高尿酸血症影响肾功能作用机制的研究进展
Research Progress on the Mechanism of Hyperuricemia Affecting Renal Function
DOI: 10.12677/acm.2025.152339, PDF, HTML, XML,    科研立项经费支持
作者: 陈秀珍, 杨 瑞, 余学志, 李田田, 李 鸣, 孙孔春*:昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明;张 阳*:昆明医科大学药学院暨云南省天然药物药理重点实验室,云南 昆明;云南省第三人民医院药剂科,云南 昆明
关键词: 高尿酸血症肾损伤作用机制信号通路治疗策略Hyperuricemia Kidney Injury Mechanism of Action Signaling Pathway Therapeutic Strategy
摘要: 人体血液中尿酸浓度过高会形成尿酸盐结晶(monosodium urate, MSU),MSU在肾小管中沉积,导致肾间质和肾小管受损,引起痛风性肾病。此外,高尿酸可引起肾脏血流动力学改变、肾脏炎症反应和氧化应激等。多个信号通路参与了肾损伤过程,如:MAPK、Nrf2/ARE、NF-κB、PPAR等。高尿酸肾损伤可通过健康的生活方式预防,同时也需要规范化的药物治疗,但临床上降尿酸药物均存在一定的副作用,开发低毒高效的降尿酸药物具有重要的临床意义。本文综述了血尿酸水平升高引起肾损伤的机制,高尿酸血症的预防和治疗措施,为降尿酸保护肾脏的药物开发提供参考。
Abstract: High uric acid concentration in human blood will form urate crystals (MSU), and MSU is deposited in renal tubules, leading to damage of renal interstitium and tubules and causing gouty nephropathy. In addition, high uric acid can cause alterations in renal hemodynamics as well as renal inflammatory response and oxidative stress. Signaling pathways associated with kidney injury include MAPK, Nrf2/ARE, NF-κB and PPAR. Hyperuric acid kidney injury can be prevented by a healthy lifestyle and also requires standardized drug therapy. However, all clinical uric acid-lowering drugs have certain side effects, and the development of safer and more effective uric acid-lowering drugs is urgent. This paper reviews the mechanism of kidney injury caused by elevated blood uric acid level, the prevention and treatment measures of hyperuricemia, and provides reference for the development of uric acid-lowering drugs to protect the kidneys.
文章引用:陈秀珍, 杨瑞, 余学志, 李田田, 李鸣, 张阳, 孙孔春. 高尿酸血症影响肾功能作用机制的研究进展[J]. 临床医学进展, 2025, 15(2): 238-247. https://doi.org/10.12677/acm.2025.152339

1. 引言

尿酸是嘌呤代谢的终产物,主要通过近端肾小管排泄。高尿酸血症主要是由于尿酸生成或排泄异常而导致的,男性血清尿酸(serum uric acid, SUA)水平 ≥ 70 mg/L (416.0 μmol/L)或女性SUA水平 ≥ 60 mg/L (357.0 μmol/L)被定义为高尿酸血症(hyperuricemia, HUA) [1]。HUA是一种常见的代谢性疾病,其发病率在全球呈上升趋势,一般人们对高尿酸血症的认识往往仅局限于与痛风的关联,实际上,血液中尿酸含量长期过高会大大增加代谢综合征、糖尿病、高血压、心血管疾病和慢性肾脏疾病的患病风险[2]-[5],给社会及家庭带来巨大负担。

血液中尿酸的水平高低取决于尿酸生成和排出之间的平衡。人体中尿酸的60%至70%经肾脏排泄[6] [7],在高尿酸血症患者体内,长期高水平的尿酸会导致肾脏中尿酸结晶沉积、局部炎症反应、肾血管病变等病理反应,直接或间接损伤肾脏,肾损伤导致尿酸排出进一步受阻,最终加重肾脏损伤。这种恶性循环使得高尿酸血症与肾脏损伤之间的关系愈发紧密,因此如何通过药物干预等手段打破这一恶性循环从而保护肾脏,对于提高高尿酸血症患者的生存质量具有重要意义。

本文通过综合分析近年来相关文献,从高尿酸血症肾损伤的发生机制、临床表现、诊断和治疗方法等角度,对高尿酸血症影响肾功能的研究进行综述,旨在为更好地诊治高尿酸血症相关肾脏疾病提供参考。

2. 高尿酸血症影响肾功能的作用机制

2.1. 肾脏尿酸盐结晶的形成和沉积

正常生理状态下,大部分尿酸经肾小球滤出,再由近端肾小管重吸收,最后被远曲小管分泌最终排出[8]。但当血液中尿酸浓度持续过高,微溶的尿酸在过饱和状态下持续析出,形成的MSU堵塞肾脏排泄通路并持续刺激肾脏产生急性炎症,造成肾损伤,最终造成慢性肾病和肾衰竭[9]-[11]

2.2. 肾脏血流动力学的影响

高水平尿酸能够引起血管收缩和血管平滑肌细胞的增殖,诱发血管内皮细胞功能障碍,激活局部的环氧合酶2 (cyclooxygenase-2, COX2)和肾素–血管紧张素(renin-angiotensinsystem, RAS)系统,进而引发与尿酸盐结晶无关的氧化应激[12] [13]。这一系列反应会引起肾小球的动脉病变,最终导致肾缺血。

2.3. 肾脏炎症反应和氧化应激相关通路

如2.1中所述,肾脏中尿酸盐结晶沉积会引发肾脏炎症和氧化应激,造成肾损伤[14],研究发现:尿酸盐氧化酶基因敲除的大鼠肾脏受损严重,表现为肾脏间质纤维化增加,巨噬细胞浸润,NLRP3炎症小体和白细胞介素-1β (IL-1β)的表达增加,其他细胞内能量代谢(如细胞自噬等)等多种信号通路被激活[15],此外,高浓度尿酸可以诱导炎症反应和活性氧损伤肾脏[16] [17]。关于高尿酸血症中炎症及氧化应激的相关通路的研究主要有:

1) MAPK信号通路:丝裂原激活蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路在肾脏炎症中具有重要作用,p38 MAPK信号通路是MAPK通路的重要分支,参与了细胞凋亡、炎性反应及纤维化的发生和发展过程。研究表明:过高的尿酸水平会促使活性氧(reactive oxygen species, ROS)的产生增加[18]。ROS能够激活MAPK信号通路中的凋亡信号调节激酶1 (apoptosis signal regulating kinase-1, ASK1),激活的ASK1可以进一步激活p38 MAPK通路进而引起一系列炎症因子的表达的上调,如IL-1β、白细胞介素-6 (IL-6)、肿瘤坏死因子-α (TNF-α) [19]。这些炎症因子会引起血管内皮细胞的功能障碍,包括内皮细胞的通透性增加、一氧化氮(NO)生物利用度降低等。细胞外调节蛋白激酶(extracellular regulated protein kinases, ERK)通路是MAPK通路的另一个重要分支,高浓度尿酸引起p38 MAPK的磷酸化水平增高,激活ERK通路,导致肾小管上皮细胞的增殖[20]。这可能是因为激活的ERK通路磷酸化了一些与细胞周期相关的蛋白,促使细胞从G1期进入S期,从而促进细胞增殖。这种异常的细胞增殖可能与高尿酸血症引起的肾脏病变有关,如肾小管间质纤维化。另外,p38 MAPK的激活会诱导下游NLRP3炎症小体的产生[21]-[23],从而介导细胞的凋亡[24]、焦亡[22]和氧化应激[17] [25] [26]。研究发现通过抑制 p38 MAPK的活性,可以减轻炎症反应、减少细胞凋亡、延缓肾脏损伤等[27]-[29]。因此,研究p38 MAPK炎症信号通路在高尿酸血症中的作用机制,对于寻找治疗高尿酸血症及肾病的新靶点具有重要意义,有望为临床治疗提供新的思路和方法。

2) NF-κB信号通路:高尿酸可刺激炎症细胞释放TNF-α、IL-1β等炎症因子[30] [31]。NF-κB作为这些炎症因子的核因子,进入细胞核后,可调控多种基因的表达,包括诱导型一氧化氮合酶(iNOS)、环氧化酶-2 (COX-2)等[32] [33]。这些基因的表达会进一步促进ROS和活性氮(RNS)的产生,加重氧化应激[34] [35]。同时,NF-κB还可以抑制抗氧化酶的表达,削弱细胞的抗氧化能力[36]。此外,激活的NF-κB可以上调一些细胞因子和趋化因子的表达,而这些细胞因子和趋化因子又可以反过来激活MAPK信号通路中的某些激酶[37]。有研究发现通过抑制MAPK/NF-κB信号通路的激活,可以改善小鼠肾间质纤维化,抑制炎症反应[26] [36] [38]。因此,进一步研究NF-κB信号通路的调控机制,可有助于理解高尿酸水平引起的炎症反应和氧化应激,有望为开发新的治疗策略提供依据。

3) Nrf2/ARE信号通路:正常生理情况下,核因子–红细胞2相关因子2 (nuclear factor erythroid 2-related factor 2, Nrf2)与Kelch样环氧氯丙烷相关蛋白-1 (kelch-like ECH-associated protein 1, Keap1)结合,处于相对稳定的失活状态[39] [40]。当受到氧化应激刺激(如p38 MAPK信号通路诱导的炎症因子氧化应激刺激)时,Nrf2与Keap1解离并进入细胞核,与抗氧化反应元件(antioxidant response element, ARE)结合[41],启动下游抗氧化基因的表达及转录,如超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPx)和血红素氧合酶-1 (HO-1)等[42]-[44]。研究发现,在Nrf2基因敲除小鼠实验中,Nrf2可以缓解肾脏细胞氧化应激状态,缓解高尿酸血症肾损伤[44]-[46]。另外,高尿酸能刺激炎症细胞释放炎症因子,如IL-1β、TNF-α等,这些炎症因子可通过各种反应抑制Nrf2/ARE信号通路[47],如IL-1β可以激活一些蛋白激酶,磷酸化的Nrf2与Keap1蛋白的结合更加稳定,阻碍Nrf2进入细胞核发挥转录激活作用;或者影响Nrf2与ARE的结合能力,降低下游抗氧化基因的表达,削弱细胞的抗氧化防御能力。这一系列机制揭示了Nrf2/ARE在高尿酸导致的氧化应激及高尿酸血症相关肾损伤过程中的关键调控作用,该通路可能成为治疗高尿酸血症肾损伤潜在的靶点[48]

4) PPAR信号通路:过氧化物酶体增殖物激活受体(peroxisome proliferators-activated receptors, PPAR)是一类核受体,参与调节脂质代谢、炎症反应及氧化应激等多种生物学过程[49]-[52]。高浓度的尿酸会引起细胞内一系列应激反应,激活炎症信号通路,产生炎症因子(TNF-α、IL-6)等。高尿酸可能通过影响PPAR通路来调节下游基因的表达,从而改变氧化应激状态。例如,PPARγ被激活后,能够对NF-κB通路的激活起到抑制作用,降低炎症因子的生成以及氧化应激水平[53] [54]。此外,PPAR还可调节脂肪酸代谢,降低脂质过氧化产物的生成,从而缓解氧化应激对细胞的损伤[55]。有研究表明激活PPAR从而通过影响脂质代谢和减轻炎症反应等途径在大鼠体内发挥降尿酸作用[56]-[58]。因此,激活PPAR通路不仅有助于改善代谢紊乱,还可能为高尿酸血症的治疗提供新思路,对于开发有效的治疗药物具有重要意义。

2.4. 肠道菌群对高尿酸血症肾病的影响

高水平尿酸会破坏肠道菌群的平衡状态,使肠道微生态环境发生改变。研究发现,高尿酸血症患者或动物模型中,肠道菌群的组成和多样性出现显著变化,其中产脂多糖(Lipopolysaccharides, LPS)的革兰氏阴性菌数量明显增多[59] [60]。这可能是由于高尿酸影响了肠道内的理化环境,如pH值、氧化还原电位等,为某些细菌的生长提供了更有利的条件,同时抑制了其他有益菌的生长。增多的革兰氏阴性菌产生大量LPS,LPS作为一种内毒素,可与肾脏细胞表面的Toll样受体4 (Toll-like receptor 4, TLR4)结合,激活下游信号通路,促进TNF-α等炎症因子的释放[61],最终导致肾损伤。

3. 高尿酸血症肾病的临床表现

3.1. 慢性尿酸性肾病

慢性尿酸性肾病多见于中老年男性,患者早期尿浓缩功能减弱,后出现肾小球滤过率降低、血肌酐升高,逐渐发展为慢性肾功能不全。该病还可能因肾内或尿道尿酸盐结晶导致尿流阻塞并引发感染,患者有轻微蛋白尿症状。该病常合并轻中度高血压、高脂血症及代谢综合征,易引发心血管疾病和肾动脉硬化。

3.2. 急性尿酸性肾病

该病形成原因是短期内大量细胞被破坏产生了大量尿酸,尿酸盐结晶堵塞肾小管,导致患者出现血肌酐、血氮质水平迅速上升,进而出现少尿或无尿的症状。在骨髓增生性疾病、化疗、癫痫持续状态、中暑、Lesch-Nyhan综合征以及多个实体肿瘤自发性坏死时较为多见[10] [62]。结晶阻塞集合管是导致急性肾衰竭的原因之一,结晶压迫远端肾血管,使得出球动脉和肾小管旁毛细血管压力升高是另一重要原因。

4. 高尿酸血症肾病的预防和治疗策略

4.1. 预防策略

2024年国家卫生健康委发布了《成人高尿酸血症与痛风食养指南》,建议高尿酸患者在日常饮食中,应确保食物的种类丰富多样,以满足身体对各种营养成分的需求。增加蔬菜和低脂奶制品的摄入,不仅能补充维生素和矿物质,还能有效帮助控制尿酸水平。然而,要特别注意减少高嘌呤食物的摄入,如红肉、内脏和某些种类的海鲜以及含有高果糖的食品和饮料,以避免尿酸升高,保护肾脏健康。在保证每天足量饮水的同时尽量限制饮酒,有助于尿酸的排泄。因时因地因人选择适合自己的膳食方案,在健康饮食的基础上适度锻炼,实现饮食与运动的良好平衡[63]。合理的饮食和运动对于预防高尿酸血症至关重要,而定期进行全面的日常体检,能够及时发现身体潜在的健康问题,尤其是对于高尿酸血症的早期筛查具有重大意义。对血尿酸水平及肾功能进行监测,一旦发现异常及时进行干预和治疗,以防止病情进一步恶化。

4.2. 治疗策略:

当男性血尿酸水平 > 420 μmol/L,女性 > 360 μmol/L时建议采用如4.1中所述的生活干预,我国建议血尿酸 ≥ 540 μmol/L或≥480 μmol/L且有合并症的患者启动药物治疗。

1) 慢性尿酸性肾病治疗

单纯慢性高尿酸血症伴肾病患者,以降低尿酸水平,防止关节炎,保护肾脏为准。目前降尿酸药物主要有三类[64],第一类是以别嘌醇和非布司他为代表的尿酸生成抑制剂,通过抑制黄嘌呤氧化酶(XOD)抑制尿酸合成。第二类是以苯溴马隆为代表的促尿酸排泄类药物,通过抑制肾小管重吸收尿酸盐来降低血清尿酸水平。氯沙坦作为血管紧张素Ⅱ受体拮抗剂(ARB),其降尿酸机制也是抑制肾小管对尿酸盐的重吸收,但因其可以阻滞局部的环氧合酶2 (COX2)和肾素–血管紧张素(RAS)系统从而有良好的降压和肾脏保护作用[12] [65] [66],且能有效降低蛋白尿。第三类是以拉布立酶为代表的促尿酸溶解类药,属于重组尿酸氧化酶,但其价格昂贵。通常根据患者的具体病情来选择不同的降尿酸药物[67],对于肾功能不全患者,应根据肾功能损害的程度选择合适的药物。在此情况下,尿酸生成抑制剂如别嘌醇和非布司他通常更合适,将氯沙坦与尿酸生成抑制剂联用达到降尿酸并保护肾脏的效果。

对于高尿酸血症肾病伴痛风患者,痛风发作时推荐单独或联合运用非甾体抗炎药(NSAIDs)、秋水仙碱以及皮质类固醇进行治疗[67]。低剂量秋水仙碱是首选,但应根据肾功能和药物相互作用调整剂量。非甾体抗炎药通常效果良好,但在某些患者中可能有禁忌。皮质类固醇适用于有多种合并症的患者,关节内注射可用于少数关节受累的情况。白细胞介素1抑制剂(如Canakinumab)有效[68],但成本较高,目前仅限于其他选择无效或禁忌的患者。同时,痛风发作时应向患者教育长期降尿酸治疗的重要性,以预防未来的发作和关节损伤。

2) 急性尿酸肾病

急性尿酸性肾病通常是可逆的,关键在于预防。要密切监测患者的生化指标及临床症状,对于具有高危因素的患者,比如肿瘤患者接受化疗后、严重创伤后以及大量进食高嘌呤食物等情况,应积极进行补液治疗,必要时使用袢利尿剂以保持尿量大于0.1 L/h。

一旦确诊为急性尿酸性肾病,需积极干预进行治疗,具体干预措施如下:首先要严格执行低嘌呤饮食,其次要进行水化治疗,在没有禁忌的情况下,液体摄入量应达到3 L/d。再者要碱化尿液,将尿液pH值控制在6.2~6.9之间。在降尿酸药物的选择上,首选减少尿酸生成的药物如别嘌醇,非布司他,对于肿瘤溶解综合征患者则首选尿酸酶,并且要禁用别嘌醇,以防黄嘌呤性肾病或黄嘌呤性结石形成。必要时还需采用肾脏替代治疗,例如血液透析治疗[69]

3) 高尿酸血症肾病候选药物

目前已上市的治疗药物均存在一定程度的副作用,如别嘌醇的不良反应中有死亡率高达25%的中毒性表皮坏死综合征[70] [71]。尽管非布司他相对别嘌醇安全性更高,但根据美国食药监局的临床调查,非布司他引发的心血管疾病比安慰剂高[72] [73]。苯溴马隆因其具有严重的肝毒性[74],在美国未获得FDA的批准使用。

考虑到现有药物的不良反应问题,一些中医方剂及中药单体药物已显示对高尿酸血症肾病有治疗效果[66] [75] [76]。有研究表明沙利霉素可能通过抑制XOD和URAT1维持HN小鼠尿酸稳态,通过上调NRF2/HO-1改善HN小鼠的纤维化、炎症和氧化应激,或可成为改善高尿酸血症肾病的新药[77]。《中国高尿酸血症相关疾病诊疗多学科专家共识(2023年版)》[69]指出高尿酸血症与肾脏、内分泌代谢、心脑血管等系统的疾病存在密切而复杂的联系,应遵循多学科联合治疗的原则,降尿酸同时兼顾对靶器官保护,做到早防治,早治疗。

5. 总结与展望

高尿酸通过肾脏尿酸盐结晶的形成和沉积、肾脏血流动力学的影响、肾脏炎症反应和氧化应激等影响肾功能,导致急、慢性肾损伤。除了健康的生活方式、定期体检等预防策略,药物治疗是治疗高尿酸肾损伤的重要手段,可选择尿酸生成抑制剂、促尿酸排泄类药物和促尿酸溶解类药进行降尿酸治疗。高尿酸血症应遵循多学科联合治疗的原则,降尿酸的同时也要兼顾对靶器官的保护。

高尿酸对肾功能的影响机制复杂,各个通路之间的复杂网络关系亟待阐明,但是较为明确的是这些损伤机制均与肾脏细胞损伤密切相关,因此开发针对保护高尿酸血症肾细胞受损的药物与降尿酸药物联合使用是更为理想的治疗方法。此外也应关注高尿酸血症与其他代谢性疾病的相互关系,综合考虑多种因素,探索新型的降尿酸药物或治疗策略,力求在有效降低尿酸水平的同时,最大程度减低药物的毒副作用,为高尿酸血症的精准治疗提供可能。

基金项目

大学生创新训练项目(S202410678071),2024年云南省天然药物药理重点实验室开放研究基金项目(YKLPNP-G2408),昆明医科大学研究生创新基金项目(2024S1930)。

NOTES

*通讯作者。

参考文献

[1] 中华医学会内分泌学分会. 高尿酸血症和痛风治疗的中国专家共识[J]. 中华内分泌代谢杂志, 2013, 29(11): 913-920.
[2] So, A. and Thorens, B. (2010) Uric Acid Transport and Disease. Journal of Clinical Investigation, 120, 1791-1799.
https://doi.org/10.1172/jci42344
[3] Kimura, Y., Tsukui, D. and Kono, H. (2021) Uric Acid in Inflammation and the Pathogenesis of Atherosclerosis. International Journal of Molecular Sciences, 22, Article 12394.
https://doi.org/10.3390/ijms222212394
[4] Sanchez-Lozada, L.G., Rodriguez-Iturbe, B., Kelley, E.E., Nakagawa, T., Madero, M., Feig, D.I., et al. (2020) Uric Acid and Hypertension: An Update with Recommendations. American Journal of Hypertension, 33, 583-594.
https://doi.org/10.1093/ajh/hpaa044
[5] Preda, A., Montecucco, F., Carbone, F., Camici, G.G., Lüscher, T.F., Kraler, S., et al. (2024) SGLT2 Inhibitors: From Glucose-Lowering to Cardiovascular Benefits. Cardiovascular Research, 120, 443-460.
https://doi.org/10.1093/cvr/cvae047
[6] Neogi, T., George, J., Rekhraj, S., Struthers, A.D., Choi, H. and Terkeltaub, R.A. (2012) Are Either or Both Hyperuricemia and Xanthine Oxidase Directly Toxic to the Vasculature? A Critical Appraisal. Arthritis & Rheumatism, 64, 327-338.
https://doi.org/10.1002/art.33369
[7] Yanai, H., Adachi, H., Hakoshima, M. and Katsuyama, H. (2021) Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. International Journal of Molecular Sciences, 22, Article 9221.
https://doi.org/10.3390/ijms22179221
[8] Wen, S., Arakawa, H. and Tamai, I. (2024) Uric Acid in Health and Disease: From Physiological Functions to Pathogenic Mechanisms. Pharmacology & Therapeutics, 256, Article 108615.
https://doi.org/10.1016/j.pharmthera.2024.108615
[9] Vargas-Santos, A.B. and Neogi, T. (2017) Management of Gout and Hyperuricemia in CKD. American Journal of Kidney Diseases, 70, 422-439.
https://doi.org/10.1053/j.ajkd.2017.01.055
[10] Fathallah-Shaykh, S.A. and Cramer, M.T. (2013) Uric Acid and the Kidney. Pediatric Nephrology, 29, 999-1008.
https://doi.org/10.1007/s00467-013-2549-x
[11] Andrade Sierra, J. and Flores Fonseca, M.M. (2018) Renal Handling of Uric Acid. In: Treviño-Becerra, A. and Iseki, K., Eds., Contributions to Nephrology, S. Karger AG, 1-7.
https://doi.org/10.1159/000484271
[12] Oğuz, N., Kırça, M., Çetin, A. and Yeşilkaya, A. (2017) Effect of Uric Acid on Inflammatory COX-2 and ROS Pathways in Vascular Smooth Muscle Cells. Journal of Receptors and Signal Transduction, 37, 500-505.
https://doi.org/10.1080/10799893.2017.1360350
[13] Singh, Y., Samuel, V.P., Dahiya, S., Gupta, G., Gillhotra, R., Mishra, A., et al. (2019) Combinational Effect of Angiotensin Receptor Blocker and Folic Acid Therapy on Uric Acid and Creatinine Level in Hyperhomocysteinemia‐Associated Hypertension. Biotechnology and Applied Biochemistry, 66, 715-719.
https://doi.org/10.1002/bab.1799
[14] Johnson, R.J., Nakagawa, T., Jalal, D., Sanchez-Lozada, L.G., Kang, D.-H. and Ritz, E. (2013) Uric Acid and Chronic Kidney Disease: Which Is Chasing Which? Nephrology Dialysis Transplantation, 28, 2221-2228.
https://doi.org/10.1093/ndt/gft029
[15] Wu, M., Ma, Y., Chen, X., Liang, N., Qu, S. and Chen, H. (2021) Hyperuricemia Causes Kidney Damage by Promoting Autophagy and NLRP3-Mediated Inflammation in Rats with Urate Oxidase Deficiency. Disease Models & Mechanisms, 14, dmm048041.
https://doi.org/10.1242/dmm.048041
[16] Ejaz, A.A., Mu, W., Kang, D., Roncal, C., Sautin, Y.Y., Henderson, G., et al. (2007) Could Uric Acid Have a Role in Acute Renal Failure? Clinical Journal of the American Society of Nephrology, 2, 16-21.
https://doi.org/10.2215/cjn.00350106
[17] Sun, Y., Ge, X., Li, X., He, J., Wei, X., Du, J., et al. (2020) High-Fat Diet Promotes Renal Injury by Inducing Oxidative Stress and Mitochondrial Dysfunction. Cell Death & Disease, 11, Article No. 914.
https://doi.org/10.1038/s41419-020-03122-4
[18] Wang, J., Tsai, S., Tsai, H., Lin, S. and Huang, P. (2023) Hyperuricemia Exacerbates Abdominal Aortic Aneurysm Formation through the URAT1/ERK/MMP-9 Signaling Pathway. BMC Cardiovascular Disorders, 23, Article No. 55.
https://doi.org/10.1186/s12872-022-03012-x
[19] Liu, C., Sun, Y., Sun, J., Ma, J. and Cheng, C. (2012) Protective Role of Quercetin against Lead-Induced Inflammatory Response in Rat Kidney through the ROS-Mediated MAPKs and NF-κB Pathway. Biochimica et Biophysica Acta (BBA)-General Subjects, 1820, 1693-1703.
https://doi.org/10.1016/j.bbagen.2012.06.011
[20] Azouz, A.A., Omar, H.A., Hersi, F., Ali, F.E.M. and Hussein Elkelawy, A.M.M. (2022) Impact of the ACE2 Activator Xanthenone on Tacrolimus Nephrotoxicity: Modulation of Uric Acid/ERK/p38 MAPK and Nrf2/SOD3/GCLC Signaling Pathways. Life Sciences, 288, Article 120154.
https://doi.org/10.1016/j.lfs.2021.120154
[21] Shin, J.N., Rao, L., Sha, Y., Abdel Fattah, E., Hyser, J. and Eissa, N.T. (2021) P38 MAPK Activity Is Required to Prevent Hyperactivation of NLRP3 Inflammasome. The Journal of Immunology, 207, 661-670.
https://doi.org/10.4049/jimmunol.2000416
[22] 李明, 王秋婷, 陈山, 石慧芳. p38 MAPK抑制剂通过抑制NLRP3途径介导的细胞焦亡对小鼠慢性阻塞性肺疾病损伤的改善作用[J]. 吉林大学学报(医学版), 2022, 48(3): 744-754.
[23] Su, W., Zhang, Y., Chen, Y., Gong, H., Lian, Y., Peng, W., et al. (2017) NLRP3 Gene Knockout Blocks NF-κB and MAPK Signaling Pathway in CUMS-Induced Depression Mouse Model. Behavioural Brain Research, 322, 1-8.
https://doi.org/10.1016/j.bbr.2017.01.018
[24] 王珍凤, 刘广超, 张海龙. 可溶性的高尿酸激活NLRP3炎症小体诱导大鼠肾小管上皮细胞损伤及机制研究[C]//第十二届全国免疫学学术大会论文集. 2017: 128-129.
[25] Cheng, X., Peuckert, C. and Wölfl, S. (2017) Essential Role of Mitochondrial Stat3 in p38MAPK Mediated Apoptosis under Oxidative Stress. Scientific Reports, 7, Article No. 15388.
https://doi.org/10.1038/s41598-017-15342-4
[26] Ahn, J., Won, M., Choi, J., Kim, Y.S., Jung, C., Im, D., et al. (2013) Reactive Oxygen Species-Mediated Activation of the AKT/ASK1/p38 Signaling Cascade and p21cip1 Downregulation Are Required for Shikonin-Induced Apoptosis. Apoptosis, 18, 870-881.
https://doi.org/10.1007/s10495-013-0835-5
[27] Li, R., Guo, Y., Zhang, Y., Zhang, X., Zhu, L. and Yan, T. (2019) Salidroside Ameliorates Renal Interstitial Fibrosis by Inhibiting the TLR4/NF-κB and MAPK Signaling Pathways. International Journal of Molecular Sciences, 20, Article 1103.
https://doi.org/10.3390/ijms20051103
[28] Wang, Z., Chen, Z., Li, B., Zhang, B., Du, Y., Liu, Y., et al. (2020) Curcumin Attenuates Renal Interstitial Fibrosis of Obstructive Nephropathy by Suppressing Epithelial-Mesenchymal Transition through Inhibition of the TLR4/NF-κB and PI3K/AKT Signalling Pathways. Pharmaceutical Biology, 58, 828-837.
https://doi.org/10.1080/13880209.2020.1809462
[29] Liu, B., Ding, F., Hu, D., Zhou, Y., Long, C., Shen, L., et al. (2018) Human Umbilical Cord Mesenchymal Stem Cell Conditioned Medium Attenuates Renal Fibrosis by Reducing Inflammation and Epithelial-to-Mesenchymal Transition via the TLR4/NF-κB Signaling Pathway in vivo and in vitro. Stem Cell Research & Therapy, 9, Article No. 7.
https://doi.org/10.1186/s13287-017-0760-6
[30] Zhang, Y., Wang, S., Dai, X., Liu, T., Liu, Y., Shi, H., et al. (2023) Simiao San Alleviates Hyperuricemia and Kidney Inflammation by Inhibiting NLRP3 Inflammasome and JAK2/STAT3 Signaling in Hyperuricemia Mice. Journal of Ethnopharmacology, 312, Article 116530.
https://doi.org/10.1016/j.jep.2023.116530
[31] Shen, L., Dong, Y., Li, M., Zhou, Z., Zhang, J., Liu, Y., et al. (2022) The Relationship between Leukocyte Level and Hypertension in Elderly Patients with Hyperuricemia. Medicine, 101, e32327.
https://doi.org/10.1097/md.0000000000032327
[32] Xu, R., Ma, L., Chen, T. and Wang, J. (2022) Sophorolipid Suppresses Lps-Induced Inflammation in RAW264.7 Cells through the NF-κB Signaling Pathway. Molecules, 27, Article 5037.
https://doi.org/10.3390/molecules27155037
[33] Park, M.Y., Ha, S.E., Kim, H.H., Bhosale, P.B., Abusaliya, A., Jeong, S.H., et al. (2022) Scutellarein Inhibits LPS-Induced Inflammation through NF-κB/MAPKs Signaling Pathway in RAW264.7 Cells. Molecules, 27, Article 3782.
https://doi.org/10.3390/molecules27123782
[34] Morgan, M.J. and Liu, Z. (2010) Crosstalk of Reactive Oxygen Species and NF-κB Signaling. Cell Research, 21, 103-115.
https://doi.org/10.1038/cr.2010.178
[35] Jarosz, M., Olbert, M., Wyszogrodzka, G., Młyniec, K. and Librowski, T. (2017) Antioxidant and Anti-Inflammatory Effects of Zinc. Zinc-Dependent NF-κB Signaling. Inflammopharmacology, 25, 11-24.
https://doi.org/10.1007/s10787-017-0309-4
[36] Zhang, B., Chen, Z., Jiang, Z., Huang, S., Liu, X. and Wang, L. (2023) Nephroprotective Effects of Cardamonin on Renal Ischemia Reperfusion Injury/UUO-Induced Renal Fibrosis. Journal of Agricultural and Food Chemistry, 71, 13284-13303.
https://doi.org/10.1021/acs.jafc.3c01880
[37] Wang, M., Zhang, F., Zhou, J., Gong, K., Chen, S., Zhu, X., et al. (2023) Glabridin Ameliorates Alcohol-Caused Liver Damage by Reducing Oxidative Stress and Inflammation via P38 MAPK/Nrf2/NF-κB Pathway. Nutrients, 15, Article 2157.
https://doi.org/10.3390/nu15092157
[38] Ding, B., Lin, C., Liu, Q., He, Y., Ruganzu, J.B., Jin, H., et al. (2020) Tanshinone IIA Attenuates Neuroinflammation via Inhibiting Rage/NF-κB Signaling Pathway in vivo and in vitro. Journal of Neuroinflammation, 17, Article No. 302.
https://doi.org/10.1186/s12974-020-01981-4
[39] Rojo de la Vega, M., Chapman, E. and Zhang, D.D. (2018) NRF2 and the Hallmarks of Cancer. Cancer Cell, 34, 21-43.
https://doi.org/10.1016/j.ccell.2018.03.022
[40] Ma, Q. (2013) Role of Nrf2 in Oxidative Stress and Toxicity. Annual Review of Pharmacology and Toxicology, 53, 401-426.
https://doi.org/10.1146/annurev-pharmtox-011112-140320
[41] Galy, B., Conrad, M. and Muckenthaler, M. (2023) Mechanisms Controlling Cellular and Systemic Iron Homeostasis. Nature Reviews Molecular Cell Biology, 25, 133-155.
https://doi.org/10.1038/s41580-023-00648-1
[42] Vomhof-DeKrey, E.E. and Picklo, M.J. (2012) The Nrf2-Antioxidant Response Element Pathway: A Target for Regulating Energy Metabolism. The Journal of Nutritional Biochemistry, 23, 1201-1206.
https://doi.org/10.1016/j.jnutbio.2012.03.005
[43] Wang, R., Halimulati, M., Huang, X., Ma, Y., Li, L. and Zhang, Z. (2023) Sulforaphane-Driven Reprogramming of Gut Microbiome and Metabolome Ameliorates the Progression of Hyperuricemia. Journal of Advanced Research, 52, 19-28.
https://doi.org/10.1016/j.jare.2022.11.003
[44] Yu, W., Liu, W., Xie, D., Wang, Q., Xu, C., Zhao, H., et al. (2022) High Level of Uric Acid Promotes Atherosclerosis by Targeting Nrf2-Mediated Autophagy Dysfunction and Ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9304383.
https://doi.org/10.1155/2022/9304383
[45] Chen, X., Xie, L. and Wu, W. (2023) Simvastatin Reduces High Uric Acid-Induced Oxidative Stress and Inflammatory Response in Vascular Endothelial Cells via Nuclear Factor E2-Related Factor 2 (Nrf2) Signaling. Iranian Journal of Basic Medical Sciences, 26, 927-933.
[46] Zhang, Q., Liu, J., Duan, H., Li, R., Peng, W. and Wu, C. (2021) Activation of Nrf2/HO-1 Signaling: An Important Molecular Mechanism of Herbal Medicine in the Treatment of Atherosclerosis via the Protection of Vascular Endothelial Cells from Oxidative Stress. Journal of Advanced Research, 34, 43-63.
https://doi.org/10.1016/j.jare.2021.06.023
[47] Ren, J., Su, D., Li, L., Cai, H., Zhang, M., Zhai, J., et al. (2020) Anti-inflammatory Effects of Aureusidin in LPS-Stimulated RAW264.7 Macrophages via Suppressing NF-κB and Activating ROS-and MAPKs-Dependent Nrf2/HO-1 Signaling Pathways. Toxicology and Applied Pharmacology, 387, Article 114846.
https://doi.org/10.1016/j.taap.2019.114846
[48] 邵孟佼. Nrf2/ARE信号通路对高尿酸血症促进慢性肾脏病的保护作用及其机制[D]: [硕士学位论文]. 广州: 南方医科大学, 2018.
[49] Christofides, A., Konstantinidou, E., Jani, C. and Boussiotis, V.A. (2021) The Role of Peroxisome Proliferator-Activated Receptors (PPAR) in Immune Responses. Metabolism, 114, Article 154338.
https://doi.org/10.1016/j.metabol.2020.154338
[50] Seminotti, B., Grings, M., Glänzel, N.M., Vockley, J. and Leipnitz, G. (2023) Peroxisome Proliferator-Activated Receptor (PPAR) Agonists as a Potential Therapy for Inherited Metabolic Disorders. Biochemical Pharmacology, 209, Article 115433.
https://doi.org/10.1016/j.bcp.2023.115433
[51] Touyz, R.M. and Schiffrin, E.L. (2006) Peroxisome Proliferator-Activated Receptors in Vascular Biology-Molecular Mechanisms and Clinical Implications. Vascular Pharmacology, 45, 19-28.
https://doi.org/10.1016/j.vph.2005.11.014
[52] Marion-Letellier, R., Savoye, G. and Ghosh, S. (2016) Fatty Acids, Eicosanoids and PPAR Gamma. European Journal of Pharmacology, 785, 44-49.
https://doi.org/10.1016/j.ejphar.2015.11.004
[53] Korbecki, J., Bobiński, R. and Dutka, M. (2019) Self-Regulation of the Inflammatory Response by Peroxisome Proliferator-Activated Receptors. Inflammation Research, 68, 443-458.
https://doi.org/10.1007/s00011-019-01231-1
[54] Sheng, W., Wang, Q., Qin, H., Cao, S., Wei, Y., Weng, J., et al. (2023) Osteoarthritis: Role of Peroxisome Proliferator-Activated Receptors. International Journal of Molecular Sciences, 24, Article 13137.
https://doi.org/10.3390/ijms241713137
[55] Mao, Z., Feng, M., Li, Z., Zhou, M., Xu, L., Pan, K., et al. (2020) ETV5 Regulates Hepatic Fatty Acid Metabolism through PPAR Signaling Pathway. Diabetes, 70, 214-226.
https://doi.org/10.2337/db20-0619
[56] Liu, T., Wang, L., Ji, L., Mu, L., Wang, K., Xu, G., et al. (2024) Plantaginis Semen Ameliorates Hyperuricemia Induced by Potassium Oxonate. International Journal of Molecular Sciences, 25, Article 8548.
https://doi.org/10.3390/ijms25158548
[57] Wang, X., Deng, J., Xiong, C., Chen, H., Zhou, Q., Xia, Y., et al. (2020) treatment with a PPAR-γ Agonist Protects against Hyperuricemic Nephropathy in a Rat Model. Drug Design, Development and Therapy, 14, 2221-2233.
https://doi.org/10.2147/dddt.s247091
[58] Du, P., Chen, M., Deng, C. and Zhu, C. (2021) MicroRNA-199a Downregulation Alleviates Hyperuricemic Nephropathy via the PPARγ/β-Catenin Axis. Journal of Receptors and Signal Transduction, 42, 373-381.
https://doi.org/10.1080/10799893.2021.1967392
[59] Zhou, X., Zhang, B., Zhao, X., Zhang, P., Guo, J., Zhuang, Y., et al. (2023) Coffee Leaf Tea Extracts Improve Hyperuricemia Nephropathy and Its Associated Negative Effect in Gut Microbiota and Amino Acid Metabolism in Rats. Journal of Agricultural and Food Chemistry, 71, 17775-17787.
https://doi.org/10.1021/acs.jafc.3c02797
[60] Pan, L., Han, P., Ma, S., Peng, R., Wang, C., Kong, W., et al. (2020) Abnormal Metabolism of Gut Microbiota Reveals the Possible Molecular Mechanism of Nephropathy Induced by Hyperuricemia. Acta Pharmaceutica Sinica B, 10, 249-261.
https://doi.org/10.1016/j.apsb.2019.10.007
[61] Ciesielska, A., Matyjek, M. and Kwiatkowska, K. (2020) TLR4 and CD14 Trafficking and Its Influence on LPS-Induced Pro-Inflammatory Signaling. Cellular and Molecular Life Sciences, 78, 1233-1261.
https://doi.org/10.1007/s00018-020-03656-y
[62] Conger, J.D. (1990) Acute Uric Acid Nephropathy. Medical Clinics of North America, 74, 859-871.
https://doi.org/10.1016/s0025-7125(16)30522-3
[63] 中华人民共和国国家卫生健康委员会. 成人高尿酸血症与痛风食养指南[J]. 全科医学临床与教育, 2024, 22(2): 100-102.
[64] 孙泽锐, 王宣军, 盛军. 高尿酸血症研究进展[J]. 云南民族大学学报(自然科学版), 2021, 30(2): 135-142, 156.
[65] Hainer, B.L., Matheson, E. and Wilkes, R.T. (2014) Diagnosis, Treatment, and Prevention of Gout. American Family Physician, 90, 831-836.
[66] Ferreira, J.P., Zannad, F., Kiernan, M.S. and Konstam, M.A. (2023) High-versus Low-Dose Losartan and Uric Acid: An Analysis from HEAAL. Journal of Cardiology, 82, 57-61.
https://doi.org/10.1016/j.jjcc.2023.04.005
[67] 中华医学会内分泌学分会. 中国高尿酸血症与痛风诊疗指南(2019) [J]. 中华内分泌代谢杂志, 2020, 36(1): 1-13.
[68] Sivera, F., Wechalekar, M.D., Andrés, M., Buchbinder, R. and Carmona, L. (2014) Interleukin-1 Inhibitors for Acute Gout. Cochrane Database of Systematic Reviews, No. 9, CD009993.
https://doi.org/10.1002/14651858.cd009993.pub2
[69] 中国民族卫生协会重症代谢疾病分会, 高尿酸血症相关疾病诊疗多学科共识专家组. 中国高尿酸血症相关疾病诊疗多学科专家共识(2023年版) [J]. 中国实用内科杂志, 2023, 43(6): 461-480.
[70] Fritsch, P.O. and Sidoroff, A. (2000) Drug-induced Stevens-Johnson Syndrome/toxic Epidermal Necrolysis. American Journal of Clinical Dermatology, 1, 349-360.
https://doi.org/10.2165/00128071-200001060-00003
[71] Hasegawa, A. and Abe, R. (2020) Recent Advances in Managing and Understanding Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. F1000Research, 9, Article 612.
https://doi.org/10.12688/f1000research.24748.1
[72] White, W.B., Saag, K.G., Becker, M.A., Borer, J.S., Gorelick, P.B., Whelton, A., et al. (2018) Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout. New England Journal of Medicine, 378, 1200-1210.
https://doi.org/10.1056/nejmoa1710895
[73] Cuenca, J.A., Balda, J., Palacio, A., Young, L., Pillinger, M.H. and Tamariz, L. (2019) Febuxostat and Cardiovascular Events: A Systematic Review and Meta-Analysis. International Journal of Rheumatology, 2019, Article ID: 1076189.
https://doi.org/10.1155/2019/1076189
[74] Imai, S., Nasuhara, Y., Momo, K., Oki, H., Kashiwagi, H., Sato, Y., et al. (2021) Implementation Status of Liver Function Tests for Monitoring Benzbromarone-Induced Hepatotoxicity: An Epidemiological Survey Using the Japanese Claims Database. Biological and Pharmaceutical Bulletin, 44, 1499-1505.
https://doi.org/10.1248/bpb.b21-00393
[75] 李晓倩, 纪伟, 瞿伟. 尿酸性肾病中西医研究进展[J]. 实用中医内科杂志, 2021, 35(10): 136-139.
[76] 张琳俪, 王琳, 陈以平, 张先闻. 中药治疗尿酸性肾病的研究进展[J]. 上海中医药杂志, 2024, 58(9): 96-101.
[77] Chen, Y., Guo, Z., Chen, H., Zhang, S., Bao, Y., Xie, Z., et al. (2024) Salinomycin, a Potent Inhibitor of XOD and URAT1, Ameliorates Hyperuricemic Nephropathy by Activating NRF2, Modulating the Gut Microbiota, and Promoting SCFA Production. Chemico-Biological Interactions, 403, Article 111220.
https://doi.org/10.1016/j.cbi.2024.111220