[1]
|
Brawley, O.W. (2012) Prostate Cancer Epidemiology in the United States. World Journal of Urology, 30, 195-200. https://doi.org/10.1007/s00345-012-0824-2
|
[2]
|
Smith-Palmer, J., Takizawa, C. and Valentine, W. (2019) Literature Review of the Burden of Prostate Cancer in Germany, France, the United Kingdom and Canada. BMC Urology, 19, Article No. 19. https://doi.org/10.1186/s12894-019-0448-6
|
[3]
|
Adeloye, D., David, R.A., Aderemi, A.V., Iseolorunkanmi, A., Oyedokun, A., Iweala, E.E.J., et al. (2016) An Estimate of the Incidence of Prostate Cancer in Africa: A Systematic Review and Meta-Analysis. PLOS ONE, 11, e0153496. https://doi.org/10.1371/journal.pone.0153496
|
[4]
|
Xu, P., Wasielewski, L.J., Yang, J.C., Cai, D., Evans, C.P., Murphy, W.J., et al. (2022) The Immunotherapy and Immunosuppressive Signaling in Therapy-Resistant Prostate Cancer. Biomedicines, 10, Article No. 1778. https://doi.org/10.3390/biomedicines10081778
|
[5]
|
Stultz, J. and Fong, L. (2021) How to Turn up the Heat on the Cold Immune Microenvironment of Metastatic Prostate Cancer. Prostate Cancer and Prostatic Diseases, 24, 697-717. https://doi.org/10.1038/s41391-021-00340-5
|
[6]
|
Peng, S., Hu, P., Xiao, Y., Lu, W., Guo, D., Hu, S., et al. (2022) Single-Cell Analysis Reveals EP4 as a Target for Restoring T-Cell Infiltration and Sensitizing Prostate Cancer to Immunotherapy. Clinical Cancer Research, 28, 552-567. https://doi.org/10.1158/1078-0432.ccr-21-0299
|
[7]
|
Davidsson, S., Carlsson, J., Greenberg, L., Wijkander, J., Söderquist, B. and Erlandsson, A. (2021) Cutibacterium Acnes Induces the Expression of Immunosuppressive Genes in Macrophages and Is Associated with an Increase of Regulatory T-Cells in Prostate Cancer. Microbiology Spectrum, 9, e0149721. https://doi.org/10.1128/spectrum.01497-21
|
[8]
|
Pasero, C., Gravis, G., Guerin, M., Granjeaud, S., Thomassin-Piana, J., Rocchi, P., et al. (2016) Inherent and Tumor-Driven Immune Tolerance in the Prostate Microenvironment Impairs Natural Killer Cell Antitumor Activity. Cancer Research, 76, 2153-2165. https://doi.org/10.1158/0008-5472.can-15-1965
|
[9]
|
Qin, C., Wang, J., Du, Y. and Xu, T. (2022) Immunosuppressive Environment in Response to Androgen Deprivation Treatment in Prostate Cancer. Frontiers in Endocrinology, 13, Article ID: 1055826. https://doi.org/10.3389/fendo.2022.1055826
|
[10]
|
Pardoll, D.M. (2012) The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nature Reviews Cancer, 12, 252-264. https://doi.org/10.1038/nrc3239
|
[11]
|
Schildberg, F.A., Klein, S.R., Freeman, G.J. and Sharpe, A.H. (2016) Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity, 44, 955-972. https://doi.org/10.1016/j.immuni.2016.05.002
|
[12]
|
Rebuzzi, S.E., Rescigno, P., Catalano, F., Mollica, V., Vogl, U.M., Marandino, L., et al. (2022) Immune Checkpoint Inhibitors in Advanced Prostate Cancer: Current Data and Future Perspectives. Cancers, 14, Article No. 1245. https://doi.org/10.3390/cancers14051245
|
[13]
|
Venkatachalam, S., McFarland, T.R., Agarwal, N. and Swami, U. (2021) Immune Checkpoint Inhibitors in Prostate Cancer. Cancers, 13, Article No. 2187. https://doi.org/10.3390/cancers13092187
|
[14]
|
Wei, S.C., Duffy, C.R. and Allison, J.P. (2018) Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, 8, 1069-1086. https://doi.org/10.1158/2159-8290.cd-18-0367
|
[15]
|
Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., et al. (2012) Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. New England Journal of Medicine, 366, 2443-2454. https://doi.org/10.1056/nejmoa1200690
|
[16]
|
Antonarakis, E.S., Piulats, J.M., Gross-Goupil, M., Goh, J., Ojamaa, K., Hoimes, C.J., et al. (2020) Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. Journal of Clinical Oncology, 38, 395-405. https://doi.org/10.1200/jco.19.01638
|
[17]
|
Carlino, M.S., Larkin, J. and Long, G.V. (2021) Immune Checkpoint Inhibitors in Melanoma. The Lancet, 398, 1002-1014. https://doi.org/10.1016/s0140-6736(21)01206-x
|
[18]
|
Gao, J., Ward, J.F., Pettaway, C.A., Shi, L.Z., Subudhi, S.K., Vence, L.M., et al. (2017) VISTA Is an Inhibitory Immune Checkpoint That Is Increased after Ipilimumab Therapy in Patients with Prostate Cancer. Nature Medicine, 23, 551-555. https://doi.org/10.1038/nm.4308
|
[19]
|
Vaddepally, R.K., Kharel, P., Pandey, R., Garje, R. and Chandra, A.B. (2020) Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers, 12, Article No. 738. https://doi.org/10.3390/cancers12030738
|
[20]
|
Carosella, E.D., Ploussard, G., LeMaoult, J. and Desgrandchamps, F. (2015) A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and Hla-g. European Urology, 68, 267-279. https://doi.org/10.1016/j.eururo.2015.02.032
|
[21]
|
Postow, M.A. (2015) Managing Immune Checkpoint-Blocking Antibody Side Effects. American Society of Clinical Oncology Educational Book, 35, 76-83. https://doi.org/10.14694/edbook_am.2015.35.76
|
[22]
|
Kantoff, P.W., Higano, C.S., Shore, N.D., Berger, E.R., Small, E.J., Penson, D.F., et al. (2010) Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. New England Journal of Medicine, 363, 411-422. https://doi.org/10.1056/nejmoa1001294
|
[23]
|
Thara, E., Dorff, T.B., Pinski, J.K. and Quinn, D.I. (2011) Vaccine Therapy with Sipuleucel-T (Provenge) for Prostate Cancer. Maturitas, 69, 296-303. https://doi.org/10.1016/j.maturitas.2011.04.012
|
[24]
|
Fong, L., Carroll, P., Weinberg, V., Chan, S., Lewis, J., Corman, J., et al. (2014) Activated Lymphocyte Recruitment into the Tumor Microenvironment Following Preoperative Sipuleucel-T for Localized Prostate Cancer. JNCI: Journal of the National Cancer Institute, 106, dju268. https://doi.org/10.1093/jnci/dju268
|
[25]
|
Cheever, M.A. and Higano, C.S. (2011) PROVENGE (Sipuleucel-T) in Prostate Cancer: The First FDA-Approved Therapeutic Cancer Vaccine. Clinical Cancer Research, 17, 3520-3526. https://doi.org/10.1158/1078-0432.ccr-10-3126
|
[26]
|
Gardner, T., Elzey, B. and Hahn, N.M. (2012) Sipuleucel-T (Provenge) Autologous Vaccine Approved for Treatment of Men with Asymptomatic or Minimally Symptomatic Castrate-Resistant Metastatic Prostate Cancer. Human Vaccines & Immunotherapeutics, 8, 534-539. https://doi.org/10.4161/hv.19795
|
[27]
|
Cheng, M.L. and Fong, L. (2014) Beyond Sipuleucel-T: Immune Approaches to Treating Prostate Cancer. Current Treatment Options in Oncology, 15, 115-126. https://doi.org/10.1007/s11864-013-0267-z
|
[28]
|
Lasek, W. and Zapała, Ł. (2021) Therapeutic Metastatic Prostate Cancer Vaccines: Lessons Learnt from Urologic Oncology. Central European Journal of Urology, 74, 300-307. https://doi.org/10.5173/ceju.2021.0094
|
[29]
|
Almåsbak, H., Aarvak, T. and Vemuri, M.C. (2016) CAR T Cell Therapy: A Game Changer in Cancer Treatment. Journal of Immunology Research, 2016, Article ID: 5474602. https://doi.org/10.1155/2016/5474602
|
[30]
|
Narayan, V., Barber-Rotenberg, J.S., Jung, I., Lacey, S.F., Rech, A.J., Davis, M.M., et al. (2022) PSMA-Targeting TGFβ-Insensitive Armored CAR T Cells in Metastatic Castration-Resistant Prostate Cancer: A Phase 1 Trial. Nature Medicine, 28, 724-734. https://doi.org/10.1038/s41591-022-01726-1
|
[31]
|
Kloss, C.C., Lee, J., Zhang, A., Chen, F., Melenhorst, J.J., Lacey, S.F., et al. (2018) Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation and Augments Prostate Cancer Eradication. Molecular Therapy, 26, 1855-1866. https://doi.org/10.1016/j.ymthe.2018.05.003
|
[32]
|
Andrea, A.E., Chiron, A., Mallah, S., Bessoles, S., Sarrabayrouse, G. and Hacein-Bey-Abina, S. (2022) Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Frontiers in Immunology, 13, Article ID: 830292. https://doi.org/10.3389/fimmu.2022.830292
|
[33]
|
Zarrabi, K.K., Narayan, V., Mille, P.J., Zibelman, M.R., Miron, B., Bashir, B., et al. (2023) Bispecific PSMA Antibodies and CAR-T in Metastatic Castration-Resistant Prostate Cancer. Therapeutic Advances in Urology, 15, 1-18. https://doi.org/10.1177/17562872231182219
|
[34]
|
Montagner, I.M., Penna, A., Fracasso, G., Carpanese, D., Dalla Pietà, A., Barbieri, V., et al. (2020) Anti-PSMA Car-Engineered NK-92 Cells: An Off-the-Shelf Cell Therapy for Prostate Cancer. Cells, 9, Article No. 1382. https://doi.org/10.3390/cells9061382
|
[35]
|
He, C., Zhou, Y., Li, Z., Farooq, M.A., Ajmal, I., Zhang, H., et al. (2020) Co-Expression of IL-7 Improves Nkg2d-Based CAR T Cell Therapy on Prostate Cancer by Enhancing the Expansion and Inhibiting the Apoptosis and Exhaustion. Cancers, 12, Article No. 1969. https://doi.org/10.3390/cancers12071969
|
[36]
|
Sterner, R.C. and Sterner, R.M. (2021) CAR-T Cell Therapy: Current Limitations and Potential Strategies. Blood Cancer Journal, 11, Article No. 69. https://doi.org/10.1038/s41408-021-00459-7
|
[37]
|
Zhu, L., Liu, J., Zhou, G., Liu, T., Dai, Y., Nie, G., et al. (2021) Remodeling of Tumor Microenvironment by Tumor‐targeting Nanozymes Enhances Immune Activation of CAR T Cells for Combination Therapy. Small, 17, e2102624. https://doi.org/10.1002/smll.202102624
|
[38]
|
Chajon, E., Castelli, J., Marsiglia, H. and De Crevoisier, R. (2017) The Synergistic Effect of Radiotherapy and Immunotherapy: A Promising but Not Simple Partnership. Critical Reviews in Oncology/Hematology, 111, 124-132. https://doi.org/10.1016/j.critrevonc.2017.01.017
|
[39]
|
Mehta, S., Illidge, T. and Choudhury, A. (2016) Immunotherapy with Radiotherapy in Urological Malignancies. Current Opinion in Urology, 26, 514-522. https://doi.org/10.1097/mou.0000000000000335
|
[40]
|
Ollivier, L., Labbé, M., Fradin, D., Potiron, V. and Supiot, S. (2021) Interaction between Modern Radiotherapy and Immunotherapy for Metastatic Prostate Cancer. Frontiers in Oncology, 11, Article ID: 744679. https://doi.org/10.3389/fonc.2021.744679
|
[41]
|
Wang, Y., Liu, Z., Yuan, H., Deng, W., Li, J., Huang, Y., et al. (2019) The Reciprocity between Radiotherapy and Cancer Immunotherapy. Clinical Cancer Research, 25, 1709-1717. https://doi.org/10.1158/1078-0432.ccr-18-2581
|
[42]
|
Finkelstein, S.E., Salenius, S., Mantz, C.A., Shore, N.D., Fernandez, E.B., Shulman, J., et al. (2015) Combining Immunotherapy and Radiation for Prostate Cancer. Clinical Genitourinary Cancer, 13, 1-9. https://doi.org/10.1016/j.clgc.2014.09.001
|
[43]
|
Solanki, A.A., Bossi, A., Efstathiou, J.A., Lock, D., Mondini, M., Ramapriyan, R., et al. (2019) Combining Immunotherapy with Radiotherapy for the Treatment of Genitourinary Malignancies. European Urology Oncology, 2, 79-87. https://doi.org/10.1016/j.euo.2018.09.013
|
[44]
|
Lei, H., Shi, M., Xu, H., Bai, S., Xiong, X., Wei, Q., et al. (2021) Combined Treatment of Radiotherapy and Immunotherapy for Urological Malignancies: Current Evidence and Clinical Considerations. Cancer Management and Research, 13, 1719-1731. https://doi.org/10.2147/cmar.s288337
|
[45]
|
Bilusic, M., Madan, R.A. and Gulley, J.L. (2017) Immunotherapy of Prostate Cancer: Facts and Hopes. Clinical Cancer Research, 23, 6764-6770. https://doi.org/10.1158/1078-0432.ccr-17-0019
|
[46]
|
Venturini, N.J. and Drake, C.G. (2018) Immunotherapy for Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 9, a030627. https://doi.org/10.1101/cshperspect.a030627
|
[47]
|
Bou-Dargham, M.J., Sha, L., Sang, Q.A. and Zhang, J. (2020) Immune Landscape of Human Prostate Cancer: Immune Evasion Mechanisms and Biomarkers for Personalized Immunotherapy. BMC Cancer, 20, Article No. 572. https://doi.org/10.1186/s12885-020-07058-y
|
[48]
|
Cha, H., Lee, J.H. and Ponnazhagan, S. (2020) Revisiting Immunotherapy: A Focus on Prostate Cancer. Cancer Research, 80, 1615-1623. https://doi.org/10.1158/0008-5472.can-19-2948
|
[49]
|
Bansal, D., Reimers, M.A., Knoche, E.M. and Pachynski, R.K. (2021) Immunotherapy and Immunotherapy Combinations in Metastatic Castration-Resistant Prostate Cancer. Cancers, 13, Article No. 334. https://doi.org/10.3390/cancers13020334
|
[50]
|
Ma, Z., Zhang, W., Dong, B., Xin, Z., Ji, Y., Su, R., et al. (2022) Docetaxel Remodels Prostate Cancer Immune Microenvironment and Enhances Checkpoint Inhibitor-Based Immunotherapy. Theranostics, 12, 4965-4979. https://doi.org/10.7150/thno.73152
|
[51]
|
Zhang, L., Zhou, C., Zhang, S., Chen, X., Liu, J., Xu, F., et al. (2022) Chemotherapy Reinforces Anti-Tumor Immune Response and Enhances Clinical Efficacy of Immune Checkpoint Inhibitors. Frontiers in Oncology, 12, Article ID: 939249. https://doi.org/10.3389/fonc.2022.939249
|
[52]
|
Vikas, P., Borcherding, N., Chennamadhavuni, A. and Garje, R. (2020) Therapeutic Potential of Combining PARP Inhibitor and Immunotherapy in Solid Tumors. Frontiers in Oncology, 10, Article No. 570. https://doi.org/10.3389/fonc.2020.00570
|
[53]
|
Jiang, M., Jia, K., Wang, L., Li, W., Chen, B., Liu, Y., et al. (2021) Alterations of DNA Damage Response Pathway: Biomarker and Therapeutic Strategy for Cancer Immunotherapy. Acta Pharmaceutica Sinica B, 11, 2983-2994. https://doi.org/10.1016/j.apsb.2021.01.003
|
[54]
|
Gazzoni, G., Oliveira, J.P., Reis, P.C.A., Bittar, V., Carvalho, B.M., Vilbert, M., et al. (2024) Efficacy and Safety of PARP Inhibitors (PARPI) with Immune Checkpoint Inhibitors (ICI) in Metastatic Castration-Resistant Prostate Cancer (MCRPC): A Systematic Review and Single-Arm Meta-Analysis. Journal of Clinical Oncology, 42, e17053-e17053. https://doi.org/10.1200/jco.2024.42.16_suppl.e17053
|
[55]
|
Ferrara, R., Imbimbo, M., Malouf, R., Paget-Bailly, S., Calais, F., Marchal, C., et al. (2021) Single or Combined Immune Checkpoint Inhibitors Compared to First-Line Platinum-Based Chemotherapy with or without Bevacizumab for People with Advanced Non-Small Cell Lung Cancer. Cochrane Database of Systematic Reviews, 2021, CD013257. https://doi.org/10.1002/14651858.cd013257.pub3
|
[56]
|
Sharma, P., Pachynski, R.K., Narayan, V., Fléchon, A., Gravis, G., Galsky, M.D., et al. (2020) Nivolumab Plus Ipilimumab for Metastatic Castration-Resistant Prostate Cancer: Preliminary Analysis of Patients in the Checkmate 650 Trial. Cancer Cell, 38, 489-499.e3. https://doi.org/10.1016/j.ccell.2020.08.007
|
[57]
|
Zahm, C.D., Moseman, J.E., Delmastro, L.E. and G. Mcneel, D. (2021) PD-1 and LAG-3 Blockade Improve Anti-Tumor Vaccine Efficacy. OncoImmunology, 10, Article ID: 1912892. https://doi.org/10.1080/2162402x.2021.1912892
|
[58]
|
Liao, J. and Zhang, S. (2021) Safety and Efficacy of Personalized Cancer Vaccines in Combination with Immune Checkpoint Inhibitors in Cancer Treatment. Frontiers in Oncology, 11, Article ID: 663264. https://doi.org/10.3389/fonc.2021.663264
|
[59]
|
Ellingsen, E.B., Aamdal, E., Guren, T., Lilleby, W., Brunsvig, P.F., Mangsbo, S.M., et al. (2022) Durable and Dynamic Htert Immune Responses Following Vaccination with the Long-Peptide Cancer Vaccine UV1: Long-Term Follow-Up of Three Phase I Clinical Trials. Journal for ImmunoTherapy of Cancer, 10, e004345. https://doi.org/10.1136/jitc-2021-004345
|
[60]
|
Lanka, S.M., Zorko, N.A., Antonarakis, E.S. and Barata, P.C. (2023) Metastatic Castration-Resistant Prostate Cancer, Immune Checkpoint Inhibitors, and Beyond. Current Oncology, 30, 4246-4256. https://doi.org/10.3390/curroncol30040323
|
[61]
|
Dorff, T., Hirasawa, Y., Acoba, J., Pagano, I., Tamura, D., Pal, S., et al. (2021) Phase Ib Study of Patients with Metastatic Castrate-Resistant Prostate Cancer Treated with Different Sequencing Regimens of Atezolizumab and Sipuleucel-t. Journal for ImmunoTherapy of Cancer, 9, e002931. https://doi.org/10.1136/jitc-2021-002931
|
[62]
|
Yuan, Z., Fernandez, D., Dhillon, J., Abraham-Miranda, J., Awasthi, S., Kim, Y., et al. (2020) Proof-of-Principle Phase I Results of Combining Nivolumab with Brachytherapy and External Beam Radiation Therapy for Grade Group 5 Prostate Cancer: Safety, Feasibility, and Exploratory Analysis. Prostate Cancer and Prostatic Diseases, 24, 140-149. https://doi.org/10.1038/s41391-020-0254-y
|
[63]
|
Jafari, S., Molavi, O., Kahroba, H., Hejazi, M.S., Maleki-Dizaji, N., Barghi, S., et al. (2020) Clinical Application of Immune Checkpoints in Targeted Immunotherapy of Prostate Cancer. Cellular and Molecular Life Sciences, 77, 3693-3710. https://doi.org/10.1007/s00018-020-03459-1
|
[64]
|
Meng, L., Yang, Y., Mortazavi, A. and Zhang, J. (2023) Emerging Immunotherapy Approaches for Treating Prostate Cancer. International Journal of Molecular Sciences, 24, Article No. 14347. https://doi.org/10.3390/ijms241814347
|
[65]
|
Adamaki, M. and Zoumpourlis, V. (2021) Immunotherapy as a Precision Medicine Tool for the Treatment of Prostate Cancer. Cancers, 13, Article No. 173. https://doi.org/10.3390/cancers13020173
|