|
[1]
|
Chaudhary, M.F.A., Hoffman, E.A., Guo, J., Comellas, A.P., Newell, J.D., Nagpal, P., et al. (2023) Predicting Severe Chronic Obstructive Pulmonary Disease Exacerbations Using Quantitative CT: A Retrospective Model Development and External Validation Study. The Lancet Digital Health, 5, e83-e92. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bernardini, M., Romeo, L., Misericordia, P. and Frontoni, E. (2020) Discovering the Type 2 Diabetes in Electronic Health Records Using the Sparse Balanced Support Vector Machine. IEEE Journal of Biomedical and Health Informatics, 24, 235-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rawson, T.M., Hernandez, B., Moore, L.S.P., Herrero, P., Charani, E., Ming, D., et al. (2020) A Real-World Evaluation of a Case-Based Reasoning Algorithm to Support Antimicrobial Prescribing Decisions in Acute Care. Clinical Infectious Diseases, 72, 2103-2111. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wang, C., Huang, C., Hsieh, M., Li, C., Chang, S., Li, W., et al. (2015) Evaluation and Comparison of Anatomical Landmark Detection Methods for Cephalometric X-Ray Images: A Grand Challenge. IEEE Transactions on Medical Imaging, 34, 1890-1900. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Arik, S.Ö., Ibragimov, B. and Xing, L. (2017) Fully Automated Quantitative Cephalometry Using Convolutional Neural Networks. Journal of Medical Imaging, 4, Article ID: 014501. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhong, Z., Li, J., Zhang, Z., Jiao, Z. and Gao, X. (2019) An Attention-Guided Deep Regression Model for Landmark Detection in Cephalograms. In: Shen, D., et al., Eds., Medical Image Computing and Computer Assisted Intervention—MICCAI 2019, Springer, 540-548. [Google Scholar] [CrossRef]
|
|
[7]
|
Yao, J., Zeng, W., He, T., Zhou, S., Zhang, Y., Guo, J., et al. (2022) Automatic Localization of Cephalometric Landmarks Based on Convolutional Neural Network. American Journal of Orthodontics and Dentofacial Orthopedics, 161, e250-e259. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ye, H., Cheng, Z., Ungvijanpunya, N., Chen, W., Cao, L. and Gou, Y. (2023) Is Automatic Cephalometric Software Using Artificial Intelligence Better than Orthodontist Experts in Landmark Identification? BMC Oral Health, 23, Article No. 467. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kök, H., Acilar, A.M. and İzgi, M.S. (2019) Usage and Comparison of Artificial Intelligence Algorithms for Determination of Growth and Development by Cervical Vertebrae Stages in Orthodontics. Progress in Orthodontics, 20, Article No. 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Amasya, H., Cesur, E., Yıldırım, D. and Orhan, K. (2020) Validation of Cervical Vertebral Maturation Stages: Artificial Intelligence vs Human Observer Visual Analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 158, e173-e179. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhou, J., Zhou, H., Pu, L., Gao, Y., Tang, Z., Yang, Y., et al. (2021) Development of an Artificial Intelligence System for the Automatic Evaluation of Cervical Vertebral Maturation Status. Diagnostics, 11, Article 2200. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Seo, H., Hwang, J., Jeong, T. and Shin, J. (2021) Comparison of Deep Learning Models for Cervical Vertebral Maturation Stage Classification on Lateral Cephalometric Radiographs. Journal of Clinical Medicine, 10, Article 3591. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Liao, N., Dai, J., Tang, Y., Zhong, Q. and Mo, S. (2022) ICVM: An Interpretable Deep Learning Model for CVM Assessment under Label Uncertainty. IEEE Journal of Biomedical and Health Informatics, 26, 4325-4334. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Xie, X., Wang, L. and Wang, A. (2010) Artificial Neural Network Modeling for Deciding If Extractions Are Necessary Prior to Orthodontic Treatment. The Angle Orthodontist, 80, 262-266. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Jung, S. and Kim, T. (2016) New Approach for the Diagnosis of Extractions with Neural Network Machine Learning. American Journal of Orthodontics and Dentofacial Orthopedics, 149, 127-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Li, P., Kong, D., Tang, T., Su, D., Yang, P., Wang, H., et al. (2019) Orthodontic Treatment Planning Based on Artificial Neural Networks. Scientific Reports, 9, Article No. 2037. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Etemad, L.E., Heiner, J.P., Amin, A.A., Wu, T., Chao, W., Hsieh, S., et al. (2024) Effectiveness of Machine Learning in Predicting Orthodontic Tooth Extractions: A Multi-Institutional Study. Bioengineering, 11, Article 888. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ryu, J., Kim, Y., Kim, T. and Jung, S. (2023) Evaluation of Artificial Intelligence Model for Crowding Categorization and Extraction Diagnosis Using Intraoral Photographs. Scientific Reports, 13, Artie No. 5177. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Nanda, S.B., Kalha, A.S., Jena, A.K., Bhatia, V. and Mishra, S. (2015) Artificial Neural Network (ANN) Modeling and Analysis for the Prediction of Change in the Lip Curvature Following Extraction and Non-Extraction Orthodontic Treatment. Journal of Dental Specialities, 3, Article 217. [Google Scholar] [CrossRef]
|
|
[20]
|
Tanikawa, C. and Yamashiro, T. (2021) Development of Novel Artificial Intelligence Systems to Predict Facial Morphology after Orthognathic Surgery and Orthodontic Treatment in Japanese Patients. Scientific Reports, 11, Article No. 15853. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Park, Y.S., Choi, J.H., Kim, Y., Choi, S.H., Lee, J.H., Kim, K.H., et al. (2022) Deep Learning-Based Prediction of the 3D Postorthodontic Facial Changes. Journal of Dental Research, 101, 1372-1379. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Thurzo, A., Kurilová, V. and Varga, I. (2021) Artificial Intelligence in Orthodontic Smart Application for Treatment Coaching and Its Impact on Clinical Performance of Patients Monitored with AI-Telehealth System. Healthcare, 9, Article 1695. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Homsi, K., Snider, V., Kusnoto, B., Atsawasuwan, P., Viana, G., Allareddy, V., et al. (2023) In-Vivo Evaluation of Artificial Intelligence Driven Remote Monitoring Technology for Tracking Tooth Movement and Reconstruction of 3-Dimensional Digital Models during Orthodontic Treatment. American Journal of Orthodontics and Dentofacial Orthopedics, 164, 690-699. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ferlito, T., Hsiou, D., Hargett, K., Herzog, C., Bachour, P., Katebi, N., et al. (2023) Assessment of Artificial Intelligence–based Remote Monitoring of Clear Aligner Therapy: A Prospective Study. American Journal of Orthodontics and Dentofacial Orthopedics, 164, 194-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Snider, V., Homsi, K., Kusnoto, B., Atsawasuwan, P., Viana, G., Allareddy, V., et al. (2023) Effectiveness of AI‐Driven Remote Monitoring Technology in Improving Oral Hygiene during Orthodontic Treatment. Orthodontics & Craniofacial Research, 26, 102-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Abu Arqub, S., Al-Moghrabi, D., Allareddy, V., Upadhyay, M., Vaid, N. and Yadav, S. (2024) Content Analysis of AI-Generated (ChatGPT) Responses Concerning Orthodontic Clear Aligners. The Angle Orthodontist, 94, 263-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Daraqel, B., Wafaie, K., Mohammed, H., Cao, L., Mheissen, S., Liu, Y., et al. (2024) The Performance of Artificial Intelligence Models in Generating Responses to General Orthodontic Questions: ChatGPT vs Google Bard. American Journal of Orthodontics and Dentofacial Orthopedics, 165, 652-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Dursun, D. and Bilici Geçer, R. (2024) Can Artificial Intelligence Models Serve as Patient Information Consultants in Orthodontics? BMC Medical Informatics and Decision Making, 24, Article No. 211. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., et al. (2019) A Guide to Deep Learning in Healthcare. Nature Medicine, 25, 24-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Topol, E.J. (2019) High-performance Medicine: The Convergence of Human and Artificial Intelligence. Nature Medicine, 25, 44-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Holzinger, A., Carrington, A. and Müller, H. (2020) Measuring the Quality of Explanations: The System Causability Scale (SCS). KI—Künstliche Intelligenz, 34, 193-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Rieke, N., Hancox, J., Li, W., Milletarì, F., Roth, H.R., Albarqouni, S., et al. (2020) The Future of Digital Health with Federated Learning. NPJ Digital Medicine, 3, Article No. 119. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Obermeyer, Z., Powers, B., Vogeli, C. and Mullainathan, S. (2019) Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. Science, 366, 447-453. [Google Scholar] [CrossRef] [PubMed]
|