|
[1]
|
Ma, R., Zhou, X., Zhang, G., Wu, H., Lu, Y., Liu, F., et al. (2023) Association between Composite Dietary Antioxidant Index and Coronary Heart Disease among US Adults: A Cross-Sectional Analysis. BMC Public Health, 23, Article No. 2426. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Dong, W., Gong, Y., Zhao, J., Wang, Y., Li, B. and Yang, Y. (2024) A Combined Analysis of TyG Index, SII Index, and SIRI Index: Positive Association with CHD Risk and Coronary Atherosclerosis Severity in Patients with NAFLD. Frontiers in Endocrinology, 14, Article 1281839. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Qing, G., Bao, C., Yang, Y. and Wei, B. (2024) Association between Neutrophil to High-Density Lipoprotein Cholesterol Ratio (NHR) and Depression Symptoms among the United States Adults: A Cross-Sectional Study. Lipids in Health and Disease, 23, Article No. 215. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Pan, X., Zhang, X., Ban, J., Yue, L., Ren, L. and Chen, S. (2023) Association of Neutrophil to High-Density Lipoprotein Cholesterol Ratio with Cardiac Ultrasound Parameters and Cardiovascular Risk: A Cross-Sectional Study Based on Healthy Populations. Journal of Inflammation Research, 16, 1853-1865. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, Y., Ding, Y. and Jiang, W. (2023) Neutrophil and Monocyte Ratios to High-Density Lipoprotein Cholesterol as Biomarkers in Non-Dipping Hypertension. Clinical and Experimental Hypertension, 45, Article 2210785. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Liu, S., Feng, B., Song, Q., Zhang, Y., Wu, S. and Cai, J. (2022) Neutrophil to High-Density Lipoprotein Cholesterol Ratio Predicts Adverse Cardiovascular Outcomes in Subjects with Pre-Diabetes: A Large Cohort Study from China. Lipids in Health and Disease, 21, Article No. 86. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yuan, S., Li, L., Pu, T., Fan, X., Wang, Z., Xie, P., et al. (2024) The Relationship between NLR, LDL-C/HDL-C, NHR and Coronary Artery Disease. PLOS ONE, 19, e0290805. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
You, J., Guo, Y., Kang, J., Wang, H., Yang, M., Feng, J., et al. (2023) Development of Machine Learning-Based Models to Predict 10-Year Risk of Cardiovascular Disease: A Prospective Cohort Study. Stroke and Vascular Neurology, 8, 475-485. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kimura, K., Kimura, T., Ishihara, M., Nakagawa, Y., Nakao, K., Miyauchi, K., et al. (2019) JCS 2018 Guideline on Diagnosis and Treatment of Acute Coronary Syndrome. Circulation Journal, 83, 1085-1196. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Qi, J., Wang, Y., Liu, Z., Yu, F., Tang, J. and Zhang, J. (2023) Correlation Analysis of Gensini Score in Diabetic Patients with Coronary Heart Disease. Reviews in Cardiovascular Medicine, 24, Article 319. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Shaya, G.E., Leucker, T.M., Jones, S.R., Martin, S.S. and Toth, P.P. (2022) Coronary Heart Disease Risk: Low-Density Lipoprotein and Beyond. Trends in Cardiovascular Medicine, 32, 181-194. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liu, M., Liu, X., Wei, Z., Hua, R., Huang, Y., Hao, X., et al. (2022) MHR and NHR but Not LHR Were Associated with Coronary Artery Disease in Patients with Chest Pain with Controlled LDL-C. Journal of Investigative Medicine, 70, 1501-1507. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Huang, X., Cheng, Y. and Wang, N. (2022) Genetic Variants in CYP11B1 Influence the Susceptibility to Coronary Heart Disease. BMC Medical Genomics, 15, Article No. 158. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Manoochehri, H., Gheitasi, R., Pourjafar, M., Amini, R. and Yazdi, A. (2021) Investigating the Relationship between the Severity of Coronary Artery Disease and Inflammatory Factors of MHR, PHR, NHR, and IL-25. Medical Journal of The Islamic Republic of Iran, 35, 668-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ren, H., Zhu, B., Zhao, Z., Li, Y., Deng, G., Wang, Z., et al. (2023) Neutrophil to High-Density Lipoprotein Cholesterol Ratio as the Risk Mark in Patients with Type 2 Diabetes Combined with Acute Coronary Syndrome: A Cross-Sectional Study. Scientific Reports, 13, Article No. 7836. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Malech, H.L., DeLeo, F.R. and Quinn, M.T. (2019) The Role of Neutrophils in the Immune System: An Overview. In: Quinn, M. and DeLeo, F., Eds., Neutrophil, Springer, 3-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Rosales, C. (2018) Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Frontiers in Physiology, 9, Article 113. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Abramson, N. and Melton, B. (2000) Leukocytosis: Basics of Clinical Assessment. American Family Physician, 62, 2053-2060.
|
|
[19]
|
陶斯阳, 马晶茹. 代谢性炎症与冠心病发病机制研究的进展[J]. 沈阳医学院学报, 2023, 25(4): 337-340.
|
|
[20]
|
Pende, A., Artom, N., Bertolotto, M., Montecucco, F. and Dallegri, F. (2016) Role of Neutrophils in Atherogenesis: An Update. European Journal of Clinical Investigation, 46, 252-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Carlson, LA. (2006) Can Higher Level of HDL Cholesterol Augment Cardiovascular Disease Prevention? The Combination Statins-Nicotinic Acid Increases the Level of HDL and Reduces the Level of LDL Cholesterol. Lakartidningen, 103, 3283-3285.
|
|
[22]
|
Ginsberg, H.N. (1990) Lipoprotein Physiology and Its Relationship to Atherogenesis. Endocrinology and Metabolism Clinics of North America, 19, 211-228. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Jomard, A. and Osto, E. (2020) High Density Lipoproteins: Metabolism, Function, and Therapeutic Potential. Frontiers in Cardiovascular Medicine, 7, Article 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Libby, P., Buring, J.E., Badimon, L., Hansson, G.K., Deanfield, J., Bittencourt, M.S., et al. (2019) Atherosclerosis. Nature Reviews Disease Primers, 5, Article No. 56. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Malekmohammad, K., Bezsonov, E.E. and Rafieian-Kopaei, M. (2021) Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Frontiers in Cardiovascular Medicine, 8, Article 707529. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hausenloy, D.J. and Yellon, D.M. (2008) Targeting Residual Cardiovascular Risk: Raising High-Density Lipoprotein Cholesterol Levels. Heart, 94, 706-714. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
De Nardo, D., Labzin, L.I., Kono, H., Seki, R., Schmidt, S.V., Beyer, M., et al. (2013) High-Density Lipoprotein Mediates Anti-Inflammatory Reprogramming of Macrophages via the Transcriptional Regulator ATF3. Nature Immunology, 15, 152-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yu, L., Ma, K., Hao, J. and Zhang, B. (2023) Neutrophil to High-Density Lipoprotein Cholesterol Ratio, a Novel Risk Factor Associated with Acute Ischemic Stroke. Medicine, 102, e34173. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Jiang, M., Sun, J., Zou, H., Li, M., Su, Z., Sun, W., et al. (2022) Prognostic Role of Neutrophil to High-Density Lipoprotein Cholesterol Ratio for All-Cause and Cardiovascular Mortality in the General Population. Frontiers in Cardiovascular Medicine, 9, Article 807339. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gomaraschi, M., Ossoli, A., Favari, E., Adorni, M.P., Sinagra, G., Cattin, L., et al. (2013) Inflammation Impairs eNOS Activation by HDL in Patients with Acute Coronary Syndrome. Cardiovascular Research, 100, 36-43. [Google Scholar] [CrossRef] [PubMed]
|