[1]
|
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. https://doi.org/10.1016/j.diabres.2021.109119
|
[2]
|
Peng, W., Li, K., Yan, A.F., Shi, Z., Zhang, J., Cheskin, L.J., et al. (2022) Prevalence, Management, and Associated Factors of Obesity, Hypertension, and Diabetes in Tibetan Population Compared with China Overall. International Journal of Environmental Research and Public Health, 19, Article 8787. https://doi.org/10.3390/ijerph19148787
|
[3]
|
张泽鑫, 罗樱樱, 刘林, 等. 拉萨地区藏族成年人群糖尿病前期及糖尿病患病率初步调查分析[J]. 中国糖尿病杂志, 2019, 27(8): 567-571.
|
[4]
|
He, C., Zhu, B., Gao, W., Wu, Q. and Zhang, C. (2024) Study on Allele Specific Expression of Long-Term Residents in High Altitude Areas. Evolutionary Bioinformatics, 20, 1-6. https://doi.org/10.1177/11769343241257344
|
[5]
|
Missiaen, R., Lesner, N.P. and Simon, M.C. (2023) HIF: A Master Regulator of Nutrient Availability and Metabolic Cross‐Talk in the Tumor Microenvironment. The EMBO Journal, 42, e112067. https://doi.org/10.15252/embj.2022112067
|
[6]
|
Kierans, S.J. and Taylor, C.T. (2020) Regulation of Glycolysis by the Hypoxia‐Inducible Factor (HIF): Implications for Cellular Physiology. The Journal of Physiology, 599, 23-37. https://doi.org/10.1113/jp280572
|
[7]
|
Peng, Y., Cui, C., He, Y., Ouzhuluobu,, Zhang, H., Yang, D., et al. (2017) Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia. Molecular Biology and Evolution, 34, 818-830. https://doi.org/10.1093/molbev/msw280
|
[8]
|
Ge, R., Simonson, T.S., Gordeuk, V., Prchal, J.T. and McClain, D.A. (2015) Metabolic Aspects of High‐Altitude Adaptation in Tibetans. Experimental Physiology, 100, 1247-1255. https://doi.org/10.1113/ep085292
|
[9]
|
Boehm, F.J. and Zhou, X. (2022) Statistical Methods for Mendelian Randomization in Genome-Wide Association Studies: A Review. Computational and Structural Biotechnology Journal, 20, 2338-2351. https://doi.org/10.1016/j.csbj.2022.05.015
|
[10]
|
Keaton, J.M., Kamali, Z., Xie, T., et al. (2024) Genome-Wide Analysis in over 1 Million Individuals of European Ancestry Yields Improved Polygenic Risk Scores for Blood Pressure Traits. Nature Genetics, 56, 778-791.
|
[11]
|
Zhao, C., Ma, T., Cheng, X., Zhang, G. and Bai, Y. (2024) Genome‐wide Association Study of Cardiometabolic Multimorbidity in the UK Biobank. Clinical Genetics, 106, 72-81. https://doi.org/10.1111/cge.14513
|
[12]
|
Bowden, J., Spiller, W., Del Greco M, F., Sheehan, N., Thompson, J., Minelli, C., et al. (2018) Improving the Visualization, Interpretation and Analysis of Two-Sample Summary Data Mendelian Randomization via the Radial Plot and Radial Regression. International Journal of Epidemiology, 47, 2100. https://doi.org/10.1093/ije/dyy265
|
[13]
|
Burgess, S. and Thompson, S.G. (2017) Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 377-389. https://doi.org/10.1007/s10654-017-0255-x
|
[14]
|
Wu, D., Potluri, N., Lu, J., Kim, Y. and Rastinejad, F. (2015) Structural Integration in Hypoxia-Inducible Factors. Nature, 524, 303-308. https://doi.org/10.1038/nature14883
|
[15]
|
Lee, F.S. (2024) Hypoxia Inducible Factor Pathway Proteins in High-Altitude Mammals. Trends in Biochemical Sciences, 49, 79-92. https://doi.org/10.1016/j.tibs.2023.11.002
|
[16]
|
Beall, C.M., Cavalleri, G.L., Deng, L., et al. (2010) Natural Selection on EPAS1 (HIF2α) Associated with Low Hemoglobin Concentration in Tibetan Highlanders. Proceedings of the National Academy of Sciences of the United States of America, 107, 11459-11464.
|
[17]
|
Lawrence, E.S., Gu, W., Bohlender, R.J., Anza-Ramirez, C., Cole, A.M., Yu, J.J., et al. (2024) Functional EPAS1/HIF2A Missense Variant Is Associated with Hematocrit in Andean Highlanders. Science Advances, 10, eadj5661. https://doi.org/10.1126/sciadv.adj5661
|
[18]
|
刘海云, 占诗梦, 彭淑红, 等. 葛根芩连汤对肥胖2型糖尿病前期胰岛素抵抗伴缺氧大鼠肾组织HIF-2α、EPO及GILUT4表达的影响[J]. 中药药理与临床, 2024, 40(1): 3-8.
|
[19]
|
Taniguchi, C.M., Finger, E.C., Krieg, A.J., Wu, C., Diep, A.N., LaGory, E.L., et al. (2013) Cross-Talk between Hypoxia and Insulin Signaling through Phd3 Regulates Hepatic Glucose and Lipid Metabolism and Ameliorates Diabetes. Nature Medicine, 19, 1325-1330. https://doi.org/10.1038/nm.3294
|
[20]
|
Brunt, J.J., Shi, S.Y., Schroer, S.A., Sivasubramaniyam, T., Cai, E.P. and Woo, M. (2014) Overexpression of HIF-2α in Pancreatic Β Cells Does Not Alter Glucose Homeostasis. Islets, 6, e1006075. https://doi.org/10.1080/19382014.2015.1006075
|
[21]
|
Moon, J., Riopel, M., Seo, J.B., Herrero-Aguayo, V., Isaac, R. and Lee, Y.S. (2022) HIF-2α Preserves Mitochondrial Activity and Glucose Sensing in Compensating Β-Cells in Obesity. Diabetes, 71, 1508-1524. https://doi.org/10.2337/db21-0736
|