[1]
|
Mei, Q., Liu, Z., Zuo, H., Yang, Z. and Qu, J. (2022) Idiopathic Pulmonary Fibrosis: An Update on Pathogenesis. Frontiers in Pharmacology, 12, Article 797292. https://doi.org/10.3389/fphar.2021.797292
|
[2]
|
Noble, P.W., Barkauskas, C.E. and Jiang, D. (2012) Pulmonary Fibrosis: Patterns and Perpetrators. Journal of Clinical Investigation, 122, 2756-2762. https://doi.org/10.1172/jci60323
|
[3]
|
Shenderov, K., Collins, S.L., Powell, J.D. and Horton, M.R. (2021) Immune Dysregulation as a Driver of Idiopathic Pulmonary Fibrosis. Journal of Clinical Investigation, 131, e143226. https://doi.org/10.1172/jci143226
|
[4]
|
Parra, E.R., Kairalla, R.A., Ribeiro de Carvalho, C.R., Eher, E. and Capelozzi, V.L. (2006) Inflammatory Cell Phenotyping of the Pulmonary Interstitium in Idiopathic Interstitial Pneumonia. Respiration, 74, 159-169. https://doi.org/10.1159/000097133
|
[5]
|
Kapanci, Y., Desmouliere, A., Pache, J.C., Redard, M. and Gabbiani, G. (1995) Cytoskeletal Protein Modulation in Pulmonary Alveolar Myofibroblasts during Idiopathic Pulmonary Fibrosis. Possible Role of Transforming Growth Factor β and Tumor Necrosis Factor α. American Journal of Respiratory and Critical Care Medicine, 152, 2163-2169. https://doi.org/10.1164/ajrccm.152.6.8520791
|
[6]
|
Carré, P.C., Mortenson, R.L., King, T.E., Noble, P.W., Sable, C.L. and Riches, D.W. (1991) Increased Expression of the Interleukin-8 Gene by Alveolar Macrophages in Idiopathic Pulmonary Fibrosis. a Potential Mechanism for the Recruitment and Activation of Neutrophils in Lung Fibrosis. Journal of Clinical Investigation, 88, 1802-1810. https://doi.org/10.1172/jci115501
|
[7]
|
Gregory, A.D., Kliment, C.R., Metz, H.E., Kim, K., Kargl, J., Agostini, B.A., et al. (2015) Neutrophil Elastase Promotes Myofibroblast Differentiation in Lung Fibrosis. Journal of Leukocyte Biology, 98, 143-152. https://doi.org/10.1189/jlb.3hi1014-493r
|
[8]
|
Takemasa, A., Ishii, Y. and Fukuda, T. (2012) A Neutrophil Elastase Inhibitor Prevents Bleomycin-Induced Pulmonary Fibrosis in Mice. European Respiratory Journal, 40, 1475-1482. https://doi.org/10.1183/09031936.00127011
|
[9]
|
Ando, M., Miyazaki, E., Ito, T., Hiroshige, S., Nureki, S., Ueno, T., et al. (2010) Significance of Serum Vascular Endothelial Growth Factor Level in Patients with Idiopathic Pulmonary Fibrosis. Lung, 188, 247-252. https://doi.org/10.1007/s00408-009-9223-x
|
[10]
|
Heukels, P., Moor, C.C., von der Thüsen, J.H., Wijsenbeek, M.S. and Kool, M. (2019) Inflammation and Immunity in IPF Pathogenesis and Treatment. Respiratory Medicine, 147, 79-91. https://doi.org/10.1016/j.rmed.2018.12.015
|
[11]
|
Wolters, P.J., Collard, H.R. and Jones, K.D. (2014) Pathogenesis of Idiopathic Pulmonary Fibrosis. Annual Review of Pathology: Mechanisms of Disease, 9, 157-179. https://doi.org/10.1146/annurev-pathol-012513-104706
|
[12]
|
Inui, N., Sakai, S. and Kitagawa, M. (2021) Molecular Pathogenesis of Pulmonary Fibrosis, with Focus on Pathways Related to TGF-β and the Ubiquitin-Proteasome Pathway. International Journal of Molecular Sciences, 22, Article 6107. https://doi.org/10.3390/ijms22116107
|
[13]
|
Zhu, Y., Yang, M., Li, X., Xu, W., Gao, W., Chen, Y., et al. (2021) NOGO-B Promotes Epithelial-Mesenchymal Transition in Lung Fibrosis via PERK Branch of the Endoplasmic Reticulum Stress Pathway. Annals of Translational Medicine, 9, 563-563. https://doi.org/10.21037/atm-20-6143
|
[14]
|
Qian, H. and Chen, L. (2021) TRIM Proteins in Fibrosis. Biomedicine & Pharmacotherapy, 144, Article ID: 112340. https://doi.org/10.1016/j.biopha.2021.112340
|
[15]
|
Li, L., Zhang, S., Wei, L., Wang, Z., Ma, W., Liu, F., et al. (2020) Anti-Fibrotic Effect of Melittin on TRIM47 Expression in Human Embryonic Lung Fibroblast through Regulating TRIM47 Pathway. Life Sciences, 256, Article ID: 117893. https://doi.org/10.1016/j.lfs.2020.117893
|
[16]
|
Zhou, M., Ouyang, J., Zhang, G. and Zhu, X. (2022) Prognostic Value of Tripartite Motif (TRIM) Family Gene Signature from Bronchoalveolar Lavage Cells in Idiopathic Pulmonary Fibrosis. BMC Pulmonary Medicine, 22, Article No. 467. https://doi.org/10.1186/s12890-022-02269-4
|
[17]
|
Boutanquoi, P., Burgy, O., Beltramo, G., Bellaye, P., Dondaine, L., Marcion, G., et al. (2020) TRIM33 Prevents Pulmonary Fibrosis by Impairing TGF-β1 Signalling. European Respiratory Journal, 55, Article ID: 1901346. https://doi.org/10.1183/13993003.01346-2019
|
[18]
|
Lu, M., Chen, W., Zhuang, W. and Zhan, X. (2020) Label-Free Quantitative Identification of Abnormally Ubiquitinated Proteins as Useful Biomarkers for Human Lung Squamous Cell Carcinomas. EPMA Journal, 11, 73-94. https://doi.org/10.1007/s13167-019-00197-8
|
[19]
|
Yi, H., Luo, D., Xiao, Y. and Jiang, D. (2021) Knockdown of Long Noncoding RNA DLEU2 Suppresses Idiopathic Pulmonary Fibrosis by Regulating the microRNA-369-3p/TRIM2 Axis. International Journal of Molecular Medicine, 47, Article No. 80. https://doi.org/10.3892/ijmm.2021.4913
|
[20]
|
Stefanov, A.N., Fox, J. and Haston, C.K. (2013) Positional Cloning Reveals Strain-Dependent Expression of Trim16 to Alter Susceptibility to Bleomycin-Induced Pulmonary Fibrosis in Mice. PLOS Genetics, 9, e1003203. https://doi.org/10.1371/journal.pgen.1003203
|
[21]
|
Liu, W., Yi, Y., Zhang, C., Zhou, B., Liao, L., Liu, W., et al. (2021) The Expression of TRIM6 Activates the mTORC1 Pathway by Regulating the Ubiquitination of TSC1-TSC2 to Promote Renal Fibrosis. Frontiers in Cell and Developmental Biology, 8, Article 616747. https://doi.org/10.3389/fcell.2020.616747
|
[22]
|
Cong, X., Nagre, N., Herrera, J., Pearson, A.C., Pepper, I., Morehouse, R., et al. (2020) TRIM72 Promotes Alveolar Epithelial Cell Membrane Repair and Ameliorates Lung Fibrosis. Respiratory Research, 21, Article No. 132. https://doi.org/10.1186/s12931-020-01384-2
|
[23]
|
Lee, J., Yoshida, M., Kim, M., Lee, J., Baek, A., Jang, A.S., et al. (2018) Involvement of Alveolar Epithelial Cell Necroptosis in Idiopathic Pulmonary Fibrosis Pathogenesis. American Journal of Respiratory Cell and Molecular Biology, 59, 215-224. https://doi.org/10.1165/rcmb.2017-0034oc
|
[24]
|
Xie, Y., Zhao, Y., Shi, L., Li, W., Chen, K., Li, M., et al. (2020) Gut Epithelial TSC1/mTOR Controls RIPK3-Dependent Necroptosis in Intestinal Inflammation and Cancer. Journal of Clinical Investigation, 130, 2111-2128. https://doi.org/10.1172/jci133264
|
[25]
|
Di Rienzo, M., Romagnoli, A., Antonioli, M., Piacentini, M. and Fimia, G.M. (2020) TRIM Proteins in Autophagy: Selective Sensors in Cell Damage and Innate Immune Responses. Cell Death & Differentiation, 27, 887-902. https://doi.org/10.1038/s41418-020-0495-2
|
[26]
|
Xiang, Y., Li, C., Wang, Z., Feng, J., Zhang, J., Yang, Y., et al. (2024) TRIM13 Reduces Damage to Alveolar Epithelial Cells in COPD by Inhibiting Endoplasmic Reticulum Stress-Induced Er-Phagy. Lung, 202, 821-830. https://doi.org/10.1007/s00408-024-00753-8
|
[27]
|
El-Asmi, F. and Chelbi-Alix, M.K. (2020) Les Isoformes de PML et la réponse au TGF-β. Médecine/Sciences, 36, 50-56. https://doi.org/10.1051/medsci/2019269
|
[28]
|
Bacon, C.W., Challa, A., Hyder, U., Shukla, A., Borkar, A.N., Bayo, J., et al. (2020) KAP1 Is a Chromatin Reader That Couples Steps of RNA Polymerase II Transcription to Sustain Oncogenic Programs. Molecular Cell, 78, 1133-1151.e14. https://doi.org/10.1016/j.molcel.2020.04.024
|
[29]
|
Chen, N., Balasenthil, S., Reuther, J. and Killary, A.M. (2014) DEAR1, a Novel Tumor Suppressor That Regulates Cell Polarity and Epithelial Plasticity. Cancer Research, 74, 5683-5689. https://doi.org/10.1158/0008-5472.can-14-1171
|
[30]
|
Chen, L., Huang, J., Ji, Y., Mei, F., Wang, P., Deng, K., et al. (2017) Tripartite Motif 8 Contributes to Pathological Cardiac Hypertrophy through Enhancing Transforming Growth Factor β-Activated Kinase 1-Dependent Signaling Pathways. Hypertension, 69, 249-258. https://doi.org/10.1161/hypertensionaha.116.07741
|
[31]
|
Gallardo-Vara, E., Ruiz-Llorente, L., Casado-Vela, J., Ruiz-Rodríguez, M.J., López-Andrés, N., Pattnaik, A.K., et al. (2019) Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners. Cells, 8, Article 1082. https://doi.org/10.3390/cells8091082
|