|
[1]
|
Rodriguez del Rio, P., Liu, A.H., Borres, M.P., Södergren, E., Iachetti, F. and Casale, T.B. (2022) Asthma and Allergy: Unravelling a Tangled Relationship with a Focus on New Biomarkers and Treatment. International Journal of Molecular Sciences, 23, Article 3881. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Martinez, F.D. and Vercelli, D. (2013) Asthma. The Lancet, 382, 1360-1372. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
全球哮喘防治创议. 全球哮喘管理和预防策略[Z]. 2023.
|
|
[4]
|
Yang, Y., Jia, M., Ou, Y., Adcock, I.M. and Yao, X. (2021) Mechanisms and Biomarkers of Airway Epithelial Cell Damage in Asthma: A Review. The Clinical Respiratory Journal, 15, 1027-1045. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gans, M.D. and Gavrilova, T. (2020) Understanding the Immunology of Asthma: Pathophysiology, Biomarkers, and Treatments for Asthma Endotypes. Paediatric Respiratory Reviews, 36, 118-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Biomarkers Definitions Working Group (2001) Biomarkers and Surrogate Endpoints: Preferred Definitions and Conceptual Framework. Clinical Pharmacology and Therapeutics, 69, 89-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Perlikos, F., Hillas, G. and Loukides, S. (2016) Phenotyping and Endotyping Asthma Based on Biomarkers. Current Topics in Medicinal Chemistry, 16, 1582-1586. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Khan, N.S., Rubin, E., McKenna, B., Palowitch, B.L., Sonnenberg, F., Argon, J., et al. (2022) Biomarker Underuse Contributes to an Inability to Phenotype Patients with Severe Uncontrolled Asthma. Allergy and Asthma Proceedings, 43, 383-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Goyal, J.P. and Rajvanshi, N. (2023) Periostin: A Novel Biomarker for Asthma. Indian Journal of Pediatrics, 90, 427-428. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Narendra, D., Blixt, J. and Hanania, N.A. (2019) Immunological Biomarkers in Severe Asthma. Seminars in Immunology, 46, Article 101332. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fitzpatrick, A.M., Chipps, B.E., Holguin, F. and Woodruff, P.G. (2020) T2-“Low” Asthma: Overview and Management Strategies. The Journal of Allergy and Clinical Immunology: In Practice, 8, 452-463. https://pubmed.ncbi.nlm.nih.gov/32037109/ [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Maspero, J., Adir, Y., Al-Ahmad, M., Celis-Preciado, C.A., Colodenco, F.D., Giavina-Bianchi, P., et al. (2022) Type 2 Inflammation in Asthma and Other Airway Diseases. ERJ Open Research, 8. http://publications-ersnet-org-s.webvpn.zju.edu.cn:8001/content/erjor/8/3/00576-2021 [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Marone, G., Spadaro, G., Braile, M., Poto, R., Criscuolo, G., Pahima, H., et al. (2019) Tezepelumab: A Novel Biological Therapy for the Treatment of Severe Uncontrolled Asthma. Expert Opinion on Investigational Drugs, 28, 931-940. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Olin, J.T. and Wechsler, M.E. (2014) Asthma: Pathogenesis and Novel Drugs for Treatment. BMJ, 349, g5517-g5517. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tindemans, I., Serafini, N., Di Santo, J.P. and Hendriks, R.W. (2014) GATA-3 Function in Innate and Adaptive Immunity. Immunity, 41, 191-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Gauthier, M., Ray, A. and Wenzel, S.E. (2015) Evolving Concepts of Asthma. American Journal of Respiratory and Critical Care Medicine, 192, 660-668. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
McDonnell, J.M., Dhaliwal, B., Sutton, B.J. and Gould, H.J. (2023) IgE, IgE Receptors and Anti-IgE Biologics: Protein Structures and Mechanisms of Action. Annual Review of Immunology, 41, 255-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Arroyave, W.D., Rabito, F.A. and Carlson, J.C. (2013) The Relationship between a Specific IgE Level and Asthma Outcomes: Results from the 2005-2006 National Health and Nutrition Examination Survey. The Journal of Allergy and Clinical Immunology: In Practice, 1, 501-508. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Naumova, V., Beltyukov, E., Niespodziana, K., Errhalt, P., Valenta, R., Karaulov, A., et al. (2022) Cumulative IgE-Levels Specific for Respiratory Allergens as Biomarker to Predict Efficacy of Anti-IgE-Based Treatment of Severe Asthma. Frontiers in Immunology, 13, Article 941492. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Chang, Y., Lee, T., Huang, C., Chang, P., Chen, Y. and Fu, C. (2021) The Role of Phadiatop Tests and Total Immunoglobulin E Levels in Screening Aeroallergens: A Hospital-Based Cohort Study. Journal of Asthma and Allergy, 14, 135-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Roberts, G., Pfaar, O., Akdis, C.A., Ansotegui, I.J., Durham, S.R., Gerth van Wijk, R., et al. (2017) EAACI Guidelines on Allergen Immunotherapy: Allergic Rhinoconjunctivitis. Allergy, 73, 765-798. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hamilton, R.G. (2016) Monitoring Allergic Patients on Omalizumab with Free and Total Serum IgE Measurements. The Journal of Allergy and Clinical Immunology: In Practice, 4, 366-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yuan, Y.L., Zhang, X., Liu, L., Wang, G., Chen-Yu Hsu, A., Huang, D., et al. (2021) Total IgE Variability Is Associated with Future Asthma Exacerbations: A 1-Year Prospective Cohort Study. The Journal of Allergy and Clinical Immunology: In Practice, 9, 2812-2824. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Savran, O., Bønnelykke, K. and Ulrik, C.S. (2024) Characteristics of Adults with Severe Asthma in Childhood: A 60-Year Follow-Up Study. CHEST, 166, 676-684. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shah, S.P., Grunwell, J., Shih, J., Stephenson, S. and Fitzpatrick, A.M. (2019) Exploring the Utility of Noninvasive Type 2 Inflammatory Markers for Prediction of Severe Asthma Exacerbations in Children and Adolescents. The Journal of Allergy and Clinical Immunology: In Practice, 7, 2624-2633.e2. https://pubmed.ncbi.nlm.nih.gov/31100552/ [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Chipps, B.E., Jarjour, N., Calhoun, W.J., Iqbal, A., Haselkorn, T., Yang, M., et al. (2021) A Comprehensive Analysis of the Stability of Blood Eosinophil Levels. Annals of the American Thoracic Society, 18, 1978-1987. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Fricker, M., Heaney, L.G. and Upham, J.W. (2017) Can Biomarkers Help Us Hit Targets in Difficult‐to‐Treat Asthma? Respirology, 22, 430-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
GINA (2024) Global Strategy for Asthma Management and Prevention. https://ginasthma.org/2024-report/
|
|
[29]
|
Jensen, S.K., Melgaard, M.E., Pedersen, C.T., Yang, L., Vahman, N., Thyssen, J.P., et al. (2023) Limited Clinical Role of Blood Eosinophil Levels in Early Life Atopic Disease: A Mother-Child Cohort Study. Pediatric Allergy and Immunology, 34, e14050. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gaillard, E.A., Kuehni, C.E., Turner, S., Goutaki, M., Holden, K.A., de Jong, C.C.M., et al. (2021) European Respiratory Society Clinical Practice Guidelines for the Diagnosis of Asthma in Children Aged 5-16 Years. European Respiratory Journal, 58, Article 2004173. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Barański, K. (2024) Predictive Value of Fractional Exhaled Nitric Oxide (FeNO) in the Diagnosis of Asthma for Epidemiological Purposes—An 8-Year Follow-Up Study. Advances in Respiratory Medicine, 92, 36-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bacharier, L.B., Pavord, I.D., Maspero, J.F., Jackson, D.J., Fiocchi, A.G., Mao, X., et al. (2024) Blood Eosinophils and Fractional Exhaled Nitric Oxide Are Prognostic and Predictive Biomarkers in Childhood Asthma. Journal of Allergy and Clinical Immunology, 154, 101-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Barry, L.E., O’Neill, C., Butler, C., Chaudhuri, R. and Heaney, L.G. (2023) Cost-Effectiveness of Fractional Exhaled Nitric Oxide Suppression Testing as an Adherence Screening Tool among Patients with Difficult-to-Control Asthma. The Journal of Allergy and Clinical Immunology: In Practice, 11, 1796-1804.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Sunde, R.B., Thorsen, J., Skov, F., Hesselberg, L., Kyvsgaard, J., Følsgaard, N.V., et al. (2023) Exhaled Nitric Oxide Is Only an Asthma‐Relevant Biomarker among Children with Allergic Sensitization. Pediatric Allergy and Immunology, 34, e14044. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Bystrom, J., Amin, K. and Bishop-Bailey, D. (2011) Analysing the Eosinophil Cationic Protein—A Clue to the Function of the Eosinophil Granulocyte. Respiratory Research, 12, Article No. 10. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tang, M., Charbit, A.R., Johansson, M.W., Jarjour, N.N., Denlinger, L.C., Raymond, W.W., et al. (2024) Utility of Eosinophil Peroxidase as a Biomarker of Eosinophilic Inflammation in Asthma. Journal of Allergy and Clinical Immunology, 154, 580-591.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Ackerman, S.J. (2024) Sputum Eosinophil Peroxidase: Building a Better Biomarker for Eosinophilic Asthma. Journal of Allergy and Clinical Immunology, 154, 546-548. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kuai, S. and Zhao, P. (2023) Association of EDN Levels in Patients with Asthma and Correlation with Fev1%: A Meta-Analysis. Allergy and Asthma Proceedings, 44, 244-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chakraborty, S., Hammar, K.S., Filiou, A.E., Holmdahl, I., Hoyer, A., Ekoff, H., et al. (2022) Longitudinal Eosinophil‐derived Neurotoxin Measurements and Asthma Development in Preschool Wheezers. Clinical & Experimental Allergy, 52, 1338-1342. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Rutten, B., Young, S., Rhedin, M., Olsson, M., Kurian, N., Syed, F., et al. (2021) Eosinophil-Derived Neurotoxin: A Biologically and Analytically Attractive Asthma Biomarker. PLOS ONE, 16, e0246627. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Malinovschi, A., Rydell, N., Fujisawa, T., Borres, M.P. and Kim, C. (2023) Clinical Potential of Eosinophil-Derived Neurotoxin in Asthma Management. The Journal of Allergy and Clinical Immunology: In Practice, 11, 750-761. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
An, J., Lee, J., Sim, J.H., Song, W., Kwon, H., Cho, Y.S., et al. (2020) Serum Eosinophil-Derived Neurotoxin Better Reflect Asthma Control Status than Blood Eosinophil Counts. The Journal of Allergy and Clinical Immunology: In Practice, 8, 2681-2688.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Malik, A. and Batra, J.K. (2012) Antimicrobial Activity of Human Eosinophil Granule Proteins: Involvement in Host Defence against Pathogens. Critical Reviews in Microbiology, 38, 168-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Granger, V., Zerimech, F., Arab, J., Siroux, V., de Nadai, P., Tsicopoulos, A., et al. (2021) Blood Eosinophil Cationic Protein and Eosinophil-Derived Neurotoxin Are Associated with Different Asthma Expression and Evolution in Adults. Thorax, 77, 552-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Shah, S.N., Grunwell, J.R., Mohammad, A.F., Stephenson, S.T., Lee, G.B., Vickery, B.P., et al. (2021) Performance of Eosinophil Cationic Protein as a Biomarker in Asthmatic Children. The Journal of Allergy and Clinical Immunology: In Practice, 9, 2761-2769.E2. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Carr, T.F., Zeki, A.A. and Kraft, M. (2018) Eosinophilic and Noneosinophilic Asthma. American Journal of Respiratory and Critical Care Medicine, 197, 22-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Cristiane Baldo1,2, D., Gustavo Romaldini1, J., Margaret Menezes Pizzichini3, M., Eduardo D. Cançado1, J., Dellavance2, A. and Stirbulov1, R. (2023) Periostin as an Important Biomarker of Inflammatory Phenotype T2 in Brazilian Asthma Patients. Jornal Brasileiro de Pneumologia, 49, e20220040. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Choudhary, S., Kumar, P., Banerjee, M., Singh, K. and Goyal, J.P. (2023) Relationship of Serum Periostin with Asthma Control in Children: Single Center Experience. Indian Pediatrics, 60, 822-825. [Google Scholar] [CrossRef]
|
|
[49]
|
Yang, L., Zhao, Q. and Wang, S. (2020) The Role of Serum Periostin in the Diagnosis of Asthma: A Meta-Analysis. Allergy and Asthma Proceedings, 41, 240-247. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Yavuz, S.T., Bagci, S., Bolat, A., Akin, O. and Ganschow, R. (2021) Association of Serum Periostin Levels with Clinical Features in Children with Asthma. Pediatric Allergy and Immunology, 32, 937-944. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Kumar, K., Singh, M., Mathew, J.L., Vaidya, P.C. and Verma Attri, S. (2022) Serum Periostin Level in Children with Asthma. Indian Journal of Pediatrics, 90, 438-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Buhl, R., Korn, S., Menzies-Gow, A., Aubier, M., Chapman, K.R., Canonica, G.W., et al. (2020) Prospective, Single-Arm, Longitudinal Study of Biomarkers in Real-World Patients with Severe Asthma. The Journal of Allergy and Clinical Immunology: In Practice, 8, 2630-2639.E6. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Al‐Shaikhly, T., Murphy, R.C., Lai, Y., Frevert, C.W., Debley, J.S., Ziegler, S.F., et al. (2023) Sputum Periostin Is a Biomarker of Type 2 Inflammation but Not Airway Dysfunction in Asthma. Respirology, 28, 491-494. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Busby, J., Holweg, C.T.J., Chai, A., Bradding, P., Cai, F., Chaudhuri, R., et al. (2019) Change in Type-2 Biomarkers and Related Cytokines with Prednisolone in Uncontrolled Severe Oral Corticosteroid Dependent Asthmatics: An Interventional Open-Label Study. Thorax, 74, 806-809. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Friend, S.L., Hosier, S., Nelson, A., et al. (1994) A Thymic Stromal Cell Line Supports in vitro Development of Surface IgM+ B Cells and Produces a Novel Growth Factor Affecting B and T Lineage Cells. Experimental Hematology, 22, 321-328.
|
|
[56]
|
Chen, X., Deng, R., Chi, W., Hua, X., Lu, F., Bian, F., et al. (2019) IL‐27 Signaling Deficiency Develops Th17‐Enhanced Th2‐Dominant Inflammation in Murine Allergic Conjunctivitis Model. Allergy, 74, 910-921. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Hong, H., Liao, S., Chen, F., Yang, Q. and Wang, D. (2020) Role of IL‐25, IL‐33, and TSLP in Triggering United Airway Diseases toward Type 2 Inflammation. Allergy, 75, 2794-2804. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Caminati, M., Buhl, R., Corren, J., Hanania, N.A., Kim, H., Korn, S., et al. (2023) Tezepelumab in Patients with Allergic and Eosinophilic Asthma. Allergy, 79, 1134-1145. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Vrsalović, R., Korošec, P., Štefanović, I.M., Bidovec-Stojkovič, U., Čičak, B., Harjaček, M., et al. (2022) Value of Thymic Stromal Lymphopoietin as a Biomarker in Children with Asthma. Respiratory Medicine, 193, Article 106757. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Fricker, M., McDonald, V.M., Winter, N.A., Baines, K.J., Wark, P.A.B., Simpson, J.L., et al. (2021) Molecular Markers of Type 2 Airway Inflammation Are Similar between Eosinophilic Severe Asthma and Eosinophilic Chronic Obstructive Pulmonary Disease. Allergy, 76, 2079-2089. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Kolmert, J., Gómez, C., Balgoma, D., Sjödin, M., Bood, J., Konradsen, J.R., et al. (2021) Urinary Leukotriene E4 and Prostaglandin D2 Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study. American Journal of Respiratory and Critical Care Medicine, 203, 37-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Ricciardolo, F.L.M., Sorbello, V., Folino, A., Gallo, F., Massaglia, G.M., Favatà, G., et al. (2017) Identification of IL-17F/Frequent Exacerbator Endotype in Asthma. Journal of Allergy and Clinical Immunology, 140, 395-406. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Samitas, K., Zervas, E. and Gaga, M. (2017) T2-Low Asthma: Current Approach to Diagnosis and Therapy. Current Opinion in Pulmonary Medicine, 23, 48-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Hammad, H. and Lambrecht, B.N. (2021) The Basic Immunology of Asthma. Cell, 184, 1469-1485. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Tliba, O. and Panettieri, R.A. (2019) Paucigranulocytic Asthma: Uncoupling of Airway Obstruction from Inflammation. Journal of Allergy and Clinical Immunology, 143, 1287-1294. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Alam, R., Good, J., Rollins, D., Verma, M., Chu, H., Pham, T., et al. (2017) Airway and Serum Biochemical Correlates of Refractory Neutrophilic Asthma. Journal of Allergy and Clinical Immunology, 140, 1004-1014.E13. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Grunwell, J.R., Stephenson, S.T., Tirouvanziam, R., Brown, L.A.S., Brown, M.R. and Fitzpatrick, A.M. (2019) Children with Neutrophil-Predominant Severe Asthma Have Proinflammatory Neutrophils with Enhanced Survival and Impaired Clearance. The Journal of Allergy and Clinical Immunology: In Practice, 7, 516-525.E6. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Su, M.‐W., Lin, W.‐C., Tsai, C.‐H., Chiang, B.‐L., Yang, Y.‐H., Lin, Y.‐T., et al. (2018) Childhood Asthma Clusters Reveal Neutrophil‐Predominant Phenotype with Distinct Gene Expression. Allergy, 73, 2024-2032. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Seys, S.F., Lokwani, R., Simpson, J.L. and Bullens, D.M.A. (2019) New Insights in Neutrophilic Asthma. Current Opinion in Pulmonary Medicine, 25, 113-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Sutherland, T.E. (2018) Chitinase-Like Proteins as Regulators of Innate Immunity and Tissue Repair: Helpful Lessons for Asthma? Biochemical Society Transactions, 46, 141-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Liu, L., Zhang, X., Liu, Y., Zhang, L., Zheng, J., Wang, J., et al. (2019) Chitinase-Like Protein YKL-40 Correlates with Inflammatory Phenotypes, Anti-Asthma Responsiveness and Future Exacerbations. Respiratory Research, 20, Article No. 95. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Guvenir, H., Buyuktiryaki, B., Kulhas Celik, I., Civelek, E., Kilic Suloglu, A., Karaaslan, C., et al. (2020) Can Serum Periostin, YKL‐40, and Osteopontin Levels in Pre‐School Children with Recurrent Wheezing Predict Later Development of Asthma? Pediatric Allergy and Immunology, 32, 77-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Basu, S. (2010) Bioactive Eicosanoids: Role of Prostaglandin F2α and F2-Isoprostanes in Inflammation and Oxidative Stress Related Pathology. Molecules and Cells, 30, 383-392. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Woo, S., Park, H.S., Yang, E., Ban, G. and Park, H. (2024) 8-Iso-Prostaglandin F2α as a Biomarker of Type 2 Low Airway Inflammation and Remodeling in Adult Asthma. Annals of Allergy, Asthma & Immunology, 133, 73-80.E2. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Rodrigo-Muñoz, J.M., Gil-Martínez, M., Lorente-Sorolla, C., García-Latorre, R., Valverde-Monge, M., Quirce, S., et al. (2022) MiR-144-3p Is a Biomarker Related to Severe Corticosteroid-Dependent Asthma. Frontiers in Immunology, 13, Article 858722. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Xu, L., Yi, M., Tan, Y., Yi, Z. and Zhang, Y. (2020) A Comprehensive Analysis of MicroRNAs as Diagnostic Biomarkers for Asthma. Therapeutic Advances in Respiratory Disease, 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Vázquez‐Mera, S., Martelo‐Vidal, L., Miguéns‐Suárez, P., Saavedra‐Nieves, P., Arias, P., González‐Fernández, C., et al. (2022) Serum Exosome inflamma‐mirs Are Surrogate Biomarkers for Asthma Phenotype and Severity. Allergy, 78, 141-155. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Alhamdan, F., Greulich, T., Daviaud, C., Marsh, L.M., Pedersen, F., Thölken, C., et al. (2023) Identification of Extracellular Vesicle MicroRNA Signatures Specifically Linked to Inflammatory and Metabolic Mechanisms in Obesity‐associated Low Type‐2 Asthma. Allergy, 78, 2944-2958. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Uguz, A., Berber, Z., Coskun, M., Halide Akbas, S. and Yegin, O. (2005) Mannose‐Binding Lectin Levels in Children with Asthma. Pediatric Allergy and Immunology, 16, 231-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Borta, S.M., Dumitra, S., Miklos, I., Popetiu, R., Pilat, L., Pușchiță, M., et al. (2020) Clinical Relevance of Plasma Concentrations of MBL in Accordance with IgE Levels in Children Diagnosed with Bronchial Asthma. Medicina, 56, Article 594. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Shi, J., Zhu, X., Xie, M., Wang, J., He, Y., Xu, Y., et al. (2016) MBL2 Polymorphisms and the Risk of Asthma. Annals of Allergy, Asthma & Immunology, 117, 417-422.E1. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Elgendy, A. (2024) Assessment of Tenascin C Levels in the Serum of Patients with Bronchial Asthma. Egyptian Journal of Immunology, 31, 20-29. [Google Scholar] [CrossRef]
|
|
[83]
|
Wang, Z., He, Y., Li, Q., Zhao, Y., Zhang, G. and Luo, Z. (2023) Dysregulation of Iron Homeostasis in Airways Associated with Persistent Preschool Wheezing. Respiratory Research, 24, Article No. 170. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Abboud, M.M., Al-Rawashde, F.A. and Al-Zayadneh, E.M. (2021) Alterations of Serum and Saliva Oxidative Markers in Patients with Bronchial Asthma. Journal of Asthma, 59, 2154-2161. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Shimizu, T. (2009) Lipid Mediators in Health and Disease: Enzymes and Receptors as Therapeutic Targets for the Regulation of Immunity and Inflammation. Annual Review of Pharmacology and Toxicology, 49, 123-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Wang, S., Tang, K., Lu, Y., Tian, Z., Huang, Z., Wang, M., et al. (2021) Revealing the Role of Glycerophospholipid Metabolism in Asthma through Plasma Lipidomics. Clinica Chimica Acta, 513, 34-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Correnti, S., Preianò, M., Gamboni, F., Stephenson, D., Pelaia, C., Pelaia, G., et al. (2024) An Integrated Metabo-Lipidomics Profile of Induced Sputum for the Identification of Novel Biomarkers in the Differential Diagnosis of Asthma and COPD. Journal of Translational Medicine, 22, Article No. 301. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Gürdeniz, G., Kim, M., Brustad, N., Ernst, M., Russo, F., Stokholm, J., et al. (2022) Furan Fatty Acid Metabolite in Newborns Predicts Risk of Asthma. Allergy, 78, 429-438. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Xu, S., Liu, W., Zhang, L., He, Q., Ma, C., Jiang, J., et al. (2023) High Mobility Group Box 1 Levels as Potential Predictors of Asthma Severity. Chinese Medical Journal, 136, 1606-1608. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Ingram, J.L., Slade, D., Church, T.D., Francisco, D., Heck, K., Sigmon, R.W., et al. (2016) Role of Matrix Metalloproteinases-1 and-2 in Interleukin-13-Suppressed Elastin in Airway Fibroblasts in Asthma. American Journal of Respiratory Cell and Molecular Biology, 54, 41-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Prabha, A., Lokesh, K.S., Chaya, S.K., Jayaraj, B.S., Malamardi, S., Subbarao, M.V.S.S.T., et al. (2021) Pilot Study Investigating Diagnostic Utility of Serum MMP-1 and Tgf-Β1 in Asthma in ‘real World’ Clinical Practice in India. Journal of Clinical Pathology, 75, 222-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Naveed, S., Clements, D., Jackson, D.J., Philp, C., Billington, C.K., Soomro, I., et al. (2017) Matrix Metalloproteinase-1 Activation Contributes to Airway Smooth Muscle Growth and Asthma Severity. American Journal of Respiratory and Critical Care Medicine, 195, 1000-1009. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Chen, F., Liang, Y., Zeng, Z., Du, L., Xu, C., Guo, Y., et al. (2022) Association of Increased Basic Salivary Proline‐Rich Protein 1 Levels in Induced Sputum with Type 2‐High Asthma. Immunity, Inflammation and Disease, 10, e602. [Google Scholar] [CrossRef] [PubMed]
|