纳入了216新诊断STEMI且接受PCI的患者,研究其冠状动脉血栓负荷与CAR之间的关系。血管造影血栓负荷根据心肌梗死血栓溶解术(TIMI)分级进行评估,1、2、3级为低血栓负荷(n = 120),4、5 级为高血栓负荷(n = 96)。根据受试者工作特征(ROC)分析,当CAR的截断值 ≥ 1.105时,CAR可以预测高血栓负荷,灵敏度为70.8%,特异性为67.7%,该研究数据表明CAR是血栓负担的独立风险因素。Akboga MK等[41]共回顾性纳入了2077名接受PCI的ACS患者,进行多因素logistic回归分析显示,CAR是急性支架内血栓形成(AST)和高SYNTAX评分的独立预测因子。以上研究表明,CAR浓度升高,是血栓负荷增加的独立预测因素,而促炎状态和促血栓状态是两个密切相关的过程,因此,冠状动脉血栓负荷的增加可以提示促炎状态的增加。

4.2.2. CAR与ACS严重程度

冠状动脉疾病(CAD)的严重程度与死亡率密切相关,而SYNTAX评分(SS)是确定CAD严重程度的最常用评分系统,它不仅与稳定性CAD患者的死亡率增加相关,而且与ACS患者的死亡率增加也相关[42]-[44]。相关研究表明CAR与冠脉狭窄程度密切相关,CAR水平升高,与冠脉病变程度呈正相关,是冠状动脉病变严重程度的独立影响因素。Çağdaş M等[9]纳入接受PCI的344名NSTEMI/UA患者,根据SS > 22 (n = 113)和SS ≤ 22 (n = 231)分为中高SS组和低SS组,发现CAR升高(OR: 1.020; 95%CI: 1.009~1.031; P < 0.001)是高SS的独立预测因素,且CAR在预测中高SS方面优于CRP和ALB。因此根据入院血样计算出的CAR可作为使用SS预测CAD严重程度的有用参数。Kalyoncuoglu M等[45]回顾性纳入了205名NSTEMI患者,根据SS将研究队列分为低(<23)和中高(≥23)两组,结果入院时CAR与SS呈中度相关,且多因素分析显示,CAR是CAD严重程度的独立预测因素(P<0.05)。以上研究表明CAR与SS有显著相关性,可能是一种潜在的易于测量且价格低廉的参数,可用于确定冠状动脉粥样硬化的严重程度。

4.2.3. CAR与ACS预后关系

多项研究表明,CAR在ACS患者中具有独立的预后价值,高CAR值与高心血管事件发生率、住院时间延长及死亡风险增加相关。Wang W等[10]分析了652例因ACS住院的患者住院期间和随访6个月内发生的MACE,发现高CAR (≥0.114)组MACE发生率显著高于低CAR (<0.114)组,多变量分析显示CAR是MACE风险增加的独立预测因素。该研究首次证明CAR是ACS患者MACE的独立预测指标,且CAR在预测ACS患者发生MACE方面优于ALB。Liu ZY等[46]回顾性纳入1630例CAD患者并根据CAR分为两组(CAR < 0.186;n = 1301和CAR ≥ 0.186;n = 329),进行了平均随访时间为37.59个月的随访研究。结果表明,CAR是接受PCI的CAD患者长期不良反应的独立预测指标,与较低CAR水平组患者相比,较高CAR水平组患者发生全因死亡(ACM)的风险升高至267.8% (HR = 2.678; 95%CI: 1.568~4.576; P < 0.001),发生心源性死亡(CM)的风险升高至205.5% (HR = 2.055; 95%CI: 1.056~3.998; P = 0.034)。Birdal O等[47]的研究共纳入1689例ACS患者,根据患者的死亡状况将患者分为两组,并调查长期死亡预测因素。结果证明CAR是ACS患者发生长期死亡的独立预测因子,在ROC分析中,还观察到CAR具有最佳的预测价值。根据目前的证据,CAR可用于ACS患者的短期和长期风险分层,并预测其预后情况,且Wang W、Liu ZY等[46]提出CAR预测ACS患者发生不良事件的最佳临界值为0.114、0.186。另有研究[48]表明对ACS患者进行相关药物靶向抗炎治疗,患者发生MACE概率有所下降,但目前仍缺乏直接证据证明抗炎治疗在ACS患者临床预后中的价值。而CAR可能成为未来ACS患者临床预后评估的一个有效指标,联合使用积极的降脂和抗炎疗法也可能会成为未来治疗动脉粥样硬化疾病的标准。

5. 小结

综上所述,CRP在促进动脉粥样硬化炎症反应和冠状动脉血栓形成过程中发挥重要作用,也提示血清CRP升高的患者更容易发生MACE。而ALB具有抗氧化和抗炎作用,在低白蛋白血症的情况下,氧化应激和炎症可能会进一步降低心脏功能,从而增加死亡率。二者对ACS患者不良预后结局具有一定预测价值,但鉴于其他多种因素的影响,单独的CRP或ALB存在一定局限性。CAR包括CRP和ALB,不仅可以反映促炎症状态,还具有反映营养状况的优势。因此,与单独分析CRP和ALB不同,CAR可以作为更可靠的生物标志物来评估ACS患者病情程度和预测预后,这表明CAR有潜力成为一种经济、易于计算且可靠的生物标志物,适用于冠状动脉介入治疗患者的临床实践,在ACS患者中应用CAR进行病情评估和预后判断,不仅能提高风险分类的准确性,还可能促进个体化治疗的实施。未来,CAR可能会发展为预测ACS患者预后的简便可行的指标。但目前关于CAR与ACS预后之间关系的研究仍然较为有限,因此需要开展更为全面和多中心的研究,以深入探讨血清CAR水平在ACS患者预后评估中的作用。

NOTES

*通讯作者。

参考文献

[1] Ralapanawa, U. and Sivakanesan, R. (2021) Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. Journal of Epidemiology and Global Health, 11, 169-177.
https://doi.org/10.2991/jegh.k.201217.001
[2] Theofilis, P., Oikonomou, E., Chasikidis, C., Tsioufis, K. and Tousoulis, D. (2023) Pathophysiology of Acute Coronary Syndromes—Diagnostic and Treatment Considerations. Life, 13, Article No. 1543.
https://doi.org/10.3390/life13071543
[3] Crea, F. and Libby, P. (2017) Acute Coronary Syndromes: The Way Forward from Mechanisms to Precision Treatment. Circulation, 136, 1155-1166.
https://doi.org/10.1161/circulationaha.117.029870
[4] Pant, S., Deshmukh, A., GuruMurthy, G.S., Pothineni, N.V., Watts, T.E., Romeo, F., et al. (2013) Inflammation and Atherosclerosis—Revisited. Journal of Cardiovascular Pharmacology and Therapeutics, 19, 170-178.
https://doi.org/10.1177/1074248413504994
[5] Ridker, P.M., Bhatt, D.L., Pradhan, A.D., Glynn, R.J., MacFadyen, J.G. and Nissen, S.E. (2023) Inflammation and Cholesterol as Predictors of Cardiovascular Events among Patients Receiving Statin Therapy: A Collaborative Analysis of Three Randomised Trials. The Lancet, 401, 1293-1301.
https://doi.org/10.1016/s0140-6736(23)00215-5
[6] Badimon, L., Peña, E., Arderiu, G., Padró, T., Slevin, M., Vilahur, G., et al. (2018) C-Reactive Protein in Atherothrombosis and Angiogenesis. Frontiers in Immunology, 9, Article No. 430.
https://doi.org/10.3389/fimmu.2018.00430
[7] Fu, Y., Wu, Y. and Liu, E. (2020) C-Reactive Protein and Cardiovascular Disease: From Animal Studies to the Clinic (Review). Experimental and Therapeutic Medicine, 20, 1211-1219.
https://doi.org/10.3892/etm.2020.8840
[8] Manolis, A.A., Manolis, T.A., Melita, H., Mikhailidis, D.P. and Manolis, A.S. (2022) Low Serum Albumin: A Neglected Predictor in Patients with Cardiovascular Disease. European Journal of Internal Medicine, 102, 24-39.
https://doi.org/10.1016/j.ejim.2022.05.004
[9] Çağdaş, M., Rencüzoğullari, I., Karakoyun, S., Karabağ, Y., Yesin, M., Artaç, I., et al. (2017) Assessment of Relationship between C-Reactive Protein to Albumin Ratio and Coronary Artery Disease Severity in Patients with Acute Coronary Syndrome. Angiology, 70, 361-368.
https://doi.org/10.1177/0003319717743325
[10] Wang, W., Ren, D., Wang, C., Li, T., Yao, H. and Ma, S. (2019) Prognostic Efficacy of High-Sensitivity C-Reactive Protein to Albumin Ratio in Patients with Acute Coronary Syndrome. Biomarkers in Medicine, 13, 811-820.
https://doi.org/10.2217/bmm-2018-0346
[11] Tillett, W.S. and Francis, T. (1930) Serological Reactions in Pneumonia with a Non-Protein Somatic Fraction of Pneumococcus. Journal of Experimental Medicine, 52, 561-571.
https://doi.org/10.1084/jem.52.4.561
[12] Ridker, P.M. (2003) Clinical Application of C-Reactive Protein for Cardiovascular Disease Detection and Prevention. Circulation, 107, 363-369.
https://doi.org/10.1161/01.cir.0000053730.47739.3c
[13] Ciubotaru, I., Potempa, L.A. and Wander, R.C. (2005) Production of Modified C-Reactive Protein in U937-Derived Macrophages. Experimental Biology and Medicine, 230, 762-770.
https://doi.org/10.1177/153537020523001010
[14] Forte, L., Cimmino, G., Loffredo, F., De Palma, R., Abbate, G., Calabrò, P., et al. (2011) C-reactive Protein Is Released in the Coronary Circulation and Causes Endothelial Dysfunction in Patients with Acute Coronary Syndromes. International Journal of Cardiology, 152, 7-12.
https://doi.org/10.1016/j.ijcard.2011.05.062
[15] Cirillo, P., Golino, P., Calabro, P., Cali, G., Ragni, M., Derosa, S., et al. (2005) C-Reactive Protein Induces Tissue Factor Expression and Promotes Smooth Muscle and Endothelial Cell Proliferation. Cardiovascular Research, 68, 47-55.
https://doi.org/10.1016/j.cardiores.2005.05.010
[16] Holzknecht, M., Tiller, C., Reindl, M., Lechner, I., Troger, F., Hosp, M., et al. (2021) C-reactive Protein Velocity Predicts Microvascular Pathology after Acute ST-Elevation Myocardial Infarction. International Journal of Cardiology, 338, 30-36.
https://doi.org/10.1016/j.ijcard.2021.06.023
[17] Milwidsky, A., Ziv-Baran, T., Letourneau-Shesaf, S., Keren, G., Taieb, P., Berliner, S., et al. (2017) CRP Velocity and Short-Term Mortality in ST Segment Elevation Myocardial Infarction. Biomarkers, 22, 383-386.
https://doi.org/10.1080/1354750x.2017.1279218
[18] Dimitrijevic, O., Stojcevski, B.D., Ignjatovic, S. and Singh, N.M. (2006) Serial Measurements of C-Reactive Protein after Acute Myocardial Infarction in Predicting One-Year Outcome. International Heart Journal, 47, 833-842.
https://doi.org/10.1536/ihj.47.833
[19] Pietlla, K.O., Harmoinen, A.P., Jokiniitty, J. and Pasternack, A.I. (1996) Serum C-Reactive Protein Concentration in Acute Myocardial Infarction and Its Relationship to Mortality during 24 Months of Follow-Up in Patients under Thrombolytic Treatment. European Heart Journal, 17, 1345-1349.
https://doi.org/10.1093/oxfordjournals.eurheartj.a015068
[20] Ferreirós, E.R., Boissonnet, C.P., Pizarro, R., Merletti, P.F.G., Corrado, G., Cagide, A., et al. (1999) Independent Prognostic Value of Elevated C-Reactive Protein in Unstable Angina. Circulation, 100, 1958-1963.
https://doi.org/10.1161/01.cir.100.19.1958
[21] Gabay, C. and Kushner, I. (1999) Acute-Phase Proteins and Other Systemic Responses to Inflammation. New England Journal of Medicine, 340, 448-454.
https://doi.org/10.1056/nejm199902113400607
[22] Danesh, J., Collins, R., Appleby, P. and Peto, R. (1998) Association of Fibrinogen, C-Reactive Protein, Albumin, or Leukocyte Count with Coronary Heart Disease. JAMA, 279, 1477-1482.
https://doi.org/10.1001/jama.279.18.1477
[23] Zhang, W. (2002) Albumin Selectively Inhibits TNFα-Induced Expression of Vascular Cell Adhesion Molecule-1 in Human Aortic Endothelial Cells. Cardiovascular Research, 55, 820-829.
https://doi.org/10.1016/s0008-6363(02)00492-3
[24] Taverna, M., Marie, A., Mira, J. and Guidet, B. (2013) Specific Antioxidant Properties of Human Serum Albumin. Annals of Intensive Care, 3, Article No. 4.
https://doi.org/10.1186/2110-5820-3-4
[25] Mikhailidis, D.P. and Ganotakis, E.S. (1996) Plasma Albumin and Platelet Function: Relevance to Atherogenesis and Thrombosis. Platelets, 7, 125-137.
https://doi.org/10.3109/09537109609023571
[26] Tokumura, A., Yoshida, J., Maruyama, T., Fukuzawa, K. and Tsukatani, H. (1987) Platelet Aggregation Induced by Ether-Linked Phospholipids. 1. Inhibitory Actions of Bovine Serum Albumin and Structural Analogues of Platelet Activating Factor. Thrombosis Research, 46, 51-63.
https://doi.org/10.1016/0049-3848(87)90206-4
[27] Plakht, Y., Gilutz, H. and Shiyovich, A. (2016) Decreased Admission Serum Albumin Level Is an Independent Predictor of Long-Term Mortality in Hospital Survivors of Acute Myocardial Infarction. Soroka Acute Myocardial Infarction II (SAMI-II) Project. International Journal of Cardiology, 219, 20-24.
https://doi.org/10.1016/j.ijcard.2016.05.067
[28] Polat, N., Oylumlu, M., Işik, M.A., Arslan, B., Özbek, M., Demir, M., et al. (2020) Prognostic Significance of Serum Albumin in Patients with Acute Coronary Syndrome. Angiology, 71, 903-908.
https://doi.org/10.1177/0003319720941747
[29] Kurtul, A., Murat, S.N., Yarlioglues, M., Duran, M., Ocek, A.H., Koseoglu, C., et al. (2015) Usefulness of Serum Albumin Concentration to Predict High Coronary SYNTAX Score and In-Hospital Mortality in Patients with Acute Coronary Syndrome. Angiology, 67, 34-40.
https://doi.org/10.1177/0003319715575220
[30] Zhu, L., Chen, M. and Lin, X. (2020) Serum Albumin Level for Prediction of All-Cause Mortality in Acute Coronary Syndrome Patients: A Meta-Analysis. Bioscience Reports, 40, BSR20190881.
https://doi.org/10.1042/bsr20190881
[31] Sheinenzon, A., Shehadeh, M., Michelis, R., Shaoul, E. and Ronen, O. (2021) Serum Albumin Levels and Inflammation. International Journal of Biological Macromolecules, 184, 857-862.
https://doi.org/10.1016/j.ijbiomac.2021.06.140
[32] Wada, H., Dohi, T., Miyauchi, K., Shitara, J., Endo, H., Doi, S., et al. (2017) Impact of Serum Albumin Levels on Long-Term Outcomes in Patients Undergoing Percutaneous Coronary Intervention. Heart and Vessels, 32, 1085-1092.
https://doi.org/10.1007/s00380-017-0981-8
[33] Pinerua-Gonsalvez, J.F., Ruiz, R.M., Zambrano-Infantino, R., et al. (2023) Value of CRP/Albumin Ratio as a Prognostic Marker of Acute Pancreatitis: A Retrospective Study. Revista Espanola De Enfermedades Digestivas, 115, 707-712.
[34] Donlon, N.E., Mohan, H., Free, R., Elbaghir, B., Soric, I., Fleming, C., et al. (2020) Predictive Value of CRP/Albumin Ratio in Major Abdominal Surgery. Irish Journal of Medical Science (1971-), 189, 1465-1470.
https://doi.org/10.1007/s11845-020-02238-y
[35] Arakawa, Y., Miyazaki, K., Yoshikawa, M., Yamada, S., Saito, Y., Ikemoto, T., et al. (2021) Value of the CRP-Albumin Ratio in Patients with Resectable Pancreatic Cancer. The Journal of Medical Investigation, 68, 244-255.
https://doi.org/10.2152/jmi.68.244
[36] He, Y., Tang, J., Wu, B., Yang, B., Ou, Q. and Lin, J. (2020) Correlation between Albumin to Fibrinogen Ratio, C-Reactive Protein to Albumin Ratio and Th17 Cells in Patients with Rheumatoid Arthritis. Clinica Chimica Acta, 500, 149-154.
https://doi.org/10.1016/j.cca.2019.10.009
[37] Kunutsor, S.K. and Laukkanen, J.A. (2022) Serum C-Reactive Protein-to-Albumin Ratio Is a Potential Risk Indicator for Pneumonia: Findings from a Prospective Cohort Study. Respiratory Medicine, 199, Article ID: 106894.
https://doi.org/10.1016/j.rmed.2022.106894
[38] Duman, H., Çinier, G., Bakırcı, E.M., Duman, H., Şimşek, Z., Hamur, H., et al. (2019) Relationship between C-Reactive Protein to Albumin Ratio and Thrombus Burden in Patients with Acute Coronary Syndrome. Clinical and Applied Thrombosis/Hemostasis, 25, 1-6.
[39] Gayretli Yayla, K., Yayla, C., Erdol, M.A., Karanfil, M., Ertem, A.G. and Akcay, A.B. (2021) Relationship between C-Reactive Protein to Albumin Ratio and Infarct-Related Artery Patency in Patients with ST-Segment Elevation Myocardial Infarction. Angiology, 73, 260-264.
https://doi.org/10.1177/00033197211024047
[40] Kaplangoray, M., Toprak, K., Aslan, R., Deveci, E., Gunes, A. and Ardahanli, İ. (2023) High CRP-Albumin Ratio Is Associated High Thrombus Burden in Patients with Newly Diagnosed STEMI. Medicine, 102, e35363.
https://doi.org/10.1097/md.0000000000035363
[41] Akboga, M.K., Inanc, I.H., Sabanoglu, C., Akdi, A., Yakut, I., Yuksekkaya, B., et al. (2022) Systemic Immune-Inflammation Index and C-Reactive Protein/Albumin Ratio Could Predict Acute Stent Thrombosis and High SYNTAX Score in Acute Coronary Syndrome. Angiology, 74, 693-701.
https://doi.org/10.1177/00033197221125779
[42] Palmerini, T., Genereux, P., Caixeta, A., Cristea, E., Lansky, A., Mehran, R., et al. (2011) Prognostic Value of the SYNTAX Score in Patients with Acute Coronary Syndromes Undergoing Percutaneous Coronary Intervention: Analysis from the ACUITY (Acute Catheterization and Urgent Intervention Triage Strategy) Trial. Journal of the American College of Cardiology, 57, 2389-2397.
https://doi.org/10.1016/j.jacc.2011.02.032
[43] van Gaal, W.J., Ponnuthurai, F.A., Selvanayagam, J., Testa, L., Porto, I., Neubauer, S., et al. (2009) The Syntax Score Predicts Peri-Procedural Myocardial Necrosis during Percutaneous Coronary Intervention. International Journal of Cardiology, 135, 60-65.
https://doi.org/10.1016/j.ijcard.2008.03.033
[44] Magro, M., Nauta, S., Simsek, C., Onuma, Y., Garg, S., van der Heide, E., et al. (2011) Value of the SYNTAX Score in Patients Treated by Primary Percutaneous Coronary Intervention for Acute ST-Elevation Myocardial Infarction: The MI Syntaxscore Study. American Heart Journal, 161, 771-781.
https://doi.org/10.1016/j.ahj.2011.01.004
[45] Kalyoncuoglu, M. and Durmus, G. (2020) Relationship between C-Reactive Protein-to-Albumin Ratio and the Extent of Coronary Artery Disease in Patients with Non-ST-Elevated Myocardial Infarction. Coronary Artery Disease, 31, 130-136.
https://doi.org/10.1097/mca.0000000000000768
[46] Liu, Z., Tang, J., Cheng, M., Jiang, L., Guo, Q., Zhang, J., et al. (2021) C-Reactive Protein-to-Serum Albumin Ratio as a Novel Predictor of Long-Term Outcomes in Coronary Artery Disease Patients Who Have Undergone Percutaneous Coronary Intervention: Analysis of a Real-World Retrospective Cohort Study. Coronary Artery Disease, 32, 191-196.
https://doi.org/10.1097/mca.0000000000001021
[47] Birdal, O. (2023) The Relationship between C-Reactive Protein Albumin Ratio and Long-Term Mortality in Patients with Acute Coronary Syndrome. Cureus, 15, e47222.
https://doi.org/10.7759/cureus.47222
[48] Ridker, P.M., Everett, B.M., Thuren, T., MacFadyen, J.G., Chang, W.H., Ballantyne, C., et al. (2017) Anti-Inflammatory Therapy with Canakinumab for Atherosclerotic Disease. New England Journal of Medicine, 377, 1119-1131.
https://doi.org/10.1056/nejmoa1707914