肠道菌群及其代谢物与结直肠癌的相关性研究进展
Research Progress on the Correlation between Gut Microbes and Its Metabolites and Colorectal Cancer
DOI: 10.12677/md.2025.151007, PDF, HTML, XML,   
作者: 李贤彬, 张曦木*:重庆医科大学附属口腔医院牙周科,重庆;口腔疾病研究重庆市重点实验室,重庆
关键词: 结直肠癌肠道菌群代谢物益生菌Colorectal Cancer Gut Microbes Metabolites Probiotics
摘要: 结直肠癌是常见癌症也是人类癌症死亡的重要原因之一,其病因与多方面因素相关,其中肠道菌群紊乱与结直肠癌的发生和进展密切相关。肠道菌群能够通过释放多种代谢产物、蛋白质和大分子来与宿主的结肠上皮细胞和免疫细胞相互作用,从而促进肿瘤的发生。而益生菌本身结构及其代谢产物也能分泌多种肿瘤抑制分子。因此本研究对肠道菌群及其代谢物在结直肠癌的发生、防治中的作用进行综述。
Abstract: Colorectal cancer is a common cancer and one of the important causes of human cancer death. Its etiology is related to many factors, among which gut microbes disturbance is closely related to the occurrence and progression of colorectal cancer. Gut microbes can promote tumor development by releasing a variety of metabolites, proteins, and macromolecules that interact with the host’s colon epithelial cells and immune cells. The structure of probiotics and their metabolites can also secrete a variety of tumor suppressor molecules. Therefore, this study reviewed the role of intestinal flora and its metabolites in the occurrence, prevention, and treatment of colorectal cancer.
文章引用:李贤彬, 张曦木. 肠道菌群及其代谢物与结直肠癌的相关性研究进展[J]. 医学诊断, 2025, 15(1): 38-45. https://doi.org/10.12677/md.2025.151007

1. 前言

结直肠癌(Colorectal Cancer, CRC)是全球第三大最常见的癌症,也是癌症死亡的第四大重要原因。研究预计到2030年,全球结直肠癌负担预计将增加60%,达到220多万新发病例和110万死亡病例[1]。近年来中国结直肠癌发病率一直保持快速上升的趋势[2]。结直肠癌的一个独特方面是它与肠道微生物群的密切联系,肠道微生物群是肿瘤微环境的重要组成部分。在过去的十年中,研究表明肠道微生物生态失调在结直肠肿瘤发生中尤为重要,并且在肿瘤发生中起着积极的作用[3],例如肠道菌群能够通过释放多种代谢产物、蛋白质和大分子来与宿主的结肠上皮细胞和免疫细胞相互作用[4],从而调节结直肠癌的发展。本文阐述肠道菌群与结直肠癌的相互关系,介绍一些“驱动”细菌可以通过与宿主癌细胞直接相互作用、分泌致癌毒力因子或产生致癌微生物代谢物来促进肿瘤发展,为解决临床疾病提供参考。

2. 肠道菌群与结直肠癌的发生发展

人类肠道菌群是一个由细菌、真菌、病毒、古生菌和寄生虫组成的生态系统,在人类肠道内的微生物种类通常都有数千种之多[5] [6]。肠道菌群主要的分类有厚壁菌门、拟杆菌门、放线菌门、梭杆菌门、变形菌门等[7]。稳定的肠道微生物群生态平衡被认为对健康有益,有助于各种生理过程,包括发酵不可消化膳食纤维的代谢功能、肽和蛋白质的厌氧代谢、对病原体的保护活性,甚至免疫系统调节[8]。而肠道微生物生态失调可能对宿主的健康构成威胁,并且经证实与多种疾病有关,包括胃肠道疾病[9]、某些神经系统疾病[10]、呼吸系统疾病[11] [12]、代谢疾病[13]和心血管疾病[14],以及胃癌和结肠癌[15]。在过去的十年中,多项研究强调了肠道微生物在结直肠癌各个方面的作用,包括具核梭杆菌[16]和厌氧消化链球菌[17]等细菌在肿瘤发生、疾病进展和转移中的作用。

2.1. 具核梭杆菌

2.1.1. 具核梭杆菌与结直肠癌

具核梭杆菌(Fusobacterium nucleatum, Fn)是一种革兰氏阴性厌氧细菌,常见于人体口腔及胃肠道,被认为是结直肠癌的关键致病菌之一。在多项涉及人的临床研究中[18]-[20]均证实其在结直肠癌中富集,其丰度与肿瘤进展呈正相关。最近一项涉及1041名结直肠癌患者的临床研究也表明,具核梭杆菌的丰度与微卫星稳定型结直肠癌中的肿瘤浸润淋巴细胞(Tumor Infiltrating Lymphocyte, TIL)富集呈正相关,这表明具核梭杆菌可能对微卫星稳定型结直肠癌肿瘤免疫微环境产生影响[16]

2.1.2. 具核梭杆菌促进结直肠癌的机制

① 具核梭杆菌表达一种粘附蛋白FadA,它与结肠上皮细胞上的E-cadherin结合,会激发与癌变有关的Wnt/β-catenin信号通路,从而引发致癌和炎症反应。也有研究表明,CRC患者的粪便样本中,具核梭杆菌以及具核梭菌毒力因子Fusobacterium adhesin A (FadA)的丰度明显增加[21]。② 另一方面,Fusobacterium Fap2是一种半乳糖粘附血凝素,已被证实通过与肿瘤主因子半乳糖-N-乙酰D-半乳糖胺(Gal-GalNAc)结合,介导该菌定植和入侵CRC细胞[22]。此外,纯化的具核梭杆菌毒力因子FadA的重组蛋白已被证实可以结合并侵入宿主细胞,从而刺激肿瘤的生长[23]。具核梭杆菌的脂多糖(LPS)可通过CRC细胞中的Toll样受体4 (TLR4)/磷酸化p21激活激酶1 (PAK1)级联反应触发一系列反应[24]。LPS还激活TLR4信号传导至MYD88,导致NF-κB信号激活并增加miR-21的表达,促进CRC细胞的增殖[25]。③ 具核梭杆菌还可以激活NF-κB通路,上调促炎细胞因子(COX-2、TNF、IL-6、IL-8和IL-1β)的表达,并选择性募集髓源性免疫细胞,如髓源性抑制细胞、肿瘤相关中性粒细胞、肿瘤相关巨噬细胞和树突状细胞,从而构建免疫微环境和促进肿瘤进展[26]

2.2. pks+大肠杆菌

2.2.1. pks+大肠杆菌与结直肠癌

有研究[27]表明pks+大肠杆菌在炎性肠病、家族性腺瘤性息肉病和CRC患者肠道中大量定植。大约只有20%健康人群肠道中有pks+大肠杆菌定植,而约40%炎性肠病患者携带pks+大肠杆菌,60%家族性腺瘤性息肉病和CRC患者携带pks+大肠杆菌。

2.2.2. pks+大肠杆菌促进结直肠癌的机制

pks基因岛位于细菌染色体上,约54 kbp,编码非核糖体肽合成酶/聚酮合成酶(NRPS/PKS)系统,主要存在于B2系的大肠杆菌中。pks基因岛负责编码合成大肠杆菌素(colibactin) [28],诱导DNA链间交联(Interstrand Crosslinks, ICLs)和双链断裂(Double Strand Breaks, DSBs)的发生,从而阻碍DNA复制,造成DNA损伤反应,是psk+大肠杆菌致癌的重要机制[29]。另一项研究证实在CRC细胞中,大肠杆菌素更易破坏富含AT-富集六聚体序列基序的DNA [30]。有研究证明,将小鼠结肠类器官暴露在表达大肠杆菌素的pks+大肠杆菌中,发现这些被感染后的类器官会表现出CRC细胞的特征:增殖能力强、Wnt独立性和分化受损;而且还会出现基因组不稳定性的典型染色体畸变,产生与p53信号相关的基因突变[31]

2.3. 产肠毒素脆弱拟杆菌

2.3.1. 产肠毒素脆弱拟杆菌与结直肠癌

脆弱拟杆菌(Bacteroides fragilis, Bf)是拟杆菌属最常见的成员之一,遍布于人体肠道、口腔、上呼吸道、女性生殖道,也是临床上最常见的一种厌氧菌,为革兰阴性杆菌,能分解糖,对胆汁耐受。也是从腹泻、腹膜炎、败血症、炎性肠病、肠道肿瘤等疾病中分离出来的常见致病菌群。脆弱拟杆菌分为含有编码脆弱拟杆菌毒素(Bacteroides fragilis Toxin, BFT)基因的产肠毒素脆弱拟杆菌(ETBF)菌株和不分泌BFT的非产肠毒素脆弱拟杆菌(NTBF)菌株。ETBF菌株具有致病性,而致病性来自于依赖脆弱拟杆菌毒素,BFT是一种20 kDa的基质金属蛋白酶,包括三种亚型:BFT-1、BFT-2和BFT-3 [32]。BFT-1和BFT-2在结直肠癌临床样本中均可检测到,并且在疾病晚期的黏膜中含量丰富[33]-[35]。而NTBF菌株被认为是有益的共生菌,并且NTBF可以竞争对抗ETBF [36]

2.3.2. 产肠毒素脆弱拟杆菌促进结直肠癌的机制

作为一种多效性毒力因子,BFT作用于结肠上皮细胞(CEC),以启动可促进肿瘤发生的多种下游途径。比如,BFT诱导细胞凋亡抑制剂蛋白2 (IAP2)表达,导致肿瘤生长增加和细胞凋亡抑制[37];BFT还通过在E-钙粘蛋白切割和β-catenin核定位后诱导c-myc表达来增加肠道细胞增殖和通透性[38]。ETBF产生的BFT还通过增加ROS的产生来诱导DNA损伤。ETBF还可通过诱导DNA甲基转移酶1 (DNMT1)募集和在CRC细胞中诱导含有JMJC结构域的组蛋白去甲基化酶2B (JMJD2B)来促进表观遗传改变,并可能导致DNA损伤[39]

2.4. 厌氧消化链球菌

2.4.1. 厌氧消化链球菌与结直肠癌

大规模研究[40] [41]分别使用宏基因组学和16S重组DNA测序对CRC患者的粪便和粘膜微生物组成进行了两次大规模表征,鉴定出厌氧消化链球菌(Peptostreptococcus anaerobius)是一种在CRC患者的粪便和粘膜中选择性富集的细菌。厌氧消化链球菌是一种革兰氏阳性厌氧菌,通常寄居在口腔和肠道中。

2.4.2. 厌氧消化链球菌促进结直肠癌的机制

① 厌氧消化链球菌可以诱导结直肠癌的促炎症反应,这与特定肿瘤浸润免疫细胞群的富集有关。② 厌氧消化链球菌表面蛋白PCWBR2可以通过整合素α2/β1与结肠细胞直接相互作用,在体内激活了整合素α2/β1-PI3K-Akt-NF-κB信号级联,从而介导结直肠癌的发生[40]

3. 益生菌与结直肠癌的防治

与所有疾病一样,预防胜于治疗。益生菌被定义为活的微生物,当给予足够的量时,可以给宿主带来健康益处。一般来说,益生菌并不直接定植在肠道黏膜上。相反,这些细菌的作用主要是通过微生物代谢物和产物及其与病原体的相互作用介导的,从而保护肠道屏障功能[42]

3.1. 益生菌抑制炎症

慢性炎症引起DNA损伤、肠道屏障功能障碍和免疫抑制,是结直肠肿瘤发生的重要起始因素[43]。在结肠炎相关CRC的临床前模型中,使用益生菌鼠李糖杆菌(Lactobacillus rhamnosus GG)可减少结肠上皮炎症,防止结直肠癌发展[44]。在类似的模型中,另一项研究发现嗜酸乳杆菌(L. acidophilus)、两歧双歧杆菌(Bifidobacterium bifidum)和婴儿双歧杆菌(B. infantum)的益生菌混合物可以抑制炎症并恢复肠道屏障功能[45]。另外,在结直肠癌小鼠模型中,口服益生菌鸡尾酒也显示出抑制炎症和延缓肿瘤发展的作用[46]。在其他研究[47]中,干酪乳杆菌BL23 (L. casei BL23)通过下调IL-22表达抑制结肠炎诱导的小鼠结直肠癌的发展。以上研究强调了益生菌抑制炎症的潜力,这在结直肠癌的发病机制中起着关键作用。

3.2. 益生菌平衡肠道稳态

微生物菌群失调是结直肠癌的标志,在结直肠癌进展过程中,常驻微生物群落的紊乱可能导致病理性菌群失调,比如结直肠癌特异病原体的聚集及有益菌的减少,从而促进肿瘤生长和存活[48]。多项研究表明经常食用益生菌也可能逆转这种肠道生态失调。在自发性结直肠癌模型ApcMin/+小鼠中,口服嗜热链球菌减少了结直肠癌小鼠肿瘤的发生,嗜热链球菌分泌的β-半乳糖苷酶干扰能量稳态,以激活氧化磷酸化并下调Hippo通路,起到抗癌作用。嗜热链球菌通过β-半乳糖苷酶增加了已知益生菌的肠道丰度,包括双歧杆菌和乳酸菌[49]。在另一项研究[50]中,通过化学方式(AOM + DSS)诱导结直肠癌小鼠模型,口服鼠李糖乳杆菌LS8 (LRL)。结果显示LRL可以抑制肿瘤形成。此外,LRL通过防止杯状细胞丢失和促进ZO-1、occludin和claudin-1的表达来增强肠道屏障。并且同样观察到口服LRL改善了肠道菌群失调,有利于有益菌(例如粪杆菌和阿克曼菌)的生长。一项来自人类干预研究[51]的数据证实了用益生菌调节肠道菌群的可能性。例如,给结直肠癌病人服用乳酸杆菌和嗜酸乳杆菌混合的益生菌,增加了产丁酸盐菌属的丰度,如粪杆菌属和梭菌属,同时减少了消化链球菌属、梭杆菌属的数量。从机制上讲,益生菌有助于抵抗病原菌的定植和扩张。这种抗性可能涉及被动机制,如营养竞争和某些代谢物(如SCFAs和胆汁酸)的释放[52]。但是仍需要更多的研究来评估逆转肠道生态紊乱是否可以抑制人类肿瘤发生。

3.3. 益生菌分泌代谢物抑癌

益生菌或其代谢产物对结直肠癌细胞活力有直接抑制作用。研究表明一些热灭活益生菌在体内和体外均能维持这些抗癌特性[53],这表明益生菌的结构分子和代谢物在抑制CRC中起关键作用。例如研究发现肠罗斯氏菌(Roseburia intestinalis)产生的功能性代谢物丁酸盐可以与CD8+T细胞上的TLR5直接结合,从而增强抗肿瘤免疫,发挥抗肿瘤功能[54]。另一项研究证明罗伊氏乳杆菌可通过代谢产物罗伊氏菌素(Reuterin)在调节氧化还原平衡和生长中起关键作用,从而预防结直肠癌的发生发展[55]

4. 结论与展望

越来越多的证据表明,微生物失调会导致结直肠癌的发展。我们对肠道微生物组的认识,以及其在结直肠癌发病机制中的作用取得了重大进展。但即使已经确定了可能影响结直肠癌发生和进展的病原体,肠道微生物群在CRC肿瘤发生中是否具有重要作用,还是仅仅使其发生,目前仍不确定。目前,多数研究都提出使用益生菌预防和治疗结直肠癌,尽管这些益生菌在更复杂的人类微生物群的背景下可能无法达到预期的效果,因为与定植和与宿主微生物群不可预测相互作用的困难有关。我们仍需要更多长期随访的临床研究来确定,但应用益生菌等补充有益肠道菌群来维持肠道平衡或有助于肠道疾病管理,为结直肠癌的防治提供了新的治疗途径。

NOTES

*通讯作者。

参考文献

[1] Arnold, M., Sierra, M.S., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2016) Global Patterns and Trends in Colorectal Cancer Incidence and Mortality. Gut, 66, 683-691.
https://doi.org/10.1136/gutjnl-2015-310912
[2] Diao, X., Guo, C., Jin, Y., Li, B., Gao, X., Du, X., et al. (2024) Cancer Situation in China: An Analysis Based on the Global Epidemiological Data Released in 2024. Cancer Communications, 1-20.
https://doi.org/10.1002/cac2.12627
[3] Dai, Z., Coker, O.O., Nakatsu, G., Wu, W.K.K., Zhao, L., Chen, Z., et al. (2018) Multi-Cohort Analysis of Colorectal Cancer Metagenome Identified Altered Bacteria across Populations and Universal Bacterial Markers. Microbiome, 6, Article No. 70.
https://doi.org/10.1186/s40168-018-0451-2
[4] Wong, C.C. and Yu, J. (2023) Gut Microbiota in Colorectal Cancer Development and Therapy. Nature Reviews Clinical Oncology, 20, 429-452.
https://doi.org/10.1038/s41571-023-00766-x
[5] Sender, R., Fuchs, S. and Milo, R. (2016) Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell, 164, 337-340.
https://doi.org/10.1016/j.cell.2016.01.013
[6] Wu, H. and Wu, E. (2012) The Role of Gut Microbiota in Immune Homeostasis and Autoimmunity. Gut Microbes, 3, 4-14.
https://doi.org/10.4161/gmic.19320
[7] Ley, R.E., Peterson, D.A. and Gordon, J.I. (2006) Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell, 124, 837-848.
https://doi.org/10.1016/j.cell.2006.02.017
[8] Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity. Nature Reviews Immunology, 16, 341-352.
https://doi.org/10.1038/nri.2016.42
[9] Carding, S., Verbeke, K., Vipond, D.T., Corfe, B.M. and Owen, L.J. (2015) Dysbiosis of the Gut Microbiota in Disease. Microbial Ecology in Health & Disease, 26, Article 26191.
https://doi.org/10.3402/mehd.v26.26191
[10] Sorboni, S.G., Moghaddam, H.S., Jafarzadeh-Esfehani, R. and Soleimanpour, S. (2022) A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clinical Microbiology Reviews, 35, e0033820.
https://doi.org/10.1128/cmr.00338-20
[11] Özçam, M. and Lynch, S.V. (2024) The Gut-Airway Microbiome Axis in Health and Respiratory Diseases. Nature Reviews Microbiology, 22, 492-506.
https://doi.org/10.1038/s41579-024-01048-8
[12] 闫燕羽, 刘维英, 刘茹悦, 等. 肠道微生态与呼吸系统疾病的研究进展[J]. 中国呼吸与危重监护杂志, 2022, 21(1): 66-70.
[13] Wu, J., Wang, K., Wang, X., Pang, Y. and Jiang, C. (2020) The Role of the Gut Microbiome and Its Metabolites in Metabolic Diseases. Protein & Cell, 12, 360-373.
https://doi.org/10.1007/s13238-020-00814-7
[14] Takeuchi, T., Kubota, T., Nakanishi, Y., Tsugawa, H., Suda, W., Kwon, A.T., et al. (2023) Gut Microbial Carbohydrate Metabolism Contributes to Insulin Resistance. Nature, 621, 389-395.
https://doi.org/10.1038/s41586-023-06466-x
[15] Scott, A.J., Alexander, J.L., Merrifield, C.A., Cunningham, D., Jobin, C., Brown, R., et al. (2019) International Cancer Microbiome Consortium Consensus Statement on the Role of the Human Microbiome in Carcinogenesis. Gut, 68, 1624-1632.
https://doi.org/10.1136/gutjnl-2019-318556
[16] Wang, X., Fang, Y., Liang, W., Wong, C.C., Qin, H., Gao, Y., et al. (2024) Fusobacterium Nucleatum Facilitates Anti-Pd-1 Therapy in Microsatellite Stable Colorectal Cancer. Cancer Cell, 42, 1729-1746.e8.
https://doi.org/10.1016/j.ccell.2024.08.019
[17] Long, X., Wong, C.C., Tong, L., Chu, E.S.H., Ho Szeto, C., Go, M.Y.Y., et al. (2019) Peptostreptococcus anaerobius Promotes Colorectal Carcinogenesis and Modulates Tumour Immunity. Nature Microbiology, 4, 2319-2330.
https://doi.org/10.1038/s41564-019-0541-3
[18] Tahara, T., Yamamoto, E., Suzuki, H., Maruyama, R., Chung, W., Garriga, J., et al. (2014) Fusobacterium in Colonic Flora and Molecular Features of Colorectal Carcinoma. Cancer Research, 74, 1311-1318.
https://doi.org/10.1158/0008-5472.can-13-1865
[19] Kostic, A.D., Gevers, D., Pedamallu, C.S., Michaud, M., Duke, F., Earl, A.M., et al. (2011) Genomic Analysis Identifies Association of fusobacterium with Colorectal Carcinoma. Genome Research, 22, 292-298.
https://doi.org/10.1101/gr.126573.111
[20] 王昆, 贾银平, 朱攀, 方瑶, 李倩, 唐彬, 李娜, 毛旭虎. 具核梭杆菌诱导的肠上皮细胞Caco-2炎症反应及凋亡[J]. 免疫学杂志, 2015, 31(4): 313-317.
[21] Thomas, A.M., Manghi, P., Asnicar, F., Pasolli, E., Armanini, F., Zolfo, M., et al. (2019) Metagenomic Analysis of Colorectal Cancer Datasets Identifies Cross-Cohort Microbial Diagnostic Signatures and a Link with Choline Degradation. Nature Medicine, 25, 667-678.
https://doi.org/10.1038/s41591-019-0405-7
[22] Abed, J., Emgård, J.E.M., Zamir, G., Faroja, M., Almogy, G., Grenov, A., et al. (2016) Fap2 Mediates Fusobacterium Nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-Galnac. Cell Host & Microbe, 20, 215-225.
https://doi.org/10.1016/j.chom.2016.07.006
[23] Rubinstein, M.R., Wang, X., Liu, W., Hao, Y., Cai, G. and Han, Y.W. (2013) Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its Fada Adhesin. Cell Host & Microbe, 14, 195-206.
https://doi.org/10.1016/j.chom.2013.07.012
[24] Chen, Y., Peng, Y., Yu, J., Chen, T., Wu, Y., Shi, L., et al. (2017) Invasive Fusobacterium Nucleatum Activates Beta-Catenin Signaling in Colorectal Cancer via a TLR4/P-PAK1 Cascade. Oncotarget, 8, 31802-31814.
https://doi.org/10.18632/oncotarget.15992
[25] Yang, Y., Weng, W., Peng, J., Hong, L., Yang, L., Toiyama, Y., et al. (2017) Fusobacterium Nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-Regulating Expression of Microrna-21. Gastroenterology, 152, 851-866.e24.
https://doi.org/10.1053/j.gastro.2016.11.018
[26] Kostic, A.D., Chun, E., Robertson, L., Glickman, J.N., Gallini, C.A., Michaud, M., et al. (2013) Fusobacterium Nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host & Microbe, 14, 207-215.
https://doi.org/10.1016/j.chom.2013.07.007
[27] Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., van Hoeck, A., Wood, H.M., Nomburg, J., et al. (2020) Mutational Signature in Colorectal Cancer Caused by Genotoxic Pks+ E. Coli. Nature, 580, 269-273.
https://doi.org/10.1038/s41586-020-2080-8
[28] Wallenstein, A., Rehm, N., Brinkmann, M., Selle, M., Bossuet-Greif, N., Sauer, D., et al. (2020) Erratum for Wallenstein et al., “ClbR Is the Key Transcriptional Activator of Colibactin Gene Expression in Escherichia coli”. mSphere, 5, e00591-20.
[29] Berger, H. and Meyer, T.F. (2021) Mechanistic Dissection Unmasks Colibactin as a Prevalent Mutagenic Driver of Cancer. Cancer Cell, 39, 1439-1441.
https://doi.org/10.1016/j.ccell.2021.10.010
[30] Dziubańska-Kusibab, P.J., Berger, H., Battistini, F., Bouwman, B.A.M., Iftekhar, A., Katainen, R., et al. (2020) Colibactin DNA-Damage Signature Indicates Mutational Impact in Colorectal Cancer. Nature Medicine, 26, 1063-1069.
https://doi.org/10.1038/s41591-020-0908-2
[31] Iftekhar, A., Berger, H., Bouznad, N., Heuberger, J., Boccellato, F., Dobrindt, U., et al. (2021) Genomic Aberrations after Short-Term Exposure to Colibactin-Producing E. Coli Transform Primary Colon Epithelial Cells. Nature Communications, 12, Article No. 1003.
https://doi.org/10.1038/s41467-021-21162-y
[32] Moncrief, J.S., Obiso, R., Barroso, L.A., Kling, J.J., Wright, R.L., Van Tassell, R.L., et al. (1995) The Enterotoxin of Bacteroides Fragilis Is a Metalloprotease. Infection and Immunity, 63, 175-181.
https://doi.org/10.1128/iai.63.1.175-181.1995
[33] Ulger Toprak, N., Yagci, A., Gulluoglu, B.M., Akin, M.L., Demirkalem, P., Celenk, T., et al. (2006) A Possible Role of Bacteroides Fragilis Enterotoxin in the Aetiology of Colorectal Cancer. Clinical Microbiology and Infection, 12, 782-786.
https://doi.org/10.1111/j.1469-0691.2006.01494.x
[34] Boleij, A., Hechenbleikner, E.M., Goodwin, A.C., Badani, R., Stein, E.M., Lazarev, M.G., et al. (2014) The Bacteroides Fragilis Toxin Gene Is Prevalent in the Colon Mucosa of Colorectal Cancer Patients. Clinical Infectious Diseases, 60, 208-215.
https://doi.org/10.1093/cid/ciu787
[35] Zamani, S., Taslimi, R., Sarabi, A., Jasemi, S., Sechi, L.A. and Feizabadi, M.M. (2020) Enterotoxigenic Bacteroides Fragilis: A Possible Etiological Candidate for Bacterially-Induced Colorectal Precancerous and Cancerous Lesions. Frontiers in Cellular and Infection Microbiology, 9, Article 449.
https://doi.org/10.3389/fcimb.2019.00449
[36] Wagner, V.E., Dey, N., Guruge, J., Hsiao, A., Ahern, P.P., Semenkovich, N.P., et al. (2016) Effects of a Gut Pathobiont in a Gnotobiotic Mouse Model of Childhood Undernutrition. Science Translational Medicine, 8, 1-14.
https://doi.org/10.1126/scitranslmed.aah4669
[37] Goodwin, A.C., Shields, C.E.D., Wu, S., Huso, D.L., Wu, X., Murray-Stewart, T.R., et al. (2011) Polyamine Catabolism Contributes to Enterotoxigenic Bacteroides Fragilis-Induced Colon Tumorigenesis. Proceedings of the National Academy of Sciences, 108, 15354-15359.
https://doi.org/10.1073/pnas.1010203108
[38] Wu, S., Morin, P.J., Maouyo, D. and Sears, C.L. (2003) Bacteroides Fragilis Enterotoxin Induces C-MYC Expression and Cellular Proliferation. Gastroenterology, 124, 392-400.
https://doi.org/10.1053/gast.2003.50047
[39] O’Hagan, H.M., Wang, W., Sen, S., DeStefano Shields, C., Lee, S.S., Zhang, Y.W., et al. (2011) Oxidative Damage Targets Complexes Containing DNA Methyltransferases, SIRT1, and Polycomb Members to Promoter CPG Islands. Cancer Cell, 20, 606-619.
https://doi.org/10.1016/j.ccr.2011.09.012
[40] Yu, J., Feng, Q., Wong, S.H., Zhang, D., Liang, Q.y., Qin, Y., et al. (2015) Metagenomic Analysis of Faecal Microbiome as a Tool Towards Targeted Non-Invasive Biomarkers for Colorectal Cancer. Gut, 66, 70-78.
https://doi.org/10.1136/gutjnl-2015-309800
[41] Nakatsu, G., Li, X., Zhou, H., Sheng, J., Wong, S.H., Wu, W.K.K., et al. (2015) Gut Mucosal Microbiome across Stages of Colorectal Carcinogenesis. Nature Communications, 6, Article No. 8727.
https://doi.org/10.1038/ncomms9727
[42] Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., et al. (2014) The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506-514.
https://doi.org/10.1038/nrgastro.2014.66
[43] Schmitt, M. and Greten, F.R. (2021) The Inflammatory Pathogenesis of Colorectal Cancer. Nature Reviews Immunology, 21, 653-667.
https://doi.org/10.1038/s41577-021-00534-x
[44] Gamallat, Y., Meyiah, A., Kuugbee, E.D., Hago, A.M., Chiwala, G., Awadasseid, A., et al. (2016) Lactobacillus Rhamnosus Induced Epithelial Cell Apoptosis, Ameliorates Inflammation and Prevents Colon Cancer Development in an Animal Model. Biomedicine & Pharmacotherapy, 83, 536-541.
https://doi.org/10.1016/j.biopha.2016.07.001
[45] Kuugbee, E.D., Shang, X., Gamallat, Y., Bamba, D., Awadasseid, A., Suliman, M.A., et al. (2016) Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer. Digestive Diseases and Sciences, 61, 2908-2920.
https://doi.org/10.1007/s10620-016-4238-7
[46] Do, E., Hwang, S.W., Kim, S., Ryu, Y., Cho, E.A., Chung, E., et al. (2016) Suppression of Colitis-Associated Carcinogenesis through Modulation of IL-6/STAT3 Pathway by Balsalazide and Vsl#3. Journal of Gastroenterology and Hepatology, 31, 1453-1461.
https://doi.org/10.1111/jgh.13280
[47] Jacouton, E., Chain, F., Sokol, H., Langella, P. and Bermúdez-Humarán, L.G. (2017) Probiotic Strain Lactobacillus Casei BL23 Prevents Colitis-Associated Colorectal Cancer. Frontiers in Immunology, 8, Article 1553.
https://doi.org/10.3389/fimmu.2017.01553
[48] Yachida, S., Mizutani, S., Shiroma, H., Shiba, S., Nakajima, T., Sakamoto, T., et al. (2019) Metagenomic and Metabolomic Analyses Reveal Distinct Stage-Specific Phenotypes of the Gut Microbiota in Colorectal Cancer. Nature Medicine, 25, 968-976.
https://doi.org/10.1038/s41591-019-0458-7
[49] Li, Q., Hu, W., Liu, W., Zhao, L., Huang, D., Liu, X., et al. (2021) Streptococcus Thermophilus Inhibits Colorectal Tumorigenesis through Secreting Β-galactosidase. Gastroenterology, 160, 1179-1193.e14.
https://doi.org/10.1053/j.gastro.2020.09.003
[50] Wang, T., Zheng, J., Dong, S., Ismael, M., Shan, Y., Wang, X., et al. (2022) Lacticaseibacillus Rhamnosus LS8 Ameliorates Azoxymethane/dextran Sulfate Sodium-Induced Colitis-Associated Tumorigenesis in Mice via Regulating Gut Microbiota and Inhibiting Inflammation. Probiotics and Antimicrobial Proteins, 14, 947-959.
https://doi.org/10.1007/s12602-022-09967-9
[51] Hibberd, A.A., Lyra, A., Ouwehand, A.C., Rolny, P., Lindegren, H., Cedgård, L., et al. (2017) Intestinal Microbiota Is Altered in Patients with Colon Cancer and Modified by Probiotic Intervention. BMJ Open Gastroenterology, 4, e000145.
https://doi.org/10.1136/bmjgast-2017-000145
[52] Sorbara, M.T. and Pamer, E.G. (2019) Interbacterial Mechanisms of Colonization Resistance and the Strategies Pathogens Use to Overcome Them. Mucosal Immunology, 12, 1-9.
https://doi.org/10.1038/s41385-018-0053-0
[53] Karimi Ardestani, S., Tafvizi, F. and Tajabadi Ebrahimi, M. (2019) Heat-Killed Probiotic Bacteria Induce Apoptosis of HT-29 Human Colon Adenocarcinoma Cell Line via the Regulation of Bax/Bcl2 and Caspases Pathway. Human & Experimental Toxicology, 38, 1069-1081.
https://doi.org/10.1177/0960327119851255
[54] Kang, X., Liu, C., Ding, Y., Ni, Y., Ji, F., Lau, H.C.H., et al. (2023) Roseburia intestinalis Generated Butyrate Boosts Anti-PD-1 Efficacy in Colorectal Cancer by Activating Cytotoxic CD8+t Cells. Gut, 72, 2112-2122.
https://doi.org/10.1136/gutjnl-2023-330291
[55] Bell, H.N., Rebernick, R.J., Goyert, J., Singhal, R., Kuljanin, M., Kerk, S.A., et al. (2022) Reuterin in the Healthy Gut Microbiome Suppresses Colorectal Cancer Growth through Altering Redox Balance. Cancer Cell, 40, 185-200.e6.
https://doi.org/10.1016/j.ccell.2021.12.001