[1]
|
Arnold, M., Sierra, M.S., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. (2016) Global Patterns and Trends in Colorectal Cancer Incidence and Mortality. Gut, 66, 683-691. https://doi.org/10.1136/gutjnl-2015-310912
|
[2]
|
Diao, X., Guo, C., Jin, Y., Li, B., Gao, X., Du, X., et al. (2024) Cancer Situation in China: An Analysis Based on the Global Epidemiological Data Released in 2024. Cancer Communications, 1-20. https://doi.org/10.1002/cac2.12627
|
[3]
|
Dai, Z., Coker, O.O., Nakatsu, G., Wu, W.K.K., Zhao, L., Chen, Z., et al. (2018) Multi-Cohort Analysis of Colorectal Cancer Metagenome Identified Altered Bacteria across Populations and Universal Bacterial Markers. Microbiome, 6, Article No. 70. https://doi.org/10.1186/s40168-018-0451-2
|
[4]
|
Wong, C.C. and Yu, J. (2023) Gut Microbiota in Colorectal Cancer Development and Therapy. Nature Reviews Clinical Oncology, 20, 429-452. https://doi.org/10.1038/s41571-023-00766-x
|
[5]
|
Sender, R., Fuchs, S. and Milo, R. (2016) Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell, 164, 337-340. https://doi.org/10.1016/j.cell.2016.01.013
|
[6]
|
Wu, H. and Wu, E. (2012) The Role of Gut Microbiota in Immune Homeostasis and Autoimmunity. Gut Microbes, 3, 4-14. https://doi.org/10.4161/gmic.19320
|
[7]
|
Ley, R.E., Peterson, D.A. and Gordon, J.I. (2006) Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell, 124, 837-848. https://doi.org/10.1016/j.cell.2006.02.017
|
[8]
|
Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity. Nature Reviews Immunology, 16, 341-352. https://doi.org/10.1038/nri.2016.42
|
[9]
|
Carding, S., Verbeke, K., Vipond, D.T., Corfe, B.M. and Owen, L.J. (2015) Dysbiosis of the Gut Microbiota in Disease. Microbial Ecology in Health & Disease, 26, Article 26191. https://doi.org/10.3402/mehd.v26.26191
|
[10]
|
Sorboni, S.G., Moghaddam, H.S., Jafarzadeh-Esfehani, R. and Soleimanpour, S. (2022) A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clinical Microbiology Reviews, 35, e0033820. https://doi.org/10.1128/cmr.00338-20
|
[11]
|
Özçam, M. and Lynch, S.V. (2024) The Gut-Airway Microbiome Axis in Health and Respiratory Diseases. Nature Reviews Microbiology, 22, 492-506. https://doi.org/10.1038/s41579-024-01048-8
|
[12]
|
闫燕羽, 刘维英, 刘茹悦, 等. 肠道微生态与呼吸系统疾病的研究进展[J]. 中国呼吸与危重监护杂志, 2022, 21(1): 66-70.
|
[13]
|
Wu, J., Wang, K., Wang, X., Pang, Y. and Jiang, C. (2020) The Role of the Gut Microbiome and Its Metabolites in Metabolic Diseases. Protein & Cell, 12, 360-373. https://doi.org/10.1007/s13238-020-00814-7
|
[14]
|
Takeuchi, T., Kubota, T., Nakanishi, Y., Tsugawa, H., Suda, W., Kwon, A.T., et al. (2023) Gut Microbial Carbohydrate Metabolism Contributes to Insulin Resistance. Nature, 621, 389-395. https://doi.org/10.1038/s41586-023-06466-x
|
[15]
|
Scott, A.J., Alexander, J.L., Merrifield, C.A., Cunningham, D., Jobin, C., Brown, R., et al. (2019) International Cancer Microbiome Consortium Consensus Statement on the Role of the Human Microbiome in Carcinogenesis. Gut, 68, 1624-1632. https://doi.org/10.1136/gutjnl-2019-318556
|
[16]
|
Wang, X., Fang, Y., Liang, W., Wong, C.C., Qin, H., Gao, Y., et al. (2024) Fusobacterium Nucleatum Facilitates Anti-Pd-1 Therapy in Microsatellite Stable Colorectal Cancer. Cancer Cell, 42, 1729-1746.e8. https://doi.org/10.1016/j.ccell.2024.08.019
|
[17]
|
Long, X., Wong, C.C., Tong, L., Chu, E.S.H., Ho Szeto, C., Go, M.Y.Y., et al. (2019) Peptostreptococcus anaerobius Promotes Colorectal Carcinogenesis and Modulates Tumour Immunity. Nature Microbiology, 4, 2319-2330. https://doi.org/10.1038/s41564-019-0541-3
|
[18]
|
Tahara, T., Yamamoto, E., Suzuki, H., Maruyama, R., Chung, W., Garriga, J., et al. (2014) Fusobacterium in Colonic Flora and Molecular Features of Colorectal Carcinoma. Cancer Research, 74, 1311-1318. https://doi.org/10.1158/0008-5472.can-13-1865
|
[19]
|
Kostic, A.D., Gevers, D., Pedamallu, C.S., Michaud, M., Duke, F., Earl, A.M., et al. (2011) Genomic Analysis Identifies Association of fusobacterium with Colorectal Carcinoma. Genome Research, 22, 292-298. https://doi.org/10.1101/gr.126573.111
|
[20]
|
王昆, 贾银平, 朱攀, 方瑶, 李倩, 唐彬, 李娜, 毛旭虎. 具核梭杆菌诱导的肠上皮细胞Caco-2炎症反应及凋亡[J]. 免疫学杂志, 2015, 31(4): 313-317.
|
[21]
|
Thomas, A.M., Manghi, P., Asnicar, F., Pasolli, E., Armanini, F., Zolfo, M., et al. (2019) Metagenomic Analysis of Colorectal Cancer Datasets Identifies Cross-Cohort Microbial Diagnostic Signatures and a Link with Choline Degradation. Nature Medicine, 25, 667-678. https://doi.org/10.1038/s41591-019-0405-7
|
[22]
|
Abed, J., Emgård, J.E.M., Zamir, G., Faroja, M., Almogy, G., Grenov, A., et al. (2016) Fap2 Mediates Fusobacterium Nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-Galnac. Cell Host & Microbe, 20, 215-225. https://doi.org/10.1016/j.chom.2016.07.006
|
[23]
|
Rubinstein, M.R., Wang, X., Liu, W., Hao, Y., Cai, G. and Han, Y.W. (2013) Fusobacterium Nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via Its Fada Adhesin. Cell Host & Microbe, 14, 195-206. https://doi.org/10.1016/j.chom.2013.07.012
|
[24]
|
Chen, Y., Peng, Y., Yu, J., Chen, T., Wu, Y., Shi, L., et al. (2017) Invasive Fusobacterium Nucleatum Activates Beta-Catenin Signaling in Colorectal Cancer via a TLR4/P-PAK1 Cascade. Oncotarget, 8, 31802-31814. https://doi.org/10.18632/oncotarget.15992
|
[25]
|
Yang, Y., Weng, W., Peng, J., Hong, L., Yang, L., Toiyama, Y., et al. (2017) Fusobacterium Nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-Regulating Expression of Microrna-21. Gastroenterology, 152, 851-866.e24. https://doi.org/10.1053/j.gastro.2016.11.018
|
[26]
|
Kostic, A.D., Chun, E., Robertson, L., Glickman, J.N., Gallini, C.A., Michaud, M., et al. (2013) Fusobacterium Nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host & Microbe, 14, 207-215. https://doi.org/10.1016/j.chom.2013.07.007
|
[27]
|
Pleguezuelos-Manzano, C., Puschhof, J., Rosendahl Huber, A., van Hoeck, A., Wood, H.M., Nomburg, J., et al. (2020) Mutational Signature in Colorectal Cancer Caused by Genotoxic Pks+ E. Coli. Nature, 580, 269-273. https://doi.org/10.1038/s41586-020-2080-8
|
[28]
|
Wallenstein, A., Rehm, N., Brinkmann, M., Selle, M., Bossuet-Greif, N., Sauer, D., et al. (2020) Erratum for Wallenstein et al., “ClbR Is the Key Transcriptional Activator of Colibactin Gene Expression in Escherichia coli”. mSphere, 5, e00591-20.
|
[29]
|
Berger, H. and Meyer, T.F. (2021) Mechanistic Dissection Unmasks Colibactin as a Prevalent Mutagenic Driver of Cancer. Cancer Cell, 39, 1439-1441. https://doi.org/10.1016/j.ccell.2021.10.010
|
[30]
|
Dziubańska-Kusibab, P.J., Berger, H., Battistini, F., Bouwman, B.A.M., Iftekhar, A., Katainen, R., et al. (2020) Colibactin DNA-Damage Signature Indicates Mutational Impact in Colorectal Cancer. Nature Medicine, 26, 1063-1069. https://doi.org/10.1038/s41591-020-0908-2
|
[31]
|
Iftekhar, A., Berger, H., Bouznad, N., Heuberger, J., Boccellato, F., Dobrindt, U., et al. (2021) Genomic Aberrations after Short-Term Exposure to Colibactin-Producing E. Coli Transform Primary Colon Epithelial Cells. Nature Communications, 12, Article No. 1003. https://doi.org/10.1038/s41467-021-21162-y
|
[32]
|
Moncrief, J.S., Obiso, R., Barroso, L.A., Kling, J.J., Wright, R.L., Van Tassell, R.L., et al. (1995) The Enterotoxin of Bacteroides Fragilis Is a Metalloprotease. Infection and Immunity, 63, 175-181. https://doi.org/10.1128/iai.63.1.175-181.1995
|
[33]
|
Ulger Toprak, N., Yagci, A., Gulluoglu, B.M., Akin, M.L., Demirkalem, P., Celenk, T., et al. (2006) A Possible Role of Bacteroides Fragilis Enterotoxin in the Aetiology of Colorectal Cancer. Clinical Microbiology and Infection, 12, 782-786. https://doi.org/10.1111/j.1469-0691.2006.01494.x
|
[34]
|
Boleij, A., Hechenbleikner, E.M., Goodwin, A.C., Badani, R., Stein, E.M., Lazarev, M.G., et al. (2014) The Bacteroides Fragilis Toxin Gene Is Prevalent in the Colon Mucosa of Colorectal Cancer Patients. Clinical Infectious Diseases, 60, 208-215. https://doi.org/10.1093/cid/ciu787
|
[35]
|
Zamani, S., Taslimi, R., Sarabi, A., Jasemi, S., Sechi, L.A. and Feizabadi, M.M. (2020) Enterotoxigenic Bacteroides Fragilis: A Possible Etiological Candidate for Bacterially-Induced Colorectal Precancerous and Cancerous Lesions. Frontiers in Cellular and Infection Microbiology, 9, Article 449. https://doi.org/10.3389/fcimb.2019.00449
|
[36]
|
Wagner, V.E., Dey, N., Guruge, J., Hsiao, A., Ahern, P.P., Semenkovich, N.P., et al. (2016) Effects of a Gut Pathobiont in a Gnotobiotic Mouse Model of Childhood Undernutrition. Science Translational Medicine, 8, 1-14. https://doi.org/10.1126/scitranslmed.aah4669
|
[37]
|
Goodwin, A.C., Shields, C.E.D., Wu, S., Huso, D.L., Wu, X., Murray-Stewart, T.R., et al. (2011) Polyamine Catabolism Contributes to Enterotoxigenic Bacteroides Fragilis-Induced Colon Tumorigenesis. Proceedings of the National Academy of Sciences, 108, 15354-15359. https://doi.org/10.1073/pnas.1010203108
|
[38]
|
Wu, S., Morin, P.J., Maouyo, D. and Sears, C.L. (2003) Bacteroides Fragilis Enterotoxin Induces C-MYC Expression and Cellular Proliferation. Gastroenterology, 124, 392-400. https://doi.org/10.1053/gast.2003.50047
|
[39]
|
O’Hagan, H.M., Wang, W., Sen, S., DeStefano Shields, C., Lee, S.S., Zhang, Y.W., et al. (2011) Oxidative Damage Targets Complexes Containing DNA Methyltransferases, SIRT1, and Polycomb Members to Promoter CPG Islands. Cancer Cell, 20, 606-619. https://doi.org/10.1016/j.ccr.2011.09.012
|
[40]
|
Yu, J., Feng, Q., Wong, S.H., Zhang, D., Liang, Q.y., Qin, Y., et al. (2015) Metagenomic Analysis of Faecal Microbiome as a Tool Towards Targeted Non-Invasive Biomarkers for Colorectal Cancer. Gut, 66, 70-78. https://doi.org/10.1136/gutjnl-2015-309800
|
[41]
|
Nakatsu, G., Li, X., Zhou, H., Sheng, J., Wong, S.H., Wu, W.K.K., et al. (2015) Gut Mucosal Microbiome across Stages of Colorectal Carcinogenesis. Nature Communications, 6, Article No. 8727. https://doi.org/10.1038/ncomms9727
|
[42]
|
Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., et al. (2014) The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506-514. https://doi.org/10.1038/nrgastro.2014.66
|
[43]
|
Schmitt, M. and Greten, F.R. (2021) The Inflammatory Pathogenesis of Colorectal Cancer. Nature Reviews Immunology, 21, 653-667. https://doi.org/10.1038/s41577-021-00534-x
|
[44]
|
Gamallat, Y., Meyiah, A., Kuugbee, E.D., Hago, A.M., Chiwala, G., Awadasseid, A., et al. (2016) Lactobacillus Rhamnosus Induced Epithelial Cell Apoptosis, Ameliorates Inflammation and Prevents Colon Cancer Development in an Animal Model. Biomedicine & Pharmacotherapy, 83, 536-541. https://doi.org/10.1016/j.biopha.2016.07.001
|
[45]
|
Kuugbee, E.D., Shang, X., Gamallat, Y., Bamba, D., Awadasseid, A., Suliman, M.A., et al. (2016) Structural Change in Microbiota by a Probiotic Cocktail Enhances the Gut Barrier and Reduces Cancer via TLR2 Signaling in a Rat Model of Colon Cancer. Digestive Diseases and Sciences, 61, 2908-2920. https://doi.org/10.1007/s10620-016-4238-7
|
[46]
|
Do, E., Hwang, S.W., Kim, S., Ryu, Y., Cho, E.A., Chung, E., et al. (2016) Suppression of Colitis-Associated Carcinogenesis through Modulation of IL-6/STAT3 Pathway by Balsalazide and Vsl#3. Journal of Gastroenterology and Hepatology, 31, 1453-1461. https://doi.org/10.1111/jgh.13280
|
[47]
|
Jacouton, E., Chain, F., Sokol, H., Langella, P. and Bermúdez-Humarán, L.G. (2017) Probiotic Strain Lactobacillus Casei BL23 Prevents Colitis-Associated Colorectal Cancer. Frontiers in Immunology, 8, Article 1553. https://doi.org/10.3389/fimmu.2017.01553
|
[48]
|
Yachida, S., Mizutani, S., Shiroma, H., Shiba, S., Nakajima, T., Sakamoto, T., et al. (2019) Metagenomic and Metabolomic Analyses Reveal Distinct Stage-Specific Phenotypes of the Gut Microbiota in Colorectal Cancer. Nature Medicine, 25, 968-976. https://doi.org/10.1038/s41591-019-0458-7
|
[49]
|
Li, Q., Hu, W., Liu, W., Zhao, L., Huang, D., Liu, X., et al. (2021) Streptococcus Thermophilus Inhibits Colorectal Tumorigenesis through Secreting Β-galactosidase. Gastroenterology, 160, 1179-1193.e14. https://doi.org/10.1053/j.gastro.2020.09.003
|
[50]
|
Wang, T., Zheng, J., Dong, S., Ismael, M., Shan, Y., Wang, X., et al. (2022) Lacticaseibacillus Rhamnosus LS8 Ameliorates Azoxymethane/dextran Sulfate Sodium-Induced Colitis-Associated Tumorigenesis in Mice via Regulating Gut Microbiota and Inhibiting Inflammation. Probiotics and Antimicrobial Proteins, 14, 947-959. https://doi.org/10.1007/s12602-022-09967-9
|
[51]
|
Hibberd, A.A., Lyra, A., Ouwehand, A.C., Rolny, P., Lindegren, H., Cedgård, L., et al. (2017) Intestinal Microbiota Is Altered in Patients with Colon Cancer and Modified by Probiotic Intervention. BMJ Open Gastroenterology, 4, e000145. https://doi.org/10.1136/bmjgast-2017-000145
|
[52]
|
Sorbara, M.T. and Pamer, E.G. (2019) Interbacterial Mechanisms of Colonization Resistance and the Strategies Pathogens Use to Overcome Them. Mucosal Immunology, 12, 1-9. https://doi.org/10.1038/s41385-018-0053-0
|
[53]
|
Karimi Ardestani, S., Tafvizi, F. and Tajabadi Ebrahimi, M. (2019) Heat-Killed Probiotic Bacteria Induce Apoptosis of HT-29 Human Colon Adenocarcinoma Cell Line via the Regulation of Bax/Bcl2 and Caspases Pathway. Human & Experimental Toxicology, 38, 1069-1081. https://doi.org/10.1177/0960327119851255
|
[54]
|
Kang, X., Liu, C., Ding, Y., Ni, Y., Ji, F., Lau, H.C.H., et al. (2023) Roseburia intestinalis Generated Butyrate Boosts Anti-PD-1 Efficacy in Colorectal Cancer by Activating Cytotoxic CD8+t Cells. Gut, 72, 2112-2122. https://doi.org/10.1136/gutjnl-2023-330291
|
[55]
|
Bell, H.N., Rebernick, R.J., Goyert, J., Singhal, R., Kuljanin, M., Kerk, S.A., et al. (2022) Reuterin in the Healthy Gut Microbiome Suppresses Colorectal Cancer Growth through Altering Redox Balance. Cancer Cell, 40, 185-200.e6. https://doi.org/10.1016/j.ccell.2021.12.001
|