[1]
|
Reik, W., Dean, W. and Walter, J. (2001) Epigenetic Reprogramming in Mammalian Development. Science, 293, 1089-1093. https://doi.org/10.1126/science.1063443
|
[2]
|
Oswald, J., Engemann, S., Lane, N., Mayer, W., Olek, A., Fundele, R., et al. (2000) Active Demethylation of the Paternal Genome in the Mouse Zygote. Current Biology, 10, 475-478. https://doi.org/10.1016/s0960-9822(00)00448-6
|
[3]
|
Gu, T., Guo, F., Yang, H., Wu, H., Xu, G., Liu, W., et al. (2011) The Role of Tet3 DNA Dioxygenase in Epigenetic Reprogramming by Oocytes. Nature, 477, 606-610. https://doi.org/10.1038/nature10443
|
[4]
|
Inoue, A. and Zhang, Y. (2011) Replication-Dependent Loss of 5-Hydroxymethylcytosine in Mouse Preimplantation Embryos. Science, 334, 194-194. https://doi.org/10.1126/science.1212483
|
[5]
|
Hou, Y., Zhu, C., Duan, X., Liu, H., Wang, Q. and Sun, S. (2016) Both Diet and Gene Mutation Induced Obesity Affect Oocyte Quality in Mice. Scientific Reports, 6, Article No. 18858. https://doi.org/10.1038/srep18858
|
[6]
|
Han, L., Ren, C., Li, L., Li, X., Ge, J., Wang, H., et al. (2018) Embryonic Defects Induced by Maternal Obesity in Mice Derive from Stella Insufficiency in Oocytes. Nature Genetics, 50, 432-442. https://doi.org/10.1038/s41588-018-0055-6
|
[7]
|
Tang, S., Wu, H., Chen, Q., Tang, T., Li, J., An, H., et al. (2024) Maternal Obesity Induces the Meiotic Defects and Epigenetic Alterations during Fetal Oocyte Development. Advanced Science, 11, e2309184. https://doi.org/10.1002/advs.202309184
|
[8]
|
Anckaert, E., Romero, S., Adriaenssens, T. and Smitz, J. (2010) Effects of Low Methyl Donor Levels in Culture Medium during Mouse Follicle Culture on Oocyte Imprinting Establishment. Biology of Reproduction, 83, 377-386. https://doi.org/10.1095/biolreprod.109.082164
|
[9]
|
Pang, H., Ling, D., Cheng, Y., Akbar, R., Jin, L., Ren, J., et al. (2021) Gestational High‐Fat Diet Impaired Demethylation of Pparα and Induced Obesity of Offspring. Journal of Cellular and Molecular Medicine, 25, 5404-5416. https://doi.org/10.1111/jcmm.16551
|
[10]
|
Ge, Z., Liang, Q., Hou, Y., Han, Z., Schatten, H., Sun, Q., et al. (2014) Maternal Obesity and Diabetes May Cause DNA Methylation Alteration in the Spermatozoa of Offspring in Mice. Reproductive Biology and Endocrinology, 12, Article No. 29. https://doi.org/10.1186/1477-7827-12-29
|
[11]
|
Bian, C. and Yu, X. (2013) PGC7 Suppresses TET3 for Protecting DNA Methylation. Nucleic Acids Research, 42, 2893-2905. https://doi.org/10.1093/nar/gkt1261
|
[12]
|
Toriyama, K., Au Yeung, W.K., Inoue, A., Kurimoto, K., Yabuta, Y., Saitou, M., et al. (2024) DPPA3 Facilitates Genome-Wide DNA Demethylation in Mouse Primordial Germ Cells. BMC Genomics, 25, Article No. 344. https://doi.org/10.1186/s12864-024-10192-7
|
[13]
|
Nakatani, T., Yamagata, K., Kimura, T., Oda, M., Nakashima, H., Hori, M., et al. (2015) Stella Preserves Maternal Chromosome Integrity by Inhibiting 5hmC‐Induced γH2AX Accumulation. EMBO reports, 16, 582-589. https://doi.org/10.15252/embr.201439427
|
[14]
|
Uemura, S., Maenohara, S., Inoue, K., Ogonuki, N., Matoba, S., Ogura, A., et al. (2023) UHRF1 Is Essential for Proper Cytoplasmic Architecture and Function of Mouse Oocytes and Derived Embryos. Life Science Alliance, 6, e202301904. https://doi.org/10.26508/lsa.202301904
|
[15]
|
Guo, F., Li, X., Liang, D., Li, T., Zhu, P., Guo, H., et al. (2014) Active and Passive Demethylation of Male and Female Pronuclear DNA in the Mammalian Zygote. Cell Stem Cell, 15, 447-459. https://doi.org/10.1016/j.stem.2014.08.003
|
[16]
|
Dawlaty, M.M., Ganz, K., Powell, B.E., Hu, Y., Markoulaki, S., Cheng, A.W., et al. (2011) Tet1 Is Dispensable for Maintaining Pluripotency and Its Loss Is Compatible with Embryonic and Postnatal Development. Cell Stem Cell, 9, 166-175. https://doi.org/10.1016/j.stem.2011.07.010
|
[17]
|
Uh, K., Ryu, J., Farrell, K., Wax, N. and Lee, K. (2020) TET Family Regulates the Embryonic Pluripotency of Porcine Preimplantation Embryos by Maintaining the DNA Methylation Level of NANOG. Epigenetics, 15, 1228-1242. https://doi.org/10.1080/15592294.2020.1762392
|
[18]
|
Pan, M., Zhu, C., Ju, J., Xu, Y., Luo, S., Sun, S., et al. (2020) Single‐Cell Transcriptome Analysis Reveals That Maternal Obesity Affects DNA Repair, Histone Methylation, and Autophagy Level in Mouse Embryos. Journal of Cellular Physiology, 236, 4944-4953. https://doi.org/10.1002/jcp.30201
|
[19]
|
Inagaki, T., Tachibana, M., Magoori, K., Kudo, H., Tanaka, T., Okamura, M., et al. (2009) Obesity and Metabolic Syndrome in Histone Demethylase JHDM2a‐Deficient Mice. Genes to Cells, 14, 991-1001. https://doi.org/10.1111/j.1365-2443.2009.01326.x
|
[20]
|
Huang, J., Ru, G., Sun, J., Sun, L. and Li, Z. (2022) Elevated RIF1 Participates in the Epigenetic Abnormalities of Zygotes by Regulating Histone Modifications on MuERV-L in Obese Mice. Molecular Medicine, 28, Article No. 17. https://doi.org/10.1186/s10020-022-00446-z
|
[21]
|
Cuyàs, E., Fernández-Arroyo, S., Verdura, S., García, R.Á., Stursa, J., Werner, L., et al. (2017) Metformin Regulates Global DNA Methylation via Mitochondrial One-Carbon Metabolism. Oncogene, 37, 963-970. https://doi.org/10.1038/onc.2017.367
|
[22]
|
Filios, S.R. and Shalev, A. (2015) Β-Cell microRNAs: Small but Powerful. Diabetes, 64, 3631-3644. https://doi.org/10.2337/db15-0831
|
[23]
|
Huntzinger, E. and Izaurralde, E. (2011) Gene Silencing by microRNAs: Contributions of Translational Repression and Mrna Decay. Nature Reviews Genetics, 12, 99-110. https://doi.org/10.1038/nrg2936
|
[24]
|
Wyse, B.A., Salehi, R., Russell, S.J., Sangaralingam, M., Jahangiri, S., Tsang, B.K., et al. (2023) Obesity and PCOS Radically Alters the snRNA Composition of Follicular Fluid Extracellular Vesicles. Frontiers in Endocrinology, 14, Article 1205385. https://doi.org/10.3389/fendo.2023.1205385
|
[25]
|
Lee, H. (2015) Impact of Maternal Diet on the Epigenome during in Utero Life and the Developmental Programming of Diseases in Childhood and Adulthood. Nutrients, 7, 9492-9507. https://doi.org/10.3390/nu7115467
|
[26]
|
Benatti, R.O., Melo, A.M., Borges, F.O., Ignacio-Souza, L.M., Simino, L.A.P., Milanski, M., et al. (2014) Maternal High-Fat Diet Consumption Modulates Hepatic Lipid Metabolism and microRNA-122 (Mir-122) and microRNA-370 (Mir-370) Expression in Offspring. British Journal of Nutrition, 111, 2112-2122. https://doi.org/10.1017/s0007114514000579
|
[27]
|
Enquobahrie, D.A., Wander, P.L., Tadesse, M.G., Qiu, C., Holzman, C. and Williams, M.A. (2017) Maternal Pre-Pregnancy Body Mass Index and Circulating microRNAs in Pregnancy. Obesity Research & Clinical Practice, 11, 464-474. https://doi.org/10.1016/j.orcp.2016.10.287
|
[28]
|
Soták, M., Clark, M., Suur, B.E. and Börgeson, E. (2024) Inflammation and Resolution in Obesity. Nature Reviews Endocrinology, 21, 45-61. https://doi.org/10.1038/s41574-024-01047-y
|
[29]
|
Park, M.Y., Tu, C., Perie, L., Verma, N., Serdan, T.D.A., Shamsi, F., et al. (2024) Targeted Deletion of Fibroblast Growth Factor 23 Rescues Metabolic Dysregulation of Diet-Induced Obesity in Female Mice. Endocrinology, 165, bqae141. https://doi.org/10.1210/endocr/bqae141
|
[30]
|
Bianco, A.C. and McAninch, E.A. (2013) The Role of Thyroid Hormone and Brown Adipose Tissue in Energy Homoeostasis. The Lancet Diabetes & Endocrinology, 1, 250-258. https://doi.org/10.1016/s2213-8587(13)70069-x
|
[31]
|
Wu, Z., Martinez, M.E., St. Germain, D.L. and Hernandez, A. (2016) Type 3 Deiodinase Role on Central Thyroid Hormone Action Affects the Leptin-Melanocortin System and Circadian Activity. Endocrinology, 158, 419-430. https://doi.org/10.1210/en.2016-1680
|
[32]
|
Wulf, A., Harneit, A., Kröger, M., Kebenko, M., Wetzel, M.G. and Weitzel, J.M. (2008) T3-Mediated Expression of PGC-1α via a Far Upstream Located Thyroid Hormone Response Element. Molecular and Cellular Endocrinology, 287, 90-95. https://doi.org/10.1016/j.mce.2008.01.017
|
[33]
|
Chen, Y., Yang, Q., Hu, Y., Liu, X., de Avila, J.M., Zhu, M., et al. (2021) Imprinted lncRNA Dio3os Preprograms Intergenerational Brown Fat Development and Obesity Resistance. Nature Communications, 12, Article No. 6845. https://doi.org/10.1038/s41467-021-27171-1
|
[34]
|
Seto, E. and Yoshida, M. (2014) Erasers of Histone Acetylation: The Histone Deacetylase Enzymes. Cold Spring Harbor Perspectives in Biology, 6, a018713. https://doi.org/10.1101/cshperspect.a018713
|
[35]
|
Sun, L., Marin de Evsikova, C., Bian, K., Achille, A., Telles, E., Pei, H., et al. (2018) Programming and Regulation of Metabolic Homeostasis by HDAC11. EBioMedicine, 33, 157-168. https://doi.org/10.1016/j.ebiom.2018.06.025
|
[36]
|
Khan, S. and Jena, G.B. (2014) Protective Role of Sodium Butyrate, a HDAC Inhibitor on Beta-Cell Proliferation, Function and Glucose Homeostasis through Modulation of P38/ERK MAPK and Apoptotic Pathways: Study in Juvenile Diabetic Rat. Chemico-Biological Interactions, 213, 1-12. https://doi.org/10.1016/j.cbi.2014.02.001
|
[37]
|
Ye, J. (2013) Improving Insulin Sensitivity with HDAC Inhibitor. Diabetes, 62, 685-687. https://doi.org/10.2337/db12-1354
|
[38]
|
Huang, R., Sui, L., Fu, C., Zhai, Y., Dai, X., Zhang, S., et al. (2021) HDAC11 Inhibition Disrupts Porcine Oocyte Meiosis via Regulating α-Tubulin Acetylation and Histone Modifications. Aging, 13, 8849-8864. https://doi.org/10.18632/aging.202697
|
[39]
|
Anderson, R.M., Bosch, J.A., Goll, M.G., Hesselson, D., Dong, P.D.S., Shin, D., et al. (2009) Loss of Dnmt1 Catalytic Activity Reveals Multiple Roles for DNA Methylation during Pancreas Development and Regeneration. Developmental Biology, 334, 213-223. https://doi.org/10.1016/j.ydbio.2009.07.017
|
[40]
|
Yang, B.T., Dayeh, T.A., Volkov, P.A., Kirkpatrick, C.L., Malmgren, S., Jing, X., et al. (2012) Increased DNA Methylation and Decreased Expression of PDX-1 in Pancreatic Islets from Patients with Type 2 Diabetes. Molecular Endocrinology, 26, 1203-1212. https://doi.org/10.1210/me.2012-1004
|
[41]
|
Pinney, S.E., Jaeckle Santos, L.J., Han, Y., Stoffers, D.A. and Simmons, R.A. (2011) Exendin-4 Increases Histone Acetylase Activity and Reverses Epigenetic Modifications That Silence Pdx1 in the Intrauterine Growth Retarded Rat. Diabetologia, 54, 2606-2614. https://doi.org/10.1007/s00125-011-2250-1
|
[42]
|
Singh, N., Dueñas‐González, A., Lyko, F. and Medina‐Franco, J.L. (2009) Molecular Modeling and Molecular Dynamics Studies of Hydralazine with Human DNA Methyltransferase. ChemMedChem, 4, 792-799. https://doi.org/10.1002/cmdc.200900017
|
[43]
|
Lee, B.H., Yegnasubramanian, S., Lin, X. and Nelson, W.G. (2005) Procainamide Is a Specific Inhibitor of DNA Methyltransferase. Journal of Biological Chemistry, 280, 40749-40756. https://doi.org/10.1074/jbc.m505593200
|