|
[1]
|
World Health Organization (2022) Global Tuberculosis Report 2022 Factsheet.
|
|
[2]
|
杨晓明, 李忠明. 提升卡介苗免疫保护力的关键技术和研发新型结核病疫苗的策略[J]. 中华微生物学和免疫学杂志, 2012, 32(9): 761-764.
|
|
[3]
|
Fol, M., Druszczynska, M., Wlodarczyk, M., Ograczyk, E. and Rudnicka, W. (2015) Immune Response Gene Polymorphisms in Tuberculosis. Acta Biochimica Polonica, 62, 633-640. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lee, M., Tsai, C., Wang, W., Chuang, T., Yang, C., Chang, L., et al. (2015) Plasma Biomarkers Can Predict Treatment Response in Tuberculosis Patients: A Prospective Observational Study. Medicine, 94, e1628. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Asadikaram, G., Akbari, H., Safi, Z., Shadkam, M., Khaksari, M., Shahrokhi, N., et al. (2018) Downregulation of IL‐22 Can Be Considered as a Risk Factor for Onset of Type 2 Diabetes. Journal of Cellular Biochemistry, 119, 9254-9260. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wolk, K. and Sabat, R. (2006) Interleukin-22: A Novel T-and NK-Cell Derived Cytokine That Regulates the Biology of Tissue Cells. Cytokine & Growth Factor Reviews, 17, 367-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Nagem, R.A.P., Colau, D., Dumoutier, L., Renauld, J., Ogata, C. and Polikarpov, I. (2002) Crystal Structure of Recombinant Human Interleukin-22. Structure, 10, 1051-1062. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bleicher, L., de Moura, P.R., Watanabe, L., Colau, D., Dumoutier, L., Renauld, J., et al. (2008) Crystal Structure of the IL‐22/IL‐22R1 Complex and Its Implications for the IL‐22 Signaling Mechanism. FEBS Letters, 582, 2985-2992. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Pinto Nagem, R.A., Ferreira Júnior, J.R., Dumoutier, L., Renauld, J. and Polikarpov, I. (2006) Interleukin‐22 and Its Crystal Structure. Vitamins & Hormones, 74, 77-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dudakov, J.A., Hanash, A.M. and van den Brink, M.R.M. (2015) Interleukin-22: Immunobiology and Pathology. Annual Review of Immunology, 33, 747-785. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
李慕聪. IL-22在组织器官修复再生过程中的作用[J]. 中华微生物学和免疫学杂志, 2021, 41(5): 400-405.
|
|
[12]
|
Yu, H., Pardoll, D. and Jove, R. (2009) Stats in Cancer Inflammation and Immunity: A Leading Role for Stat3. Nature Reviews Cancer, 9, 798-809. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dalmas, E. and Donath, M.Y. (2014) A Role for Interleukin-22 in the Alleviation of Metabolic Syndrome. Nature Medicine, 20, 1379-1381. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Shen, J., Fang, Y., Zhu, H. and Ge, W. (2017) Plasma Interleukin‐22 Levels Are Associated with Prediabetes and Type 2 Diabetes in the Han Chinese Population. Journal of Diabetes Investigation, 9, 33-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Witte, E., Witte, K., Warszawska, K., Sabat, R. and Wolk, K. (2010) Interleukin-22: A Cytokine Produced by T, NK and NKT Cell Subsets, with Importance in the Innate Immune Defense and Tissue Protection. Cytokine & Growth Factor Reviews, 21, 365-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lopez, D.V. and Kongsbak‐Wismann, M. (2022) Role of IL‐22 in Homeostasis and Diseases of the Skin. APMIS, 130, 314-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lynch, S.V. and Pedersen, O. (2016) The Human Intestinal Microbiome in Health and Disease. New England Journal of Medicine, 375, 2369-2379. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Imperiale, B.R., García, A., Minotti, A., González Montaner, P., Moracho, L., Morcillo, N.S., et al. (2020) Th22 Response Induced by Mycobacterium tuberculosis Strains Is Closely Related to Severity of Pulmonary Lesions and Bacillary Load in Patients with Multi-Drug-Resistant Tuberculosis. Clinical and Experimental Immunology, 203, 267-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Pociask, D.A., Scheller, E.V., Mandalapu, S., McHugh, K.J., Enelow, R.I., Fattman, C.L., et al. (2013) IL-22 Is Essential for Lung Epithelial Repair Following Influenza Infection. The American Journal of Pathology, 182, 1286-1296. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ronacher, K., Sinha, R. and Cestari, M. (2018) IL-22: An Underestimated Player in Natural Resistance to Tuberculosis? Frontiers in Immunology, 9, Article 2209. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Alcorn, J.F. (2020) IL-22 Plays a Critical Role in Maintaining Epithelial Integrity during Pulmonary Infection. Frontiers in Immunology, 11, Article 1160. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Treerat, P., Prince, O., Cruz-Lagunas, A., Muñoz-Torrico, M., Salazar-Lezama, M.A., Selman, M., et al. (2017) Novel Role for IL-22 in Protection during Chronic Mycobacterium Tuberculosis HN878 Infection. Mucosal Immunology, 10, 1069-1081. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yang, E., Yang, R., Guo, M., Huang, D., Wang, W., Zhang, Z., et al. (2018) Multidrug-Resistant Tuberculosis (MDR-TB) Strain Infection in Macaques Results in High Bacilli Burdens in Airways, Driving Broad Innate/Adaptive Immune Responses. Emerging Microbes & Infections, 7, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
李玉美, 罗勇强, 林东子, 等. 肺结核合并糖尿病患者外周血中性粒细胞、单核细胞及血清IL-23、IL-22水平变化[J]. 山东医药, 2015, 55(17): 29-31.
|
|
[25]
|
牛文一. 肺结核合并糖尿病患者血清IL-22、IL-23、TNF-α的表达及临床意义[J]. 实验与检验医学, 2017, 35(6): 945-947.
|
|
[26]
|
王思君. IL-22在发热待查中的诊断价值[D]: [硕士学位论文]. 武汉: 华中科技大学, 2019.
|
|
[27]
|
Scriba, T.J., Kalsdorf, B., Abrahams, D., Isaacs, F., Hofmeister, J., Black, G., et al. (2008) Distinct, Specific IL-17-and Il-22-Producing CD4+ T Cell Subsets Contribute to the Human Anti-Mycobacterial Immune Response. The Journal of Immunology, 180, 1962-1970. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kumar, N.P., Banurekha, V.V., Nair, D., Kumaran, P., Dolla, C.K. and Babu, S. (2015) Type 2 Diabetes—Tuberculosis Co-Morbidity Is Associated with Diminished Circulating Levels of IL-20 Subfamily of Cytokines. Tuberculosis, 95, 707-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Eyerich, S., Eyerich, K., Pennino, D., Carbone, T., Nasorri, F., Pallotta, S., et al. (2009) Th22 Cells Represent a Distinct Human T Cell Subset Involved in Epidermal Immunity and Remodeling. Journal of Clinical Investigation, 119, 3573-3585. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zeng, G., Chen, C.Y., Huang, D., Yao, S., Wang, R.C. and Chen, Z.W. (2011) Membrane-bound IL-22 after De Novo Production in Tuberculosis and Anti-Mycobacterium tuberculosis Effector Function of IL-22+ CD4+ T Cells. The Journal of Immunology, 187, 190-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Dumoutier, L., Van Roost, E., Colau, D. and Renauld, J. (2000) Human Interleukin-10-Related T Cell-Derived Inducible Factor: Molecular Cloning and Functional Characterization as an Hepatocyte-Stimulating Factor. Proceedings of the National Academy of Sciences, 97, 10144-10149. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
李丽. 结核病合并糖尿病免疫特征研究进展[J]. 中华微生物学和免疫学杂志, 2016, 36(7): 549-554.
|
|
[33]
|
Wolk, K., Kunz, S., Witte, E., Friedrich, M., Asadullah, K. and Sabat, R. (2004) IL-22 Increases the Innate Immunity of Tissues. Immunity, 21, 241-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, X., Ota, N., Manzanillo, P., Kates, L., Zavala-Solorio, J., Eidenschenk, C., et al. (2014) Interleukin-22 Alleviates Metabolic Disorders and Restores Mucosal Immunity in Diabetes. Nature, 514, 237-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kumar, N.P., Sridhar, R., Banurekha, V.V., Jawahar, M.S., Fay, M.P., Nutman, T.B., et al. (2013) Type 2 Diabetes Mellitus Coincident with Pulmonary Tuberculosis Is Associated with Heightened Systemic Type 1, Type 17, and Other Proinflammatory Cytokines. Annals of the American Thoracic Society, 10, 441-449. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
聂永聪, 宁夏丽, 杨鹏彥, 等. 糖尿病合并肺结核的免疫学、炎症机制及诊疗的研究进展[J]. 海南医学, 2022, 33(22): 2985-2988.
|
|
[37]
|
McNerney, R., Maeurer, M., Abubakar, I., Marais, B., Mchugh, T.D., Ford, N., et al. (2012) Tuberculosis Diagnostics and Biomarkers: Needs, Challenges, Recent Advances, and Opportunities. The Journal of Infectious Diseases, 205, S147-S158. [Google Scholar] [CrossRef] [PubMed]
|