|
[1]
|
Rinaldi, L., Pafundi, P.C., Galiero, R., Caturano, A., Morone, M.V., Silvestri, C., et al. (2021) Mechanisms of Non-Alcoholic Fatty Liver Disease in the Metabolic Syndrome. A Narrative Review. Antioxidants, 10, Article 270. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Estes, C., Anstee, Q.M., Arias-Loste, M.T., Bantel, H., Bellentani, S., Caballeria, J., et al. (2018) Modeling NAFLD Disease Burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the Period 2016-2030. Journal of Hepatology, 69, 896-904. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wong, Y.H., Wong, S.H., Wong, X.T., Yap, Q.Y., Yip, K.Y., Wong, L.Z., et al. (2022) Genetic Associated Complications of Type 2 Diabetes Mellitus. Panminerva Medica, 64, 274-288. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Targher, G., Corey, K.E., Byrne, C.D. and Roden, M. (2021) The Complex Link between NAFLD and Type 2 Diabetes Mellitus—Mechanisms and Treatments. Nature Reviews Gastroenterology & Hepatology, 18, 599-612. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lee, C., Lui, D.T. and Lam, K.S. (2022) Non‐Alcoholic Fatty Liver Disease and Type 2 Diabetes: An Update. Journal of Diabetes Investigation, 13, 930-940. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chung, G.E., Cho, E.J., Yoon, J.W., Yoo, J., Chang, Y., Cho, Y., et al. (2021) Nonalcoholic Fatty Liver Disease Increases the Risk of Diabetes in Young Adults: A Nationwide Population-Based Study in Korea. Metabolism, 123, Article 154866. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Muzica, C.M., Sfarti, C., Trifan, A., Zenovia, S., Cuciureanu, T., Nastasa, R., et al. (2020) Nonalcoholic Fatty Liver Disease and Type 2 Diabetes Mellitus: A Bidirectional Relationship. Canadian Journal of Gastroenterology and Hepatology, 2020, Article ID: 6638306. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
de Aguiar Vallim, T.Q., Tarling, E.J. and Edwards, P.A. (2013) Pleiotropic Roles of Bile Acids in Metabolism. Cell Metabolism, 17, 657-669. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yin, C., Zhong, R., Zhang, W., Liu, L., Chen, L. and Zhang, H. (2023) The Potential of Bile Acids as Biomarkers for Metabolic Disorders. International Journal of Molecular Sciences, 24, Article 12123. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Liu, X. and Wang, Y. (2019) An Overview of Bile Acid Synthesis and Its Physiological and Pathological Functions. Hereditas, 41, 365-374.
|
|
[11]
|
Russell, D.W. (2003) The Enzymes, Regulation, and Genetics of Bile Acid Synthesis. Annual Review of Biochemistry, 72, 137-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wang, S., Deng, Y., Xie, X., Ma, J., Xu, M., Zhao, X., et al. (2018) Plasma Bile Acid Changes in Type 2 Diabetes Correlated with Insulin Secretion in Two‐Step Hyperglycemic Clamp. Journal of Diabetes, 10, 874-885. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, H., Yang, T., Heng, C., Zhou, Y., Jiang, Z., Qian, X., et al. (2019) Quercetin Improves Nonalcoholic Fatty Liver by Ameliorating Inflammation, Oxidative Stress, and Lipid Metabolism in db/db Mice. Phytotherapy Research, 33, 3140-3152. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Haeusler, R.A., Pratt-Hyatt, M., Welch, C.L., Klaassen, C.D. and Accili, D. (2012) Impaired Generation of 12-Hydroxylated Bile Acids Links Hepatic Insulin Signaling with Dyslipidemia. Cell Metabolism, 15, 65-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yu, Q., Jiang, Z. and Zhang, L. (2018) Bile Acid Regulation: A Novel Therapeutic Strategy in Non-Alcoholic Fatty Liver Disease. Pharmacology & Therapeutics, 190, 81-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bechmann, L.P., Kocabayoglu, P., Sowa, J., Sydor, S., Best, J., Schlattjan, M., et al. (2013) Free Fatty Acids Repress Small Heterodimer Partner (SHP) Activation and Adiponectin Counteracts Bile Acid-Induced Liver Injury in Superobese Patients with Nonalcoholic Steatohepatitis. Hepatology, 57, 1394-1406. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kalhan, S.C., Guo, L., Edmison, J., Dasarathy, S., McCullough, A.J., Hanson, R.W., et al. (2011) Plasma Metabolomic Profile in Nonalcoholic Fatty Liver Disease. Metabolism, 60, 404-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Masarone, M., Troisi, J., Aglitti, A., Torre, P., Colucci, A., Dallio, M., et al. (2021) Untargeted Metabolomics as a Diagnostic Tool in NAFLD: Discrimination of Steatosis, Steatohepatitis and Cirrhosis. Metabolomics, 17, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jahnel, J., Zöhrer, E., Alisi, A., Ferrari, F., Ceccarelli, S., De Vito, R., et al. (2015) Serum Bile Acid Levels in Children with Nonalcoholic Fatty Liver Disease. Journal of Pediatric Gastroenterology and Nutrition, 61, 85-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Maillette de Buy Wenniger, L. and Beuers, U. (2010) Bile Salts and Cholestasis. Digestive and Liver Disease, 42, 409-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, M., Cai, S. and Boyer, J.L. (2017) Mechanisms of Bile Acid Mediated Inflammation in the Liver. Molecular Aspects of Medicine, 56, 45-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lee, W., Um, J., Hwang, B., Lee, Y.C., Chung, B.C. and Hong, J. (2020) Assessing the Progression of Gastric Cancer via Profiling of Histamine, Histidine, and Bile Acids in Gastric Juice Using LC-MS/MS. The Journal of Steroid Biochemistry and Molecular Biology, 197, Article 105539. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lackey, D.E. and Olefsky, J.M. (2015) Regulation of Metabolism by the Innate Immune System. Nature Reviews Endocrinology, 12, 15-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Xie, G., Jiang, R., Wang, X., Liu, P., Zhao, A., Wu, Y., et al. (2021) Conjugated Secondary 12α-Hydroxylated Bile Acids Promote Liver Fibrogenesis. eBioMedicine, 66, Article 103290. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Drzymała-Czyż, S., Dziedzic, K., Szwengiel, A., Krzyżanowska-Jankowska, P., Nowak, J.K., Nowicka, A., et al. (2022) Serum Bile Acids in Cystic Fibrosis Patients—Glycodeoxycholic Acid as a Potential Marker of Liver Disease. Digestive and Liver Disease, 54, 111-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Min, H., Kapoor, A., Fuchs, M., Mirshahi, F., Zhou, H., Maher, J., et al. (2012) Increased Hepatic Synthesis and Dysregulation of Cholesterol Metabolism Is Associated with the Severity of Nonalcoholic Fatty Liver Disease. Cell Metabolism, 15, 665-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zheng, X., Chen, T., Jiang, R., Zhao, A., Wu, Q., Kuang, J., et al. (2021) Hyocholic Acid Species Improve Glucose Homeostasis through a Distinct TGR5 and FXR Signaling Mechanism. Cell Metabolism, 33, 791-803.e7. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zheng, X., Chen, T., Zhao, A., Ning, Z., Kuang, J., Wang, S., et al. (2021) Hyocholic Acid Species as Novel Biomarkers for Metabolic Disorders. Nature Communications, 12, Article No. 1487. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Holt, J.A., Luo, G., Billin, A.N., Bisi, J., McNeill, Y.Y., Kozarsky, K.F., et al. (2003) Definition of a Novel Growth Factor-Dependent Signal Cascade for the Suppression of Bile Acid Biosynthesis. Genes & Development, 17, 1581-1591. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chávez-Talavera, O., Tailleux, A., Lefebvre, P. and Staels, B. (2017) Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology, 152, 1679-1694.E3. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Mantovani, A. and Dalbeni, A. (2021) Treatments for NAFLD: State of Art. International Journal of Molecular Sciences, 22, Article 2350. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Fiorucci, S., Zampella, A., Ricci, P., Distrutti, E. and Biagioli, M. (2022) Immunomodulatory Functions of FXR. Molecular and Cellular Endocrinology, 551, Article 111650. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Han, C. (2018) Update on FXR Biology: Promising Therapeutic Target? International Journal of Molecular Sciences, 19, Article 2069. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Sanyal, A.J. (2015) Use of Farnesoid X Receptor Agonists to Treat Nonalcoholic Fatty Liver Disease. Digestive Diseases, 33, 426-432. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Farr, S., Stankovic, B., Hoffman, S., Masoudpoor, H., Baker, C., Taher, J., et al. (2020) Bile Acid Treatment and FXR Agonism Lower Postprandial Lipemia in Mice. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318, G682-G693. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M. and Sanyal, A.J. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Neuschwander-Tetri, B.A., Loomba, R., Sanyal, A.J., Lavine, J.E., Van Natta, M.L., Abdelmalek, M.F., et al. (2015) Farnesoid X Nuclear Receptor Ligand Obeticholic Acid for Non-Cirrhotic, Non-Alcoholic Steatohepatitis (FLINT): A Multicentre, Randomised, Placebo-Controlled Trial. The Lancet, 385, 956-965. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kong, B., Luyendyk, J.P., Tawfik, O. and Guo, G.L. (2009) Farnesoid X Receptor Deficiency Induces Nonalcoholic Steatohepatitis in Low-Density Lipoprotein Receptor-Knockout Mice Fed a High-Fat Diet. The Journal of Pharmacology and Experimental Therapeutics, 328, 116-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Katafuchi, T. and Makishima, M. (2022) Molecular Basis of Bile Acid-FXR-FGF15/19 Signaling Axis. International Journal of Molecular Sciences, 23, Article 6046. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Owen, B.M., Mangelsdorf, D.J. and Kliewer, S.A. (2015) Tissue-Specific Actions of the Metabolic Hormones FGF15/19 and FGF21. Trends in Endocrinology & Metabolism, 26, 22-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kir, S., Beddow, S.A., Samuel, V.T., Miller, P., Previs, S.F., Suino-Powell, K., et al. (2011) FGF19 as a Postprandial, Insulin-Independent Activator of Hepatic Protein and Glycogen Synthesis. Science, 331, 1621-1624. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Potthoff, M.J., Boney-Montoya, J., Choi, M., He, T., Sunny, N.E., Satapati, S., et al. (2011) FGF15/19 Regulates Hepatic Glucose Metabolism by Inhibiting the CREB-PGC-1α Pathway. Cell Metabolism, 13, 729-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Harrison, S.A., Rossi, S.J., Paredes, A.H., Trotter, J.F., Bashir, M.R., Guy, C.D., et al. (2019) NGM282 Improves Liver Fibrosis and Histology in 12 Weeks in Patients with Nonalcoholic Steatohepatitis. Hepatology, 71, 1198-1212. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Keitel, V., Spomer, L., Marin, J.J.G., Williamson, C., Geenes, V., Kubitz, R., et al. (2013) Effect of Maternal Cholestasis on TGR5 Expression in Human and Rat Placenta at Term. Placenta, 34, 810-816. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Castellanos-Jankiewicz, A., Guzmán-Quevedo, O., Fénelon, V.S., Zizzari, P., Quarta, C., Bellocchio, L., et al. (2021) Hypothalamic Bile Acid-TGR5 Signaling Protects from Obesity. Cell Metabolism, 33, 1483-1492.E10. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Parker, H., Wallis, K., le Roux, C., Wong, K., Reimann, F. and Gribble, F. (2011) Molecular Mechanisms Underlying Bile Acid‐Stimulated Glucagon‐Like Peptide‐1 Secretion. British Journal of Pharmacology, 165, 414-423. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Kumar, D.P., Rajagopal, S., Mahavadi, S., Mirshahi, F., Grider, J.R., Murthy, K.S., et al. (2012) Activation of Transmembrane Bile Acid Receptor TGR5 Stimulates Insulin Secretion in Pancreatic Β Cells. Biochemical and Biophysical Research Communications, 427, 600-605. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Jonsson, I., Bojsen-Møller, K.N., Kristiansen, V.B., Veedfald, S., Wewer Albrechtsen, N.J., Clausen, T.R., et al. (2021) Effects of Manipulating Circulating Bile Acid Concentrations on Postprandial GLP-1 Secretion and Glucose Metabolism after Roux-En-Y Gastric Bypass. Frontiers in Endocrinology, 12, Article 681116. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Li, P., Zhu, L., Yang, X., Li, W., Sun, X., Yi, B., et al. (2018) Farnesoid X Receptor Interacts with Camp Response Element Binding Protein to Modulate Glucagon‐Like Peptide‐1 (7-36) Amide Secretion by Intestinal L Cell. Journal of Cellular Physiology, 234, 12839-12846. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
American Diabetes Association (2017) 8. Pharmacologic Approaches to Glycemic Treatment: standards of Medical Care in Diabetes—2018. Diabetes Care, 41, S73-S85. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Raschi, E., Mazzotti, A., Poluzzi, E., De Ponti, F. and Marchesini, G. (2018) Pharmacotherapy of Type 2 Diabetes in Patients with Chronic Liver Disease: Focus on Nonalcoholic Fatty Liver Disease. Expert Opinion on Pharmacotherapy, 19, 1903-1914. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Mantovani, A., Byrne, C.D., Scorletti, E., Mantzoros, C.S. and Targher, G. (2020) Efficacy and Safety of Anti-Hyperglycaemic Drugs in Patients with Non-Alcoholic Fatty Liver Disease with or without Diabetes: An Updated Systematic Review of Randomized Controlled Trials. Diabetes & Metabolism, 46, 427-441. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Kalavalapalli, S., Bril, F., Guingab, J., Vergara, A., Garrett, T.J., Sunny, N.E., et al. (2019) Impact of Exenatide on Mitochondrial Lipid Metabolism in Mice with Nonalcoholic Steatohepatitis. Journal of Endocrinology, 241, 293-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Chiang, J.Y.L. and Ferrell, J.M. (2020) Bile Acid Receptors FXR and TGR5 Signaling in Fatty Liver Diseases and Therapy. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318, G554-G573. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Wang, X.X., Wang, D., Luo, Y., Myakala, K., Dobrinskikh, E., Rosenberg, A.Z., et al. (2017) FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity. Journal of the American Society of Nephrology, 29, 118-137. [Google Scholar] [CrossRef] [PubMed]
|