[1]
|
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2023) Erratum to “IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045” [Diabetes Res. Clin. Pract. 183 (2022) 109119]. Diabetes Research and Clinical Practice, 204, Article ID: 110945. https://doi.org/10.1016/j.diabres.2023.110945
|
[2]
|
Afkarian, M., Zelnick, L.R., Hall, Y.N., Heagerty, P.J., Tuttle, K., Weiss, N.S., et al. (2016) Clinical Manifestations of Kidney Disease among US Adults with Diabetes, 1988-2014. JAMA, 316, 602-610. https://doi.org/10.1001/jama.2016.10924
|
[3]
|
Wal, P., Tyagi, S., Pal, R.S., Yadav, A. and Jaiswal, R. (2023) A Strategic Investigation on Diabetic Nephropathy; Its Conceptual Model and Clinical Manifestations: A Review. Current Diabetes Reviews, 19, e260422204036. https://doi.org/10.2174/1573399818666220426091238
|
[4]
|
Jiang, G., Luk, A.O.Y., Tam, C.H.T., Xie, F., Carstensen, B., Lau, E.S.H., et al. (2019) Progression of Diabetic Kidney Disease and Trajectory of Kidney Function Decline in Chinese Patients with Type 2 Diabetes. Kidney International, 95, 178-187. https://doi.org/10.1016/j.kint.2018.08.026
|
[5]
|
D’Alessandro, V.F., Takeshita, A., Yasuma, T., Toda, M., D’Alessandro-Gabazza, C.N., Okano, Y., et al. (2022) Transforming Growth Factorβ1 Overexpression Is Associated with Insulin Resistance and Rapidly Progressive Kidney Fibrosis under Diabetic Conditions. International Journal of Molecular Sciences, 23, Article No. 14265. https://doi.org/10.3390/ijms232214265
|
[6]
|
Ricciardi, C.A. and Gnudi, L. (2021) Kidney Disease in Diabetes: From Mechanisms to Clinical Presentation and Treatment Strategies. Metabolism, 124, Article ID: 154890. https://doi.org/10.1016/j.metabol.2021.154890
|
[7]
|
Jha, J.C., Banal, C., Chow, B.S.M., Cooper, M.E. and Jandeleit-Dahm, K. (2016) Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxidants & Redox Signaling, 25, 657-684. https://doi.org/10.1089/ars.2016.6664
|
[8]
|
Noecker, C. and Turnbaugh, P.J. (2024) Emerging Tools and Best Practices for Studying Gut Microbial Community Metabolism. Nature Metabolism, 6, 1225-1236. https://doi.org/10.1038/s42255-024-01074-z
|
[9]
|
Heintz-Buschart, A. and Wilmes, P. (2018) Human Gut Microbiome: Function Matters. Trends in Microbiology, 26, 563-574. https://doi.org/10.1016/j.tim.2017.11.002
|
[10]
|
Yang, G., Wei, J., Liu, P., Zhang, Q., Tian, Y., Hou, G., et al. (2021) Role of the Gut Microbiota in Type 2 Diabetes and Related Diseases. Metabolism, 117, Article ID: 154712. https://doi.org/10.1016/j.metabol.2021.154712
|
[11]
|
Giordano, L., Mihaila, S.M., Eslami Amirabadi, H. and Masereeuw, R. (2021) Microphysiological Systems to Recapitulate the Gut-Kidney Axis. Trends in Biotechnology, 39, 811-823. https://doi.org/10.1016/j.tibtech.2020.12.001
|
[12]
|
Vallianou, N.G., Kounatidis, D., Panagopoulos, F., Evangelopoulos, A., Stamatopoulos, V., Papagiorgos, A., et al. (2023) Gut Microbiota and Its Role in the Brain-Gut-Kidney Axis in Hypertension. Current Hypertension Reports, 25, 367-376. https://doi.org/10.1007/s11906-023-01263-3
|
[13]
|
Thaiss, C.A., Levy, M., Grosheva, I., Zheng, D., Soffer, E., Blacher, E., et al. (2018) Hyperglycemia Drives Intestinal Barrier Dysfunction and Risk for Enteric Infection. Science, 359, 1376-1383. https://doi.org/10.1126/science.aar3318
|
[14]
|
Wang, X., Yang, S., Li, S., Zhao, L., Hao, Y., Qin, J., et al. (2020) Aberrant Gut Microbiota Alters Host Metabolome and Impacts Renal Failure in Humans and Rodents. Gut, 69, 2131-2142. https://doi.org/10.1136/gutjnl-2019-319766
|
[15]
|
Graboski, A.L. and Redinbo, M.R. (2020) Gut-Derived Protein-Bound Uremic Toxins. Toxins, 12, Article No. 590. https://doi.org/10.3390/toxins12090590
|
[16]
|
Linh, H.T., Iwata, Y., Senda, Y., Sakai-Takemori, Y., Nakade, Y., Oshima, M., et al. (2022) Intestinal Bacterial Translocation Contributes to Diabetic Kidney Disease. Journal of the American Society of Nephrology, 33, 1105-1119. https://doi.org/10.1681/asn.2021060843
|
[17]
|
Han, S., Chen, M., Cheng, P., Zhang, Z., Lu, Y., Xu, Y., et al. (2022) A Systematic Review and Meta-Analysis of Gut Microbiota in Diabetic Kidney Disease: Comparisons with Diabetes Mellitus, Non-Diabetic Kidney Disease, and Healthy Individuals. Frontiers in Endocrinology, 13, Article ID: 1018093. https://doi.org/10.3389/fendo.2022.1018093
|
[18]
|
Salguero, M., AlObaide, M., Singh, R., Siepmann, T. and Vasylyeva, T. (2019) Dysbiosis of Gram-Negative Gut Microbiota and the Associated Serum Lipopolysaccharide Exacerbates Inflammation in Type 2 Diabetic Patients with Chronic Kidney Disease. Experimental and Therapeutic Medicine, 18, 3461-3469. https://doi.org/10.3892/etm.2019.7943
|
[19]
|
Tao, S., Li, L., Li, L., Liu, Y., Ren, Q., Shi, M., et al. (2019) Understanding the Gut-Kidney Axis among Biopsy-Proven Diabetic Nephropathy, Type 2 Diabetes Mellitus and Healthy Controls: An Analysis of the Gut Microbiota Composition. Acta Diabetologica, 56, 581-592. https://doi.org/10.1007/s00592-019-01316-7
|
[20]
|
Shang, J., Cui, W., Guo, R., Zhang, Y., Wang, P., Yu, W., et al. (2022) The Harmful Intestinal Microbial Community Accumulates during DKD Exacerbation and Microbiome-Metabolome Combined Validation in a Mouse Model. Frontiers in Endocrinology, 13, Article ID: 964389. https://doi.org/10.3389/fendo.2022.964389
|
[21]
|
Huang, H., Luo, Y., Lu, P., Huang, C., Lin, K., Lee, M., et al. (2023) Gut Microbiota Composition Can Reflect Immune Responses of Latent Tuberculosis Infection in Patients with Poorly Controlled Diabetes. Respiratory Research, 24, Article No. 11. https://doi.org/10.1186/s12931-023-02312-w
|
[22]
|
Tervaert, T.W.C., Mooyaart, A.L., Amann, K., Cohen, A.H., Cook, H.T., Drachenberg, C.B., et al. (2010) Pathologic Classification of Diabetic Nephropathy. Journal of the American Society of Nephrology, 21, 556-563. https://doi.org/10.1681/asn.2010010010
|
[23]
|
Mohandes, S., Doke, T., Hu, H., Mukhi, D., Dhillon, P. and Susztak, K. (2023) Molecular Pathways That Drive Diabetic Kidney Disease. Journal of Clinical Investigation, 133, e165654. https://doi.org/10.1172/jci165654
|
[24]
|
Lambie, M., Bonomini, M., Davies, S.J., Accili, D., Arduini, A. and Zammit, V. (2021) Insulin Resistance in Cardiovascular Disease, Uremia, and Peritoneal Dialysis. Trends in Endocrinology & Metabolism, 32, 721-730. https://doi.org/10.1016/j.tem.2021.06.001
|
[25]
|
Takeuchi, T., Kubota, T., Nakanishi, Y., Tsugawa, H., Suda, W., Kwon, A.T., et al. (2023) Gut Microbial Carbohydrate Metabolism Contributes to Insulin Resistance. Nature, 621, 389-395. https://doi.org/10.1038/s41586-023-06466-x
|
[26]
|
Greenhill, C. (2015) Firmicutes and Bacteroidetes Involved in Insulin Resistance by Mediating Levels of Glucagon-Like Peptide 1. Nature Reviews Endocrinology, 11, Article No. 254. https://doi.org/10.1038/nrendo.2015.40
|
[27]
|
Sun, Y., Nie, Q., Zhang, S., He, H., Zuo, S., Chen, C., et al. (2023) Parabacteroides Distasonis Ameliorates Insulin Resistance via Activation of Intestinal Gpr109a. Nature Communications, 14, Article No. 7740. https://doi.org/10.1038/s41467-023-43622-3
|
[28]
|
Pedersen, H.K., Gudmundsdottir, V., Nielsen, H.B., Hyotylainen, T., Nielsen, T., Jensen, B.A.H., et al. (2016) Human Gut Microbes Impact Host Serum Metabolome and Insulin Sensitivity. Nature, 535, 376-381. https://doi.org/10.1038/nature18646
|
[29]
|
Aggarwal, H., Gautam, J., Kumari, D., Gupta, S.K., Bajpai, S., Chaturvedi, K., et al. (2024) Comparative Profiling of Gut Microbiota and Metabolome in Diet-Induced Obese and Insulin-Resistant C57BL/6J Mice. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1871, Article ID: 119643. https://doi.org/10.1016/j.bbamcr.2023.119643
|
[30]
|
Facchin, S., Bertin, L., Bonazzi, E., Lorenzon, G., De Barba, C., Barberio, B., et al. (2024) Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications. Life, 14, Article No. 559. https://doi.org/10.3390/life14050559
|
[31]
|
Saad, M.J.A., Santos, A. and Prada, P.O. (2016) Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology, 31, 283-293. https://doi.org/10.1152/physiol.00041.2015
|
[32]
|
Guo, Y., Xie, G. and Zhang, X. (2023) Role of FXR in Renal Physiology and Kidney Diseases. International Journal of Molecular Sciences, 24, Article No. 2408. https://doi.org/10.3390/ijms24032408
|
[33]
|
She, J., Tuerhongjiang, G., Guo, M., Liu, J., Hao, X., Guo, L., et al. (2024) Statins Aggravate Insulin Resistance through Reduced Blood Glucagon-Like Peptide-1 Levels in a Microbiota-Dependent Manner. Cell Metabolism, 36, 408-421.e5. https://doi.org/10.1016/j.cmet.2023.12.027
|
[34]
|
Naaman, S.C. and Bakris, G.L. (2023) Diabetic Nephropathy: Update on Pillars of Therapy Slowing Progression. Diabetes Care, 46, 1574-1586. https://doi.org/10.2337/dci23-0030
|
[35]
|
Jaworska, K., Koper, M. and Ufnal, M. (2021) Gut Microbiota and Renin-Angiotensin System: A Complex Interplay at Local and Systemic Levels. American Journal of Physiology-Gastrointestinal and Liver Physiology, 321, G355-G366. https://doi.org/10.1152/ajpgi.00099.2021
|
[36]
|
Liu, W., Tan, Z., Geng, M., Jiang, X. and Xin, Y. (2023) Impact of the Gut Microbiota on Angiotensin Ⅱ-Related Disorders and Its Mechanisms. Biochemical Pharmacology, 214, Article ID: 115659. https://doi.org/10.1016/j.bcp.2023.115659
|
[37]
|
Lohia, S., Valkenburg, S., Stroggilos, R., Lygirou, V., Makridakis, M., Zoidakis, J., et al. (2024) Investigation of the Human-Gut-Kidney Axis by Fecal Proteomics, Highlights Molecular Mechanisms Affected in CKD. Heliyon, 10, e32828. https://doi.org/10.1016/j.heliyon.2024.e32828
|
[38]
|
Karbach, S.H., Schönfelder, T., Brandão, I., Wilms, E., Hörmann, N., Jäckel, S., et al. (2016) Gut Microbiota Promote Angiotensin II-Induced Arterial Hypertension and Vascular Dysfunction. Journal of the American Heart Association, 5, e003698. https://doi.org/10.1161/jaha.116.003698
|
[39]
|
Wang, L., Zhu, Q., Lu, A., Liu, X., Zhang, L., Xu, C., et al. (2017) Sodium Butyrate Suppresses Angiotensin II-Induced Hypertension by Inhibition of Renal (Pro)renin Receptor and Intrarenal Renin-Angiotensin System. Journal of Hypertension, 35, 1899-1908. https://doi.org/10.1097/hjh.0000000000001378
|
[40]
|
Deng, F., Zhang, L., Wu, H., Chen, Y., Yu, W., Han, R., et al. (2022) Propionate Alleviates Myocardial Ischemia-Reperfusion Injury Aggravated by Angiotensin II Dependent on Caveolin-1/Ace2 Axis through Gpr41. International Journal of Biological Sciences, 18, 858-872. https://doi.org/10.7150/ijbs.67724
|
[41]
|
Campbell, C., Kandalgaonkar, M.R., Golonka, R.M., Yeoh, B.S., Vijay-Kumar, M. and Saha, P. (2023) Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines, 11, Article No. 294. https://doi.org/10.3390/biomedicines11020294
|
[42]
|
Ni, Y., Zheng, L., Nan, S., Ke, L., Fu, Z. and Jin, J. (2022) Enterorenal Crosstalks in Diabetic Nephropathy and Novel Therapeutics Targeting the Gut Microbiota. Acta Biochimica et Biophysica Sinica, 54, 1406-1420. https://doi.org/10.3724/abbs.2022140
|
[43]
|
Mosterd, C.M., Kanbay, M., van den Born, B.J.H., van Raalte, D.H. and Rampanelli, E. (2021) Intestinal Microbiota and Diabetic Kidney Diseases: The Role of Microbiota and Derived Metabolites Inmodulation of Renal Inflammation and Disease Progression. Best Practice & Research Clinical Endocrinology & Metabolism, 35, Article ID: 101484. https://doi.org/10.1016/j.beem.2021.101484
|
[44]
|
Rysz, J., Franczyk, B., Ławiński, J., Olszewski, R., Ciałkowska-Rysz, A. and Gluba-Brzózka, A. (2021) The Impact of CKD on Uremic Toxins and Gut Microbiota. Toxins, 13, Article No. 252. https://doi.org/10.3390/toxins13040252
|
[45]
|
Zhou, W., Wu, W., Si, Z., Liu, H., Wang, H., Jiang, H., et al. (2022) The Gut Microbe Bacteroides Fragilis Ameliorates Renal Fibrosis in Mice. Nature Communications, 13, Article No. 6081. https://doi.org/10.1038/s41467-022-33824-6
|
[46]
|
Zhong, C., Dai, Z., Chai, L., Wu, L., Li, J., Guo, W., et al. (2021) The Change of Gut Microbiota‐Derived Short‐Chain Fatty Acids in Diabetic Kidney Disease. Journal of Clinical Laboratory Analysis, 35, e24062. https://doi.org/10.1002/jcla.24062
|
[47]
|
Srivastava, A., Tomar, B., Sharma, D. and Rath, S.K. (2023) Mitochondrial Dysfunction and Oxidative Stress: Role in Chronic Kidney Disease. Life Sciences, 319, Article ID: 121432. https://doi.org/10.1016/j.lfs.2023.121432
|
[48]
|
Su, S., Ma, Z., Wu, H., Xu, Z. and Yi, H. (2023) Oxidative Stress as a Culprit in Diabetic Kidney Disease. Life Sciences, 322, Article ID: 121661. https://doi.org/10.1016/j.lfs.2023.121661
|
[49]
|
Samsu, N. (2021) Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Research International, 2021, Article ID: 1497449. https://doi.org/10.1155/2021/1497449
|
[50]
|
Winiarska, A., Knysak, M., Nabrdalik, K., Gumprecht, J. and Stompór, T. (2021) Inflammation and Oxidative Stress in Diabetic Kidney Disease: The Targets for SGLT2 Inhibitors and GLP-1 Receptor Agonists. International Journal of Molecular Sciences, 22, Article No. 10822. https://doi.org/10.3390/ijms221910822
|
[51]
|
Tan, Y., Wang, Y., Feng, H., Guo, Z., Li, X., Nie, X., et al. (2022) Host/Microbiota Interactions-Derived Tryptophan Metabolites Modulate Oxidative Stress and Inflammation via Aryl Hydrocarbon Receptor Signaling. Free Radical Biology and Medicine, 184, 30-41. https://doi.org/10.1016/j.freeradbiomed.2022.03.025
|
[52]
|
Chao, C. and Chiang, C. (2015) Uremic Toxins, Oxidative Stress, and Renal Fibrosis: An Interwined Complex. Journal of Renal Nutrition, 25, 155-159. https://doi.org/10.1053/j.jrn.2014.10.010
|
[53]
|
Porcari, S., Benech, N., Valles-Colomer, M., Segata, N., Gasbarrini, A., Cammarota, G., et al. (2023) Key Determinants of Success in Fecal Microbiota Transplantation: From Microbiome to Clinic. Cell Host & Microbe, 31, 712-733. https://doi.org/10.1016/j.chom.2023.03.020
|
[54]
|
Yadegar, A., Bar-Yoseph, H., Monaghan, T.M., Pakpour, S., Severino, A., Kuijper, E.J., et al. (2024) Fecal Microbiota Transplantation: Current Challenges and Future Landscapes. Clinical Microbiology Reviews, 37, e0006022. https://doi.org/10.1128/cmr.00060-22
|
[55]
|
Hu, Z.B., Lu, J., Chen, P.P., Lu, C.C., Zhang, J.X., Li, X.Q., et al. (2020) Dysbiosis of Intestinal Microbiota Mediates Tubulointerstitial Injury in Diabetic Nephropathy via the Disruption of Cholesterol Homeostasis. Theranostics, 10, 2803-2816. https://doi.org/10.7150/thno.40571
|
[56]
|
Wang, H., Lu, Y., Yan, Y., Tian, S., Zheng, D., Leng, D., et al. (2020) Promising Treatment for Type 2 Diabetes: Fecal Microbiota Transplantation Reverses Insulin Resistance and Impaired Islets. Frontiers in Cellular and Infection Microbiology, 9, Article No. 455. https://doi.org/10.3389/fcimb.2019.00455
|
[57]
|
Ding, D., Yong, H., You, N., Lu, W., Yang, X., Ye, X., et al. (2022) Prospective Study Reveals Host Microbial Determinants of Clinical Response to Fecal Microbiota Transplant Therapy in Type 2 Diabetes Patients. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 820367. https://doi.org/10.3389/fcimb.2022.820367
|
[58]
|
Yang, Y., Yan, J., Li, S., Liu, M., Han, R., Wang, Y., et al. (2023) Efficacy of Fecal Microbiota Transplantation in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Endocrine, 84, 48-62. https://doi.org/10.1007/s12020-023-03606-1
|
[59]
|
Singh, R.P., Shadan, A. and Ma, Y. (2022) Biotechnological Applications of Probiotics: A Multifarious Weapon to Disease and Metabolic Abnormality. Probiotics and Antimicrobial Proteins, 14, 1184-1210. https://doi.org/10.1007/s12602-022-09992-8
|
[60]
|
Meng, F., Zhang, F., Meng, M., Chen, Q., Yang, Y., Wang, W., et al. (2023) Effects of the Synbiotic Composed of Mangiferin and Lactobacillus reuteri 1-12 on Type 2 Diabetes Mellitus Rats. Frontiers in Microbiology, 14, Article ID: 1158652. https://doi.org/10.3389/fmicb.2023.1158652
|
[61]
|
Lu, Y., Yin, L., Chang, W. and Huang, J. (2010) Effect of Lactobacillus reuteri GMNL-263 Treatment on Renal Fibrosis in Diabetic Rats. Journal of Bioscience and Bioengineering, 110, 709-715. https://doi.org/10.1016/j.jbiosc.2010.07.006
|
[62]
|
Ross, P. (2022) Expression of Concern: Metabolic and Genetic Response to Probiotics Supplementation in Patients with Diabetic Nephropathy: A Randomized, Double-Blind, Placebo-Controlled Trial. Food & Function, 13, 4229-4229. https://doi.org/10.1039/d2fo90024f
|
[63]
|
Ma, J., Lyu, Y., Liu, X., Jia, X., Cui, F., Wu, X., et al. (2022) Engineered Probiotics. Microbial Cell Factories, 21, Article No. 72. https://doi.org/10.1186/s12934-022-01799-0
|
[64]
|
Wang, X., Chen, W., Jin, R., Xu, X., Wei, J., Huang, H., et al. (2022) Engineered Probiotics Clostridium Butyricum‐pMTL007‐GLP‐1 Improves Blood Pressure via Producing GLP‐1 and Modulating Gut Microbiota in Spontaneous Hypertension Rat Models. Microbial Biotechnology, 16, 799-812. https://doi.org/10.1111/1751-7915.14196
|
[65]
|
Hu, H., Luo, J., Liu, Y., Li, H., Jin, R., Li, S., et al. (2023) Improvement Effect of a Next-Generation Probiotic L. Plantarum-pMG36e-GLP-1 on Type 2 Diabetes Mellitus via the Gut-Pancreas-Liver Axis. Food & Function, 14, 3179-3195. https://doi.org/10.1039/d3fo00044c
|