[1]
|
Troitskii, O.A. and Likhtman, V.I. (1963) The Anisotropy of the Action of Electron and γ Radiation on the Deformation of Zinc Single Crystals in the Brittle State. Soviet Physics Doklady, 8, 91.
|
[2]
|
Troitskii, O.A. (1969) Electro-Mechanical Effect in the Brittle State. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 10, 18.
|
[3]
|
Goldman, P.D., Motowidlo, L.R. and Galligan, J.M. (1981) The Absence of an Electroplastic Effect in Lead at 4.2K. Scripta Metallurgica, 15, 353-356. https://doi.org/10.1016/0036-9748(81)90208-8
|
[4]
|
Varma, S.K. and Cornwell, L.R. (1979) The Electroplastic Effect in Aluminum. Scripta Metallurgica, 13, 733-738. https://doi.org/10.1016/0036-9748(79)90146-7
|
[5]
|
Varma, S.K. and Cornwell, L.R. (1980) A Reply to Comments on the Electroplastic Effect in Aluminum. Scripta Metallurgica, 14, 1035-1036. https://doi.org/10.1016/0036-9748(80)90382-8
|
[6]
|
Li, M., Zhang, B., Chen, G., Li, X., Zhang, X. and Li, H. (2023) Temperature Dependence of Electroplastic Effect on Reducing the Ultimate Stress in Ti-6Al-2Zr-1Mo-1V Alloy during Tension. Materials Science and Engineering: A, 863, 144545. https://doi.org/10.1016/j.msea.2022.144545
|
[7]
|
Pakhomov, M.A. and Stolyarov, V.V. (2021) Specific Features of Electroplastic Effect in Mono-and Polycrystalline Aluminum. Metal Science and Heat Treatment, 63, 236-242. https://doi.org/10.1007/s11041-021-00677-7
|
[8]
|
Dimitrov, N.K., Liu, Y. and Horstemeyer, M.F. (2021) Experimental Observation and Modelling of the Electroplastic Effect in Nonferromagnetic Ductile Metals. Experimental Techniques, 45, 735-748. https://doi.org/10.1007/s40799-021-00443-7
|
[9]
|
Adabala, S., Cherukupally, S., Guha, S., D.V, R., Verma, R.K. and N, V.R. (2022) Importance of Machine Compliance to Quantify Electro-Plastic Effect in Electric Pulse Aided Testing: An Experimental and Numerical Study. Journal of Manufacturing Processes, 75, 268-279. https://doi.org/10.1016/j.jmapro.2021.12.027
|
[10]
|
Yi, K., Xiang, S., Zhou, M., Zhang, X. and Du, F. (2023) Altering the Residual Stress in High-Carbon Steel through Promoted Dislocation Movement and Accelerated Carbon Diffusion by Pulsed Electric Current. Acta Metallurgica Sinica (English Letters), 36, 1511-1522. https://doi.org/10.1007/s40195-023-01556-1
|
[11]
|
Conrad, H. (2000) Electroplasticity in Metals and Ceramics. Materials Science and Engineering: A, 287, 276-287. https://doi.org/10.1016/s0921-5093(00)00786-3
|
[12]
|
Fan, Y., Fan, H. and Hao, Z. (2023) Effect of Pulsed Current on Plastic Deformation of Inconel 718 under High Strain Rate and High Temperature Conditions. Journal of Alloys and Compounds, 943, Article ID: 169150. https://doi.org/10.1016/j.jallcom.2023.169150
|
[13]
|
Molotskii, M. and Fleurov, V. (1995) Magnetic Effects in Electroplasticity of Metals. Physical Review B, 52, 15829-15834. https://doi.org/10.1103/physrevb.52.15829
|
[14]
|
Cui, X., Li, C., Yang, M., Liu, M., Gao, T., Wang, X., et al. (2023) Enhanced Grindability and Mechanism in the Magnetic Traction Nanolubricant Grinding of Ti-6Al-4V. Tribology International, 186, Article ID: 108603. https://doi.org/10.1016/j.triboint.2023.108603
|
[15]
|
Sprecher, A.F., Mannan, S.L. and Conrad, H. (1986) Overview no. 49: On the Mechanisms for the Electroplastic Effect in Metals. Acta Metallurgica, 34, 1145-1162. https://doi.org/10.1016/0001-6160(86)90001-5
|
[16]
|
Liu, J.Y. and Zhang, K.F. (2016) Influence of Electric Current on Superplastic Deformation Mechanism of 5083 Aluminium Alloy. Materials Science and Technology, 32, 540-546. https://doi.org/10.1179/1743284715y.0000000120
|
[17]
|
Guan, L., Tang, G. and Chu, P.K. (2010) Recent Advances and Challenges in Electroplastic Manufacturing Processing of Metals. Journal of Materials Research, 25, 1215-1224. https://doi.org/10.1557/jmr.2010.0170
|
[18]
|
Biesuz, M., Saunders, T., Ke, D., Reece, M.J., Hu, C. and Grasso, S. (2021) A Review of Electromagnetic Processing of Materials (EPM): Heating, Sintering, Joining and Forming. Journal of Materials Science & Technology, 69, 239-272. https://doi.org/10.1016/j.jmst.2020.06.049
|
[19]
|
Okazaki, K., Kagawa, M. and Conrad, H. (1980) An Evaluation of the Contributions of Skin, Pinch and Heating Effects to the Electroplastic Effect in Titatnium. Materials Science and Engineering, 45, 109-116. https://doi.org/10.1016/0025-5416(80)90216-5
|
[20]
|
Ma, Y.R., Yang, H.J., Ben, D.D., Shao, X.H., Tian, Y.Z., Wang, Q., et al. (2020) Anisotropic Electroplastic Effects on the Mechanical Properties of a Nano-Lamellar Austenitic Stainless Steel. Acta Metallurgica Sinica (English Letters), 34, 534-542. https://doi.org/10.1007/s40195-020-01130-z
|
[21]
|
Simonetto, E., Bruschi, S. and Ghiotti, A. (2019) Electroplastic Effect on AA1050 Plastic Flow Behavior in H24 Tempered and Fully Annealed Conditions. Procedia Manufacturing, 34, 83-89. https://doi.org/10.1016/j.promfg.2019.06.124
|
[22]
|
Chicheneva, O.N., Chichenev, N.A., Pashkov, A.N., Gorovaya, T.Y. and Vasiliev, M.V. (2022) Influence of Electroplastic Deformation on the Deformation Resistance of Refractory Metals. Metallurgist, 66, 657-662. https://doi.org/10.1007/s11015-022-01373-4
|
[23]
|
Liu, Y.Y., Zhu, W.C., Deng, W.K., Song, P., Liu, X.M., Zhang, J.H., et al. (2022) Tailoring Phase Composition of a Multielement TiZrAlV Alloy via Electroplastic Rolling. Materials Letters, 326, Article ID: 132982. https://doi.org/10.1016/j.matlet.2022.132982
|
[24]
|
Ao, D., Gao, J., Chu, X., Lin, S. and Lin, J. (2020) Formability and Deformation Mechanism of Ti-6Al-4V Sheet under Electropulsing Assisted Incremental Forming. International Journal of Solids and Structures, 202, 357-367. https://doi.org/10.1016/j.ijsolstr.2020.06.028
|
[25]
|
Yang, L., Zhang, H. and Liu, G. (2023) Performance Analysis of Wide Magnesium Alloy Foil Rolled by Multi-Pass Electric Plastic Rolling. Metals and Materials International, 29, 2783-2794. https://doi.org/10.1007/s12540-023-01414-w
|
[26]
|
Kukudzhanov, K.V. (2022) Modeling of Self-Healing of Microcracks in the Process of Longitudinal Electroplastic Rolling. Journal of Physics: Conference Series, 2231, Article ID: 012022. https://doi.org/10.1088/1742-6596/2231/1/012022
|
[27]
|
Sun, J., Zhang, J., Liu, D., Huang, H. and Yan, M. (2023) Inhibition Behavior of Edge Cracking in the AZ31B Magnesium Alloy Cold Rolling Process with Pulsed Electric Current. Metals, 13, Article 274. https://doi.org/10.3390/met13020274
|
[28]
|
Zhang, C., Xue, H., Xing, S. and Luo, J. (2023) Effect of Electric Field-Assisted Heat Treatment on Microstructure and Phase Transformation of ZrTiAlV Alloy. Metals and Materials International, 29, 2137-2150. https://doi.org/10.1007/s12540-022-01366-7
|
[29]
|
Li, X., Xu, Z., Huang, J., Peng, L. and Guo, P. (2020) Effects of Electropulsing Treatment on the Element Diffusion between Ti6Al4V and Commercially Pure Titanium. Journal of Manufacturing Science and Engineering, 142, Article ID: 051002. https://doi.org/10.1115/1.4046506
|
[30]
|
Xu, Z., Yang, W., Fan, J., Wu, T. and Gao, Z. (2022) Mechanical Behavior and Constitutive Modeling of the Mg-Zn-Y Alloy in an Electrically Assisted Tensile Test. Materials, 15, Article 7203. https://doi.org/10.3390/ma15207203
|
[31]
|
Tang, G., Zheng, M., Zhu, Y., Zhang, J., Fang, W. and Li, Q. (1998) The Application of the Electro-Plastic Technique in the Cold-Drawing of Steel Wires. Journal of Materials Processing Technology, 84, 268-270. https://doi.org/10.1016/s0924-0136(98)00229-5
|
[32]
|
Tang, G., Zhang, J., Zheng, M., Zhang, J., Fang, W. and Li, Q. (2000) Experimental Study of Electroplastic Effect on Stainless Steel Wire 304L. Materials Science and Engineering: A, 281, 263-267. https://doi.org/10.1016/s0921-5093(99)00708-x
|
[33]
|
Tang, G., Zhang, J., Yan, Y., Zhou, H. and Fang, W. (2003) The Engineering Application of the Electroplastic Effect in the Cold-Drawing of Stainless Steel Wire. Journal of Materials Processing Technology, 137, 96-99. https://doi.org/10.1016/s0924-0136(02)01091-9
|
[34]
|
Tang, G.Y., Ding, F., Xu, Z.H. and Jiang, Y.B. (2007) Research on Electroplastic Drawing of Mg Alloy Wire. Nonferrous Metals, 59, 10.
|
[35]
|
Wang, S.N. (2009) Effect of Electric Pulses on Drawability and Corrosion Property of AZ31 Magnesium Alloy. Master’s Thesis, Tsinghua University.
|
[36]
|
Spitsyn, V.I., Troitskii, O.A., Gusev, E.V. and Kurdiukov, V.D.K. (1974) Electroplastic Deformation of Stainless (18/9) Steel. Izvestiya Akademii Nauk SSSR, 2, 123.
|
[37]
|
Spitsyn, V.I., Troitskii, O.A., Gaviish, A.A., Karynkin, V.I., Shaka, G.E., Stashenko, V.I. and Kozyrev, A.S. (1978) X-Ray Diffraction and Mechanical Investigation of Copper after Electroplastic Drawing. Izvestiya Akademii Nauk SSSR, 4, 120.
|
[38]
|
Troitskii, O.A., Spitsyn, V.O., Sokolov, N.V., Ryzhkov, V.G. and Dubov, Y.S. (1979) Electroplastic Drawing of Magnetically Hard Steel Wire. Izvestiya Akademii Nauk SSSR, 2, 113.
|
[39]
|
Troitskii, O.A., Stashenko, V.I., Sokolov, N.V. and Ryzhkov, V.G. (1977) Electroplastic Drawing of Stainless Steel. Doklady Akademii Nauk SSSR, 237, 1082.
|
[40]
|
Troitskii, O.A., Stashenko, V.I. and Ryzhkov, V.G. (1978) Electroplastic Drawing of Steel, Copper and Tungsten. Doklady Akademii Nauk SSSR, 243, 330.
|
[41]
|
Bazaykin, V.I., Gromov, V.E., Kuznetsov, V.A. and Peretyatko, V.N. (1991) Mechanics of Electrostimulated Wire Drawing. International Journal of Solids and Structures, 27, 1639-1643. https://doi.org/10.1016/0020-7683(91)90066-o
|
[42]
|
Klimov, K.M. (2007) Alternative Methods of Producing Bars and Wire. Metallurgist, 51, 511-515. https://doi.org/10.1007/s11015-007-0094-1
|
[43]
|
Gromov, V.E., Kozlov, E.V., Zuev, L.B., Tsellermaer, V.Y. and Aponasenkov, O.V. (1994) Defect Structure of Ferrite and Austenite Steels Developed under Electrostimulated Plastic Deformation. International Congress on Bioceramics and the Human Body, 2, 46.
|
[44]
|
邹隆勋, 徐栋恺, 李细锋, 等. 脉冲电流对MS1300超高强钢拉伸变形行为的影响[J]. 塑性工程学报, 2022, 29(10): 196-201.
|
[45]
|
宋江豪, 杨尚, 王刚, 等. 脉冲电流对AZ31镁合金板材单向拉伸性能的影响[J]. 锻压技术, 2023, 48(12): 25-34.
|
[46]
|
霭振球, 闫磊, 董湘怀. AZ31镁合金与DP980高强钢的纯电塑性效应实验研究[J]. 热加工工艺, 2015, 44(4): 31-36.
|
[47]
|
时文才, 武川, 周宇杰, 等. 考虑韧性损伤的Ti6554电塑性本构模型建立及应用[J]. 塑性工程学报, 2023, 30(12): 175-183.
|
[48]
|
Klimov, K.M., Shnyrev, G.D., Novikov, I.I. and Isaev, A.V. (1975) Electroplastic Rolling of Tungsten and Tungsten-rhenium Wire into Strip of Micro Thickness. Metallbau Russ, 4, 107.
|
[49]
|
Spitsyn, V.I., Kopiev, A.V., Ryzhkov, V.G., Sokilov N.V., and Troitskii, O.A. (1977) Flatting Mill for Finest Tungsten Spring Band Using Ultrasound and Electroplastic Effect. Doklady Akademii Nauk, 236, 861.
|
[50]
|
Klimov, K.M., Morukhovich, A.M., Glezer, A.M. and Molotilov, B.V. (1981) Rolling of Iron-Cobalt Alloys Which Are Different to Pressure-Form, Using a High Density Electric Current. Izvestiya Akademii Nauk SSSR, 6, 69.
|
[51]
|
Klimov, K.M. and Novikov, I.I. (2007) Absence of Strain Hardening Upon Electrostimulated Rolling of Metals under Cold Conditions. Doklady Physics, 52, 359-360. https://doi.org/10.1134/s1028335807070038
|
[52]
|
Xu, Z., Tang, G., Tian, S., Ding, F. and Tian, H. (2007) Research of Electroplastic Rolling of AZ31 Mg Alloy Strip. Journal of Materials Processing Technology, 182, 128-133. https://doi.org/10.1016/j.jmatprotec.2006.07.019
|
[53]
|
Mal’tsev, I.M. (2008) Electroplastic Rolling of Metals with a High-Density Current. Russian Journal of Non-Ferrous Metals, 49, 175-180. https://doi.org/10.3103/s1067821208030097
|
[54]
|
Humphreys, F.J. and Hatherly, M. (1995) Recrystallization and Related Annealing Phenomena. Pergamon Press.
|
[55]
|
Guan, L., Tang, G.Y. and Chu, P.K. Microstructure and Texture Development during Single Pass Large Draught Rolling of Mg-3Al-1Zn Magnesium Alloy Sheets by Electroplastic Rolling. Journal of Materials Research. (Submitted)
|
[56]
|
郑兴鹏, 唐国翌, 宋国林, 等. 304不锈钢带材电致塑性轧制[J]. 钢铁, 2014, 49(11): 92-96.
|
[57]
|
黄焕超, 刘美娟, 孙明, 等. 电塑性轧制V-Ti-Ni氢分离合金的组织与性能[J]. 金属热处理, 2021, 46(3): 153-158.
|
[58]
|
徐志超, 熊峰, 杨文举, 等. 稀土镁合金轧制成形研究进展[J/OL]. 河南理工大学学报(自然科学版): 1-20. http://kns.cnki.net/kcms/detail/41.1384.N.20240909.1331.002.html, 2025-01-08.
|
[59]
|
Magargee, J., Morestin, F. and Cao, J. (2013) Characterization of Flow Stress for Commercially Pure Titanium Subjected to Electrically Assisted Deformation. Journal of Engineering Materials and Technology, 135, Article ID: 041003. https://doi.org/10.1115/1.4024394
|
[60]
|
姜颢天, 靳刚, 秦娜, 等. 基于电塑性效应的钨合金铣削试验研究[J]. 塑性工程学报, 2022, 29(8): 123-130.
|
[61]
|
黄波涛. GH4169高温合金电塑性辅助铣削实验研究[D]: [硕士学位论文]. 南昌: 南昌航空大学, 2021.
|
[62]
|
黄波涛, 高延峰. 电塑性辅助铣削GH4169高温合金的实验研究[J]. 塑性工程学报, 2020, 27(12): 82-87.
|
[63]
|
路冬, 聂熹, 舒嵘, 等. TC4钛合金电塑性车削表面质量试验研究[J]. 工具技术, 2017, 51(8): 68-72.
|
[64]
|
范会友. 脉冲电流辅助切削GH4169的切削机理研究[D]: [硕士学位论文]. 长春: 长春工业大学, 2023.
|
[65]
|
廖鹏飞. 基于电塑性-超声振动耦合效应的钛合金车削实验研究[D]: [硕士学位论文]. 南昌: 南昌航空大学, 2018.
|
[66]
|
廖鹏飞, 路冬, 舒嵘, 等. 基于电塑性-超声振动耦合作用的钛合金车削实验研究[J]. 陕西师范大学学报(自然科学版), 2018, 46(2): 35-39.
|