[1]
|
Chaudhary, M.F.A., Hoffman, E.A., Guo, J., Comellas, A.P., Newell, J.D., Nagpal, P., et al. (2023) Predicting Severe Chronic Obstructive Pulmonary Disease Exacerbations Using Quantitative CT: A Retrospective Model Development and External Validation Study. The Lancet Digital Health, 5, e83-e92. https://doi.org/10.1016/s2589-7500(22)00232-1
|
[2]
|
Bernardini, M., Romeo, L., Misericordia, P. and Frontoni, E. (2020) Discovering the Type 2 Diabetes in Electronic Health Records Using the Sparse Balanced Support Vector Machine. IEEE Journal of Biomedical and Health Informatics, 24, 235-246. https://doi.org/10.1109/jbhi.2019.2899218
|
[3]
|
Rawson, T.M., Hernandez, B., Moore, L.S.P., Herrero, P., Charani, E., Ming, D., et al. (2020) A Real-World Evaluation of a Case-Based Reasoning Algorithm to Support Antimicrobial Prescribing Decisions in Acute Care. Clinical Infectious Diseases, 72, 2103-2111. https://doi.org/10.1093/cid/ciaa383
|
[4]
|
Wang, C., Huang, C., Hsieh, M., Li, C., Chang, S., Li, W., et al. (2015) Evaluation and Comparison of Anatomical Landmark Detection Methods for Cephalometric X-Ray Images: A Grand Challenge. IEEE Transactions on Medical Imaging, 34, 1890-1900. https://doi.org/10.1109/tmi.2015.2412951
|
[5]
|
Arik, S.Ö., Ibragimov, B. and Xing, L. (2017) Fully Automated Quantitative Cephalometry Using Convolutional Neural Networks. Journal of Medical Imaging, 4, Article ID: 014501. https://doi.org/10.1117/1.jmi.4.1.014501
|
[6]
|
Zhong, Z., Li, J., Zhang, Z., Jiao, Z. and Gao, X. (2019) An Attention-Guided Deep Regression Model for Landmark Detection in Cephalograms. In: Shen, D., et al., Eds., Medical Image Computing and Computer Assisted Intervention—MICCAI 2019, Springer, 540-548. https://doi.org/10.1007/978-3-030-32226-7_60
|
[7]
|
Yao, J., Zeng, W., He, T., Zhou, S., Zhang, Y., Guo, J., et al. (2022) Automatic Localization of Cephalometric Landmarks Based on Convolutional Neural Network. American Journal of Orthodontics and Dentofacial Orthopedics, 161, e250-e259. https://doi.org/10.1016/j.ajodo.2021.09.012
|
[8]
|
Ye, H., Cheng, Z., Ungvijanpunya, N., Chen, W., Cao, L. and Gou, Y. (2023) Is Automatic Cephalometric Software Using Artificial Intelligence Better than Orthodontist Experts in Landmark Identification? BMC Oral Health, 23, Article No. 467. https://doi.org/10.1186/s12903-023-03188-4
|
[9]
|
Kök, H., Acilar, A.M. and İzgi, M.S. (2019) Usage and Comparison of Artificial Intelligence Algorithms for Determination of Growth and Development by Cervical Vertebrae Stages in Orthodontics. Progress in Orthodontics, 20, Article No. 41. https://doi.org/10.1186/s40510-019-0295-8
|
[10]
|
Amasya, H., Cesur, E., Yıldırım, D. and Orhan, K. (2020) Validation of Cervical Vertebral Maturation Stages: Artificial Intelligence vs Human Observer Visual Analysis. American Journal of Orthodontics and Dentofacial Orthopedics, 158, e173-e179. https://doi.org/10.1016/j.ajodo.2020.08.014
|
[11]
|
Zhou, J., Zhou, H., Pu, L., Gao, Y., Tang, Z., Yang, Y., et al. (2021) Development of an Artificial Intelligence System for the Automatic Evaluation of Cervical Vertebral Maturation Status. Diagnostics, 11, Article 2200. https://doi.org/10.3390/diagnostics11122200
|
[12]
|
Seo, H., Hwang, J., Jeong, T. and Shin, J. (2021) Comparison of Deep Learning Models for Cervical Vertebral Maturation Stage Classification on Lateral Cephalometric Radiographs. Journal of Clinical Medicine, 10, Article 3591. https://doi.org/10.3390/jcm10163591
|
[13]
|
Liao, N., Dai, J., Tang, Y., Zhong, Q. and Mo, S. (2022) ICVM: An Interpretable Deep Learning Model for CVM Assessment under Label Uncertainty. IEEE Journal of Biomedical and Health Informatics, 26, 4325-4334. https://doi.org/10.1109/jbhi.2022.3179619
|
[14]
|
Xie, X., Wang, L. and Wang, A. (2010) Artificial Neural Network Modeling for Deciding If Extractions Are Necessary Prior to Orthodontic Treatment. The Angle Orthodontist, 80, 262-266. https://doi.org/10.2319/111608-588.1
|
[15]
|
Jung, S. and Kim, T. (2016) New Approach for the Diagnosis of Extractions with Neural Network Machine Learning. American Journal of Orthodontics and Dentofacial Orthopedics, 149, 127-133. https://doi.org/10.1016/j.ajodo.2015.07.030
|
[16]
|
Li, P., Kong, D., Tang, T., Su, D., Yang, P., Wang, H., et al. (2019) Orthodontic Treatment Planning Based on Artificial Neural Networks. Scientific Reports, 9, Article No. 2037. https://doi.org/10.1038/s41598-018-38439-w
|
[17]
|
Etemad, L.E., Heiner, J.P., Amin, A.A., Wu, T., Chao, W., Hsieh, S., et al. (2024) Effectiveness of Machine Learning in Predicting Orthodontic Tooth Extractions: A Multi-Institutional Study. Bioengineering, 11, Article 888. https://doi.org/10.3390/bioengineering11090888
|
[18]
|
Ryu, J., Kim, Y., Kim, T. and Jung, S. (2023) Evaluation of Artificial Intelligence Model for Crowding Categorization and Extraction Diagnosis Using Intraoral Photographs. Scientific Reports, 13, Artie No. 5177. https://doi.org/10.1038/s41598-023-32514-7
|
[19]
|
Nanda, S.B., Kalha, A.S., Jena, A.K., Bhatia, V. and Mishra, S. (2015) Artificial Neural Network (ANN) Modeling and Analysis for the Prediction of Change in the Lip Curvature Following Extraction and Non-Extraction Orthodontic Treatment. Journal of Dental Specialities, 3, Article 217. https://doi.org/10.5958/2393-9834.2015.00002.9
|
[20]
|
Tanikawa, C. and Yamashiro, T. (2021) Development of Novel Artificial Intelligence Systems to Predict Facial Morphology after Orthognathic Surgery and Orthodontic Treatment in Japanese Patients. Scientific Reports, 11, Article No. 15853. https://doi.org/10.1038/s41598-021-95002-w
|
[21]
|
Park, Y.S., Choi, J.H., Kim, Y., Choi, S.H., Lee, J.H., Kim, K.H., et al. (2022) Deep Learning-Based Prediction of the 3D Postorthodontic Facial Changes. Journal of Dental Research, 101, 1372-1379. https://doi.org/10.1177/00220345221106676
|
[22]
|
Thurzo, A., Kurilová, V. and Varga, I. (2021) Artificial Intelligence in Orthodontic Smart Application for Treatment Coaching and Its Impact on Clinical Performance of Patients Monitored with AI-Telehealth System. Healthcare, 9, Article 1695. https://doi.org/10.3390/healthcare9121695
|
[23]
|
Homsi, K., Snider, V., Kusnoto, B., Atsawasuwan, P., Viana, G., Allareddy, V., et al. (2023) In-Vivo Evaluation of Artificial Intelligence Driven Remote Monitoring Technology for Tracking Tooth Movement and Reconstruction of 3-Dimensional Digital Models during Orthodontic Treatment. American Journal of Orthodontics and Dentofacial Orthopedics, 164, 690-699. https://doi.org/10.1016/j.ajodo.2023.04.019
|
[24]
|
Ferlito, T., Hsiou, D., Hargett, K., Herzog, C., Bachour, P., Katebi, N., et al. (2023) Assessment of Artificial Intelligence–based Remote Monitoring of Clear Aligner Therapy: A Prospective Study. American Journal of Orthodontics and Dentofacial Orthopedics, 164, 194-200. https://doi.org/10.1016/j.ajodo.2022.11.020
|
[25]
|
Snider, V., Homsi, K., Kusnoto, B., Atsawasuwan, P., Viana, G., Allareddy, V., et al. (2023) Effectiveness of AI‐Driven Remote Monitoring Technology in Improving Oral Hygiene during Orthodontic Treatment. Orthodontics & Craniofacial Research, 26, 102-110. https://doi.org/10.1111/ocr.12666
|
[26]
|
Abu Arqub, S., Al-Moghrabi, D., Allareddy, V., Upadhyay, M., Vaid, N. and Yadav, S. (2024) Content Analysis of AI-Generated (ChatGPT) Responses Concerning Orthodontic Clear Aligners. The Angle Orthodontist, 94, 263-272. https://doi.org/10.2319/071123-484.1
|
[27]
|
Daraqel, B., Wafaie, K., Mohammed, H., Cao, L., Mheissen, S., Liu, Y., et al. (2024) The Performance of Artificial Intelligence Models in Generating Responses to General Orthodontic Questions: ChatGPT vs Google Bard. American Journal of Orthodontics and Dentofacial Orthopedics, 165, 652-662. https://doi.org/10.1016/j.ajodo.2024.01.012
|
[28]
|
Dursun, D. and Bilici Geçer, R. (2024) Can Artificial Intelligence Models Serve as Patient Information Consultants in Orthodontics? BMC Medical Informatics and Decision Making, 24, Article No. 211. https://doi.org/10.1186/s12911-024-02619-8
|
[29]
|
Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., et al. (2019) A Guide to Deep Learning in Healthcare. Nature Medicine, 25, 24-29. https://doi.org/10.1038/s41591-018-0316-z
|
[30]
|
Topol, E.J. (2019) High-performance Medicine: The Convergence of Human and Artificial Intelligence. Nature Medicine, 25, 44-56. https://doi.org/10.1038/s41591-018-0300-7
|
[31]
|
Holzinger, A., Carrington, A. and Müller, H. (2020) Measuring the Quality of Explanations: The System Causability Scale (SCS). KI—Künstliche Intelligenz, 34, 193-198. https://doi.org/10.1007/s13218-020-00636-z
|
[32]
|
Rieke, N., Hancox, J., Li, W., Milletarì, F., Roth, H.R., Albarqouni, S., et al. (2020) The Future of Digital Health with Federated Learning. NPJ Digital Medicine, 3, Article No. 119. https://doi.org/10.1038/s41746-020-00323-1
|
[33]
|
Obermeyer, Z., Powers, B., Vogeli, C. and Mullainathan, S. (2019) Dissecting Racial Bias in an Algorithm Used to Manage the Health of Populations. Science, 366, 447-453. https://doi.org/10.1126/science.aax2342
|