前列腺癌免疫治疗的研究进展
Research Progress in Prostate Cancer Immunotherapy
DOI: 10.12677/acm.2025.152360, PDF, HTML, XML,   
作者: 黄垠钞, 胡自力*:重庆医科大学附属第二医院泌尿外科,重庆
关键词: 前列腺癌免疫治疗肿瘤微环境联合Prostate Cancer Immunotherapy Tumor Microenvironment Combination
摘要: 前列腺癌免疫治疗的研究主要集中在疫苗治疗、免疫检查点抑制剂(如PD-1/PD-L1和CTLA-4抑制剂)、过继性细胞治疗(如CAR-T细胞)以及肿瘤微环境的调控等方面。然而,由于前列腺癌肿瘤的低免疫原性和复杂的免疫微环境,单一免疫治疗在前列腺癌中的疗效尚不及其他高免疫原性肿瘤。目前,联合治疗策略(如免疫治疗与内分泌治疗、化疗或放疗联合、ICI或肿瘤疫苗联合)已成为研究热点,旨在增强治疗效果并克服单一疗法的局限性。本文综述了免疫治疗在前列腺癌中的最新研究进展,分析了其潜在机制及未来发展方向,为前列腺癌患者提供更多的治疗方案。
Abstract: The research on immunotherapy for prostate cancer mainly focuses on vaccine therapy, immune checkpoint inhibitors (such as PD-1/PD-L1 and CTLA-4 inhibitors), adoptive cell therapy (such as CAR-T cells), and modulation of the tumor microenvironment. However, due to the low immunogenicity and complex immune microenvironment of prostate cancer tumors, the efficacy of single-agent immunotherapy in prostate cancer has not matched that in other highly immunogenic tumors. Currently, combination therapy strategies (such as immunotherapy combined with endocrine therapy, chemotherapy, or radiotherapy, as well as combinations of ICIs or tumor vaccines) have become a research hotspot aimed at enhancing therapeutic effects and overcoming the limitations of monotherapies. This article reviews the latest research progress in immunotherapy for prostate cancer, analyzes its potential mechanisms and future directions, and provides more treatment options for prostate cancer patients.
文章引用:黄垠钞, 胡自力. 前列腺癌免疫治疗的研究进展[J]. 临床医学进展, 2025, 15(2): 404-413. https://doi.org/10.12677/acm.2025.152360

1. 引言

前列腺癌是男性中最常见的恶性肿瘤之一,也是癌症相关死亡的第二大原因。仅在美国,2020年的估计数据显示,每年约有超过190,000例新病例和33,000例相关死亡[1]。在欧洲,前列腺癌也是男性中报告最多的癌症类型,其发病率随着前列腺特异性抗原(PSA)筛查的普及而显著上升,但也导致了过度诊断和治疗的经济负担[2]。此外,非洲裔男性和低收入国家的患者通常面临更高的前列腺癌发病率和死亡率,突显了全球疾病负担的显著差异[3]

当前的治疗方法主要包括激素治疗(如去势治疗)、放疗和手术干预。然而,传统治疗在晚期和去势抵抗性前列腺癌(CRPC)中的疗效有限。同时,治疗相关的并发症(如性功能障碍和尿失禁)显著影响患者生活质量[2]。此外,对于低突变负荷的肿瘤,传统治疗方法对其免疫逃逸机制束手无策。

近年来,免疫治疗通过激活患者的免疫系统,在实体瘤(如黑色素瘤和肺癌)中取得了显著成功。前列腺癌作为免疫治疗的研究新热点,尽管疗效受限,但仍显示出潜在的突破性机会,例如免疫检查点抑制剂、治疗性疫苗和CAR-T细胞疗法的探索[2]。此外,免疫治疗与传统治疗方法的联合策略也逐渐成为解决晚期和去势抵抗性前列腺癌的潜在方案。

2. 前列腺癌肿瘤微环境(TME)的免疫抑制性特点

前列腺癌的肿瘤微环境具有高度免疫抑制的特点,是其免疫治疗难以获得显著疗效的主要原因之一。首先,前列腺癌通常被认为是“冷”肿瘤,肿瘤突变负荷(TMB)较低,抗原性不足,这导致免疫系统难以识别和有效激活针对肿瘤的免疫反应[4]。其次,免疫抑制性细胞在TME中大量积累,包括肿瘤相关巨噬细胞(TAMs)、髓源性抑制细胞(MDSCs)和调节性T细胞(Tregs),这些细胞通过分泌免疫抑制性细胞因子(如IL-10和TGF-β),削弱效应性T细胞和自然杀伤(NK)细胞的功能[5]-[7]。此外,腺苷等代谢产物通过A2A受体通路进一步抑制免疫效应细胞的活性,使肿瘤能够逃避免疫监视[5]。与此同时,肿瘤微环境中的T细胞和NK细胞往往处于耗竭状态,表现为失去杀伤功能的免疫抑制表型[8]。此外,雄激素剥夺治疗(ADT),尽管是前列腺癌的重要治疗手段,却可能进一步加重TME中的免疫抑制状态,增加MDSCs和Tregs的比例,削弱免疫细胞的抗肿瘤效应[9]。综合来看,这些复杂的免疫抑制机制共同作用,使前列腺癌难以通过单一免疫疗法取得显著效果,因此联合多种疗法和靶向干预TME的免疫抑制机制,可能是未来前列腺癌治疗的重要方向。

3. 单一免疫治疗

3.1. 免疫检查点抑制剂(ICIs)

靶向T细胞的共抑制途径,称为T细胞检查点[10],通过改变共抑制分子(如LAG-3 PD-1,TIM-3和CTLA-4)对T细胞抑制的平衡,以增强不再支持肿瘤生长的促炎条件,引发抗肿瘤反应[11]。实体瘤的免疫治疗主要使用程序性细胞死亡-1 (PD-1)/程序性细胞死亡配体-1 (PD-L1)和细胞毒性T淋巴细胞抗原-4 (CTLA-4)抑制剂,被称为免疫检查点阻断(ICB) [12] [13]。ICB中常用的单克隆抗体包括阻断PD-1的尼武单抗nivolumab和靶向CTLA-4的ipilimumab [14]

然而,nivolumab在mCRPC患者中的临床试验显示无显著的客观缓解率[15]。随后,另一种抗PD-1单克隆抗体pembrolizumab尽管在具有特定生物标志物(如MSI-H和TMB高)的CRPC患者中有较好的效果,但在大部分mCRPC患者中的临床研究也未见疗效,这表明单用PD-1抑制剂和以PD-L1表达为标志物来确定对PD-1阻断疗法的敏感性不足以治疗晚期PCa [16]。主要原因在于前列腺癌被认为是免疫“冷”肿瘤,其肿瘤微环境(TME)抑制性较强[17]。研究显示,PD-1/PD-L1通路在大多数前列腺肿瘤中的表达较低,而仅在某些病例中,通过基因突变或高表达PD-L1获得治疗响应[18]。此外,尽管pembrolizumab 在具有特定生物标志物(如MSI-H和TMB高)的CRPC患者中有较好的效果,单一PD-1/PD-L1抑制剂的使用对大多数CRPC患者的疗效受限。这可能是由于CRPC的免疫逃逸机制和抑制性肿瘤微环境的共同作用[19]

Ipilimumab是一种CTLA-4抑制剂,曾被应用于多个CRPC的临床试验中。然而,单药疗法的总体疗效有限。例如,在一项针对CRPC患者的III期临床试验中,虽然一些患者显示出生存期改善,但整体结果未达到统计学显著性[20]。同时,ipilimumab的治疗与显著的免疫相关不良事件(如结肠炎和内分泌紊乱)相关,限制了其更广泛的应用[21]

3.2. 肿瘤疫苗

大多数癌症疫苗由DNA/RNA/肽组成,通过抗原呈递和初始T细胞的激活来传递抗原特异性免疫反应。前列腺癌疫苗开发中常见的靶向抗原包括前列腺酸性磷酸酶(PAP)、前列腺特异性抗原(PSA)、前列腺特异性膜抗原(PSMA)、前列腺干细胞抗原(PSCA)和前列腺-1的六跨膜上皮抗原(STEAP1),这是因为与正常前列腺相比,它们在肿瘤中过度表达和富集。

Sipuleucel-T是一种树突状细胞(DC)疫苗,是唯一被批准的mCRPC活性细胞免疫疗法[22]。它通过采集患者的抗原呈递细胞(APC),并用前列腺酸性磷酸酶(PAP)和粒细胞–巨噬细胞集落刺激因子(GM-CSF)融合蛋白进行体外激活,然后再将其输回患者体内[23]。在前列腺根治性切除术前给药Sipuleucel-T诱导T细胞和B细胞相关的持续免疫反应[24],可降低PSA水平,改善OS [22]。在IMPACT III期临床试验中,Sipuleucel-T显著延长了CRPC患者的中位生存期(增加4.1个月,从21.7个月提高到25.8个月),同时死亡风险降低了22%,然而,Sipuleucel-T对疾病进展缓解时间(PFS)未见显著改善,这表明其作用主要在于激活患者免疫系统的长效抗肿瘤反应,而不是直接抑制肿瘤生长[25]。Sipuleucel-T的常见副作用包括轻微的“流感样”症状,如寒战、发热和疲劳,这些副作用通常在两天内消失[26]

PROSTVAC是一种基于牛痘病毒载体的治疗性疫苗,靶向前列腺特异性抗原(PSA),并结合三种免疫协同刺激分子(TRICOM)。在一项II期临床试验中,PROSTVAC显示出延长患者中位生存期(从16.6个月提高到25.1个月)的显著疗效[27]。然而,在随后的一项III期临床试验中,PROSTVAC未能达到预期的主要研究终点,未显示出显著的生存优势[28]。这提示了其在不同患者群体中的疗效可能存在变异性,并需要进一步研究来优化患者选择和治疗方案。

基于Sipuleucel-T的成功,研究者正在探索更高效、更易生产的新型疫苗。例如,核酸疫苗(如DNA和mRNA疫苗)由于其可快速设计和大规模生产的特性,逐渐成为肿瘤疫苗的研究热点。此外,基于病毒或细菌载体的疫苗(如腺病毒载体)也正在被研究,其通过增强抗原递送和免疫激活来提高疗效。

3.3. CAR-T细胞疗法

CAR-T (嵌合抗原受体T细胞)疗法是一种免疫疗法,通过基因工程技术对患者的T细胞进行改造,使其携带一种嵌合抗原受体(CAR)。CAR是一种人工设计的蛋白质,能够引导T细胞识别并靶向杀伤癌细胞。它结合了单克隆抗体的特异性识别能力和T细胞的杀伤功能,通过这种改造,T细胞能够特异性识别癌细胞表面的靶抗原,激活免疫应答并杀死癌细胞[29]。前列腺特异性膜抗原(PSMA)和前列腺干细胞抗原(PSCA)被作为CAR-T疗法的主要靶点。研究显示PSMA靶向的CAR-T细胞在前列腺癌模型中表现出抗肿瘤活性,但需要克服免疫抑制微环境的影响[30]。前列腺癌的免疫微环境通常表现为免疫抑制。通过阻断TGF-β信号,可以增强CAR-T细胞的抗肿瘤能力,并显著改善临床前模型中的疗效[31]。一项针对转移性去势抵抗性前列腺癌(mCRPC)的临床试验(NCT03089203)显示,CAR-T细胞可以显著降低PSA水平,部分患者的PSA下降超过98% [30]

然而,CAR-T疗法在前列腺癌中面临多重挑战,前列腺癌的TME具有强烈的免疫抑制特性,包括高水平的TGF-β和PD-L1表达,抑制了CAR-T细胞的活性[31]。实体瘤的致密结构和血管异常限制了CAR-T细胞的浸润和迁移,这显著降低了其治疗效果[32]。抗原表达的异质性,容易导致CAR-T细胞靶向失效[33]。目前CAR-T疗法的局限性促使人们研究其他含有CAR-T的免疫细胞以提高抗肿瘤疗效。修饰NK细胞,抗psma/NK92/CAR细胞,表现出显著的psma特异性识别和抗肿瘤活性[34]。另外,共表达NKG2D (NK激活受体)和IL-7的T细胞在异种移植系统中表现出更好的持久性和相对较少的衰竭[35]。尽管CAR-T在治疗特定恶性肿瘤方面取得了巨大的临床成功,但脱靶效应,如不受控制的促炎反应(细胞因子释放综合征)、抗原逃逸、脱靶/靶标效应以及运输不良/肿瘤浸润等,极大地挑战了其效力[36]。随着对CAR-T生物学的持续研究,特别是提高CAR-T的持久性和克服局限性,如通过基因组编辑增强共刺激信号,表达多抗原靶向CAR或整合免疫激活因子(如IL-7)以提高抗肿瘤效应[35],或使用纳米酶或其他免疫调节剂破坏TME的免疫抑制特性,提高CAR-T细胞的疗效[37]。CAR-T细胞在前列腺癌治疗中的应用领域不断增长,也需要关注最佳给药时间、预处理方案、桥接方案以及与其他疗法的联合,以在晚期转移情况下成功克服基质屏障和其他挑战。

4. 联合免疫疗法

4.1. 放疗联合免疫治疗

放疗不仅直接通过DNA损伤杀死肿瘤细胞,还能够释放肿瘤相关抗原,从而激活免疫系统。此外,放疗可通过改变肿瘤微环境,增加肿瘤抗原的暴露和炎性因子释放,诱导免疫细胞的募集,增强免疫治疗的效果。另一方面,免疫治疗(如免疫检查点抑制剂)可以缓解肿瘤免疫抑制微环境,增强放疗的抗肿瘤作用[38]。放疗导致的肿瘤细胞死亡会释放肿瘤抗原和免疫刺激因子(如HMGB1和ATP),激活树突状细胞和T细胞[39]。诱导“旁观者效应”或“远隔效应”(abscopal effect),即放疗引发全身性的抗肿瘤免疫反应,杀灭远处转移的癌细胞[40]。免疫检查点抑制剂可解除T细胞功能抑制,增强放疗诱导的抗肿瘤免疫反应[41]。Sipuleucel-T是一种前列腺癌疫苗疗法,早期研究表明其与放疗的组合可进一步延长患者生存[42]。在去势抵抗性前列腺癌(CRPC)患者中,放疗联合抗PD-1免疫治疗在临床试验中显示出改善患者生存和肿瘤抑制的潜力[43]。研究还发现,大剂量分次放疗(SBRT)在诱导免疫激活方面可能比常规放疗更有效,正在进一步的临床试验中探索其与免疫治疗的联合方案[44]

4.2. 内分泌治疗联合免疫治疗

研究表明,雄激素剥夺治疗(ADT)通过降低前列腺组织的免疫抑制因子(如TGF-β和IL-10),加肿瘤微环境中的T细胞浸润,提高抗肿瘤免疫反应[45],并且减少了肿瘤微环境中调节性T细胞(Tregs)和髓源性抑制细胞(MDSCs)的比例,从而减轻了免疫抑制[46]。尽管ADT与免疫治疗的联合策略展现出希望,但仍面临一些关键挑战,在增加疗效的同时,联合治疗可能增加免疫相关的不良反应(如自身免疫性炎症),联合治疗的最佳时间序列和剂量方案也仍需进一步研究。对于免疫微环境较“冷”的患者从联合疗法中获益较少,需要开发更好的生物标志物,以筛选最适合联合治疗的患者[47]。一项研究表明,在CRPC患者中,ADT与CTLA-4抑制剂联合使用时,显著提高了T细胞浸润水平,但单一疗法效果有限[48]。在多项早期临床试验中,PD-1抑制剂与ADT联合使用显示出改善患者生存的潜力,但仍需更大规模研究验证疗效[45]。尽管CAR-T疗法在前列腺癌中的应用尚处于临床试验阶段,研究者正尝试将ADT作为CAR-T治疗的前置疗法,以增强T细胞的持久性和杀伤力[49]

4.3. 化疗联合免疫治疗

化疗(如多西他赛)能够通过激活cGAS/STING信号通路,诱导IFN信号并增加T细胞浸润,从而将“免疫冷”肿瘤转变为“免疫热”肿瘤。这种作用增强了肿瘤对免疫检查点抑制剂(如PD-1/PD-L1)的敏感性,并且显著增加了肿瘤浸润性T细胞(尤其是CD8+细胞)的数量,并提高了肿瘤抗原的暴露[50]。化疗可减少免疫抑制细胞(如调节性T细胞)和免疫抑制性细胞因子在肿瘤微环境中的表达,从而降低肿瘤逃逸免疫监视的能力[51]。在一项回顾性研究中,多西他赛联合PD-1抑制剂的治疗可以显著提高患者的PSA无进展生存期(PFS)和抗肿瘤免疫反应,接受多西他赛联合PD-1抑制剂治疗的患者中位OS显著延长,优于单独使用PD-1抑制剂的患者组[50]

4.4. PARP抑制剂联合免疫治疗

当细胞检测到DNA损伤时,DDR基因会被激活,触发一系列的信号传导途径,并调节DNA修复的进行或细胞凋亡。PARP抑制剂通过抑制DNA损伤修复途径(如BRCA基因缺陷相关的同源重组修复),引发DNA损伤积累,不仅导致肿瘤细胞释放更多的新抗原(neoantigen),从而提高肿瘤的免疫原性,而且可以促进肿瘤突变负荷和PD-L1表达,使免疫检查点抑制剂更易靶向并抑制肿瘤生长[52]。另一方面,PARP抑制剂通过激活cGAS/STING信号通路,增强Ⅰ型干扰素信号,进一步刺激免疫系统中的T细胞浸润和激活,从而与免疫检查点抑制剂(如PD-1/PD-L1抗体)形成协同作用[53]。最近的研究表明靶向DDR途径有着治疗PCa的潜力,包括靶向PARP的治疗。根据一项系统回顾和Meta分析研究,PARP抑制剂联合免疫治疗在治疗转移性去势抵抗性前列腺癌(mCRPC)中显示出一定疗效。研究表明,患者的中位总体生存期(OS)为15.8个月,放射学无进展生存期(rPFS)为4.5个月。在携带BRCA或HRR基因突变的患者中,PSA应答率(PSArr)显著提高至17.5%,而无相关突变的患者PSArr为10.5%,表明在特定生物标志物指导下疗效更佳。此外,免疫相关不良事件(irAEs)的总体发生率为21.1%,其中3~4级不良事件为6.7%,常见不良事件包括甲状腺功能减退(8.5%)和肾上腺功能不全(2.8%),整体毒性可控[54]

4.5. ICI与ICI的联合疗法

PD-1/PD-L1抑制剂与CTLA-4抑制剂的联合疗法显著提高了非小细胞肺癌(NSCLC)高PD-L1表达患者的总体生存期(OS HR = 0.72),优于铂类化疗,并且毒性总体可控,且患者受益显著[55]。在黑色素瘤中,该治疗方案使晚期黑色素瘤的5年总体生存率接近50%,显著优于单药治疗。在一项随机对照CheckMate 650临床试验中评估了伊匹单抗/纳武单抗的两种给药方案,并与单药伊匹单抗和标准化疗卡巴他赛进行了比较。与卡巴他赛相比,伊匹单抗(3 mg/kg)和纳武单抗(1 mg/kg)治疗显示出最高的总缓解率(19.5%对12.2%)和完全缓解率(4.9%对0%),放射学反应持续时间延长(6.5个月对无反应[NR]),为这些患者提供了有意义的临床活性的证据。随着更多的临床试验在不同的组合设置中进行,ICB有望改善PCa患者的OS [56]

4.6. ICI与疫苗的联合疗法

PD-1/PD-L1抑制剂与CTLA-4抑制剂的联合疗法显著提高了非小细胞肺癌(NSCLC)高PD-L1表达患者的总体生存期(OS HR = 0.72),优于铂类化疗,并且毒性总体可控,且患者受益显著[55]。在黑色素瘤中,该治疗方案使晚期黑色素瘤的5年总体生存率接近50%,显著优于单药治疗。在一项随机对照CheckMate 650临床试验中评估了伊匹单抗/纳武单抗的两种给药方案,并与单药伊匹单抗和标准化疗卡巴他赛进行了比较。与卡巴他赛相比,伊匹单抗(3 mg/kg)和纳武单抗(1 mg/kg)治疗显示出最高的总缓解率(19.5%对12.2%)和完全缓解率(4.9%对0%),放射学反应持续时间延长(6.5个月对无反应[NR]),为这些患者提供了有意义的临床活性的证据。随着更多的临床试验在不同的组合设置中进行,ICB有望改善PCa患者的OS [56]

4.7. 其他联合免疫疗法

癌症疫苗可通过激活T细胞反应,诱导的CD8+ T细胞活化可显著增加PD-1和LAG-3表达[57],减少肿瘤相关巨噬细胞的抑制作用,并促进T细胞浸润,进一步增强ICI阻断的效果[58]。长期研究表明,疫苗可诱导持续的记忆性T细胞反应,与ICI联合使用时,这些记忆细胞的活性可以显著提高,延长治疗效应的持续时间[59]。一项研究探索了ICI与癌症疫苗联合治疗在mCRPC (转移性去势抵抗性前列腺癌)中的应用,结果显示特定患者的PSA下降率显著高于单独使用ICI的患者组[60]。在一项mCRPC患者的临床试验中,阿替利珠单抗(atezolizumab)与sipuleucel-T联合用药被证明是安全的且耐受性良好,有8例患者(21.6%)的疾病缓解持续了6个月以上[61]

5. 小结

免疫治疗在前列腺癌中的应用正处于从实验到临床的关键转折期,由于其特殊的肿瘤微环境,单一免疫治疗效果有限,联合治疗在近几年的研究中有很大进展,治疗方案也是百花齐放。ICI的单一治疗效果并不乐观,目前以疫苗为基础的联合免疫治疗研究最多,联合治疗的组合有待进一步确认,同时一些三联治疗已经在PCa模型和患者中验证了初步疗效,并且没有出现药物毒性累加的情况[62],或许会成为治疗PCa的关键。尽管免疫治疗在前列腺癌中的应用效果有限,但通过探索新型靶点,如靶向抗原如B7-H3、4-1BB、LAG-3和VISTA已被证实有潜力增强免疫反应[63]、优化联合治疗策略,如将免疫治疗作为标准疗法的补充,并尽早引入以提高长期效果[64],以及开发精准的生物标志物,如针对不同基因型(如AR-V7变异、CDK12缺陷或MSI-high肿瘤)的患者进行个性化设计,以提高治疗成功率[65],未来的免疫治疗有望克服当前的局限性并显著提高患者预后,为PCa患者提供更多的治疗方案。

NOTES

*通讯作者。

参考文献

[1] Brawley, O.W. (2012) Prostate Cancer Epidemiology in the United States. World Journal of Urology, 30, 195-200.
https://doi.org/10.1007/s00345-012-0824-2
[2] Smith-Palmer, J., Takizawa, C. and Valentine, W. (2019) Literature Review of the Burden of Prostate Cancer in Germany, France, the United Kingdom and Canada. BMC Urology, 19, Article No. 19.
https://doi.org/10.1186/s12894-019-0448-6
[3] Adeloye, D., David, R.A., Aderemi, A.V., Iseolorunkanmi, A., Oyedokun, A., Iweala, E.E.J., et al. (2016) An Estimate of the Incidence of Prostate Cancer in Africa: A Systematic Review and Meta-Analysis. PLOS ONE, 11, e0153496.
https://doi.org/10.1371/journal.pone.0153496
[4] Xu, P., Wasielewski, L.J., Yang, J.C., Cai, D., Evans, C.P., Murphy, W.J., et al. (2022) The Immunotherapy and Immunosuppressive Signaling in Therapy-Resistant Prostate Cancer. Biomedicines, 10, Article No. 1778.
https://doi.org/10.3390/biomedicines10081778
[5] Stultz, J. and Fong, L. (2021) How to Turn up the Heat on the Cold Immune Microenvironment of Metastatic Prostate Cancer. Prostate Cancer and Prostatic Diseases, 24, 697-717.
https://doi.org/10.1038/s41391-021-00340-5
[6] Peng, S., Hu, P., Xiao, Y., Lu, W., Guo, D., Hu, S., et al. (2022) Single-Cell Analysis Reveals EP4 as a Target for Restoring T-Cell Infiltration and Sensitizing Prostate Cancer to Immunotherapy. Clinical Cancer Research, 28, 552-567.
https://doi.org/10.1158/1078-0432.ccr-21-0299
[7] Davidsson, S., Carlsson, J., Greenberg, L., Wijkander, J., Söderquist, B. and Erlandsson, A. (2021) Cutibacterium Acnes Induces the Expression of Immunosuppressive Genes in Macrophages and Is Associated with an Increase of Regulatory T-Cells in Prostate Cancer. Microbiology Spectrum, 9, e0149721.
https://doi.org/10.1128/spectrum.01497-21
[8] Pasero, C., Gravis, G., Guerin, M., Granjeaud, S., Thomassin-Piana, J., Rocchi, P., et al. (2016) Inherent and Tumor-Driven Immune Tolerance in the Prostate Microenvironment Impairs Natural Killer Cell Antitumor Activity. Cancer Research, 76, 2153-2165.
https://doi.org/10.1158/0008-5472.can-15-1965
[9] Qin, C., Wang, J., Du, Y. and Xu, T. (2022) Immunosuppressive Environment in Response to Androgen Deprivation Treatment in Prostate Cancer. Frontiers in Endocrinology, 13, Article ID: 1055826.
https://doi.org/10.3389/fendo.2022.1055826
[10] Pardoll, D.M. (2012) The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nature Reviews Cancer, 12, 252-264.
https://doi.org/10.1038/nrc3239
[11] Schildberg, F.A., Klein, S.R., Freeman, G.J. and Sharpe, A.H. (2016) Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family. Immunity, 44, 955-972.
https://doi.org/10.1016/j.immuni.2016.05.002
[12] Rebuzzi, S.E., Rescigno, P., Catalano, F., Mollica, V., Vogl, U.M., Marandino, L., et al. (2022) Immune Checkpoint Inhibitors in Advanced Prostate Cancer: Current Data and Future Perspectives. Cancers, 14, Article No. 1245.
https://doi.org/10.3390/cancers14051245
[13] Venkatachalam, S., McFarland, T.R., Agarwal, N. and Swami, U. (2021) Immune Checkpoint Inhibitors in Prostate Cancer. Cancers, 13, Article No. 2187.
https://doi.org/10.3390/cancers13092187
[14] Wei, S.C., Duffy, C.R. and Allison, J.P. (2018) Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discovery, 8, 1069-1086.
https://doi.org/10.1158/2159-8290.cd-18-0367
[15] Topalian, S.L., Hodi, F.S., Brahmer, J.R., Gettinger, S.N., Smith, D.C., McDermott, D.F., et al. (2012) Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer. New England Journal of Medicine, 366, 2443-2454.
https://doi.org/10.1056/nejmoa1200690
[16] Antonarakis, E.S., Piulats, J.M., Gross-Goupil, M., Goh, J., Ojamaa, K., Hoimes, C.J., et al. (2020) Pembrolizumab for Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort, Open-Label Phase II KEYNOTE-199 Study. Journal of Clinical Oncology, 38, 395-405.
https://doi.org/10.1200/jco.19.01638
[17] Carlino, M.S., Larkin, J. and Long, G.V. (2021) Immune Checkpoint Inhibitors in Melanoma. The Lancet, 398, 1002-1014.
https://doi.org/10.1016/s0140-6736(21)01206-x
[18] Gao, J., Ward, J.F., Pettaway, C.A., Shi, L.Z., Subudhi, S.K., Vence, L.M., et al. (2017) VISTA Is an Inhibitory Immune Checkpoint That Is Increased after Ipilimumab Therapy in Patients with Prostate Cancer. Nature Medicine, 23, 551-555.
https://doi.org/10.1038/nm.4308
[19] Vaddepally, R.K., Kharel, P., Pandey, R., Garje, R. and Chandra, A.B. (2020) Review of Indications of FDA-Approved Immune Checkpoint Inhibitors per NCCN Guidelines with the Level of Evidence. Cancers, 12, Article No. 738.
https://doi.org/10.3390/cancers12030738
[20] Carosella, E.D., Ploussard, G., LeMaoult, J. and Desgrandchamps, F. (2015) A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and Hla-g. European Urology, 68, 267-279.
https://doi.org/10.1016/j.eururo.2015.02.032
[21] Postow, M.A. (2015) Managing Immune Checkpoint-Blocking Antibody Side Effects. American Society of Clinical Oncology Educational Book, 35, 76-83.
https://doi.org/10.14694/edbook_am.2015.35.76
[22] Kantoff, P.W., Higano, C.S., Shore, N.D., Berger, E.R., Small, E.J., Penson, D.F., et al. (2010) Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. New England Journal of Medicine, 363, 411-422.
https://doi.org/10.1056/nejmoa1001294
[23] Thara, E., Dorff, T.B., Pinski, J.K. and Quinn, D.I. (2011) Vaccine Therapy with Sipuleucel-T (Provenge) for Prostate Cancer. Maturitas, 69, 296-303.
https://doi.org/10.1016/j.maturitas.2011.04.012
[24] Fong, L., Carroll, P., Weinberg, V., Chan, S., Lewis, J., Corman, J., et al. (2014) Activated Lymphocyte Recruitment into the Tumor Microenvironment Following Preoperative Sipuleucel-T for Localized Prostate Cancer. JNCI: Journal of the National Cancer Institute, 106, dju268.
https://doi.org/10.1093/jnci/dju268
[25] Cheever, M.A. and Higano, C.S. (2011) PROVENGE (Sipuleucel-T) in Prostate Cancer: The First FDA-Approved Therapeutic Cancer Vaccine. Clinical Cancer Research, 17, 3520-3526.
https://doi.org/10.1158/1078-0432.ccr-10-3126
[26] Gardner, T., Elzey, B. and Hahn, N.M. (2012) Sipuleucel-T (Provenge) Autologous Vaccine Approved for Treatment of Men with Asymptomatic or Minimally Symptomatic Castrate-Resistant Metastatic Prostate Cancer. Human Vaccines & Immunotherapeutics, 8, 534-539.
https://doi.org/10.4161/hv.19795
[27] Cheng, M.L. and Fong, L. (2014) Beyond Sipuleucel-T: Immune Approaches to Treating Prostate Cancer. Current Treatment Options in Oncology, 15, 115-126.
https://doi.org/10.1007/s11864-013-0267-z
[28] Lasek, W. and Zapała, Ł. (2021) Therapeutic Metastatic Prostate Cancer Vaccines: Lessons Learnt from Urologic Oncology. Central European Journal of Urology, 74, 300-307.
https://doi.org/10.5173/ceju.2021.0094
[29] Almåsbak, H., Aarvak, T. and Vemuri, M.C. (2016) CAR T Cell Therapy: A Game Changer in Cancer Treatment. Journal of Immunology Research, 2016, Article ID: 5474602.
https://doi.org/10.1155/2016/5474602
[30] Narayan, V., Barber-Rotenberg, J.S., Jung, I., Lacey, S.F., Rech, A.J., Davis, M.M., et al. (2022) PSMA-Targeting TGFβ-Insensitive Armored CAR T Cells in Metastatic Castration-Resistant Prostate Cancer: A Phase 1 Trial. Nature Medicine, 28, 724-734.
https://doi.org/10.1038/s41591-022-01726-1
[31] Kloss, C.C., Lee, J., Zhang, A., Chen, F., Melenhorst, J.J., Lacey, S.F., et al. (2018) Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation and Augments Prostate Cancer Eradication. Molecular Therapy, 26, 1855-1866.
https://doi.org/10.1016/j.ymthe.2018.05.003
[32] Andrea, A.E., Chiron, A., Mallah, S., Bessoles, S., Sarrabayrouse, G. and Hacein-Bey-Abina, S. (2022) Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Frontiers in Immunology, 13, Article ID: 830292.
https://doi.org/10.3389/fimmu.2022.830292
[33] Zarrabi, K.K., Narayan, V., Mille, P.J., Zibelman, M.R., Miron, B., Bashir, B., et al. (2023) Bispecific PSMA Antibodies and CAR-T in Metastatic Castration-Resistant Prostate Cancer. Therapeutic Advances in Urology, 15, 1-18.
https://doi.org/10.1177/17562872231182219
[34] Montagner, I.M., Penna, A., Fracasso, G., Carpanese, D., Dalla Pietà, A., Barbieri, V., et al. (2020) Anti-PSMA Car-Engineered NK-92 Cells: An Off-the-Shelf Cell Therapy for Prostate Cancer. Cells, 9, Article No. 1382.
https://doi.org/10.3390/cells9061382
[35] He, C., Zhou, Y., Li, Z., Farooq, M.A., Ajmal, I., Zhang, H., et al. (2020) Co-Expression of IL-7 Improves Nkg2d-Based CAR T Cell Therapy on Prostate Cancer by Enhancing the Expansion and Inhibiting the Apoptosis and Exhaustion. Cancers, 12, Article No. 1969.
https://doi.org/10.3390/cancers12071969
[36] Sterner, R.C. and Sterner, R.M. (2021) CAR-T Cell Therapy: Current Limitations and Potential Strategies. Blood Cancer Journal, 11, Article No. 69.
https://doi.org/10.1038/s41408-021-00459-7
[37] Zhu, L., Liu, J., Zhou, G., Liu, T., Dai, Y., Nie, G., et al. (2021) Remodeling of Tumor Microenvironment by Tumor‐targeting Nanozymes Enhances Immune Activation of CAR T Cells for Combination Therapy. Small, 17, e2102624.
https://doi.org/10.1002/smll.202102624
[38] Chajon, E., Castelli, J., Marsiglia, H. and De Crevoisier, R. (2017) The Synergistic Effect of Radiotherapy and Immunotherapy: A Promising but Not Simple Partnership. Critical Reviews in Oncology/Hematology, 111, 124-132.
https://doi.org/10.1016/j.critrevonc.2017.01.017
[39] Mehta, S., Illidge, T. and Choudhury, A. (2016) Immunotherapy with Radiotherapy in Urological Malignancies. Current Opinion in Urology, 26, 514-522.
https://doi.org/10.1097/mou.0000000000000335
[40] Ollivier, L., Labbé, M., Fradin, D., Potiron, V. and Supiot, S. (2021) Interaction between Modern Radiotherapy and Immunotherapy for Metastatic Prostate Cancer. Frontiers in Oncology, 11, Article ID: 744679.
https://doi.org/10.3389/fonc.2021.744679
[41] Wang, Y., Liu, Z., Yuan, H., Deng, W., Li, J., Huang, Y., et al. (2019) The Reciprocity between Radiotherapy and Cancer Immunotherapy. Clinical Cancer Research, 25, 1709-1717.
https://doi.org/10.1158/1078-0432.ccr-18-2581
[42] Finkelstein, S.E., Salenius, S., Mantz, C.A., Shore, N.D., Fernandez, E.B., Shulman, J., et al. (2015) Combining Immunotherapy and Radiation for Prostate Cancer. Clinical Genitourinary Cancer, 13, 1-9.
https://doi.org/10.1016/j.clgc.2014.09.001
[43] Solanki, A.A., Bossi, A., Efstathiou, J.A., Lock, D., Mondini, M., Ramapriyan, R., et al. (2019) Combining Immunotherapy with Radiotherapy for the Treatment of Genitourinary Malignancies. European Urology Oncology, 2, 79-87.
https://doi.org/10.1016/j.euo.2018.09.013
[44] Lei, H., Shi, M., Xu, H., Bai, S., Xiong, X., Wei, Q., et al. (2021) Combined Treatment of Radiotherapy and Immunotherapy for Urological Malignancies: Current Evidence and Clinical Considerations. Cancer Management and Research, 13, 1719-1731.
https://doi.org/10.2147/cmar.s288337
[45] Bilusic, M., Madan, R.A. and Gulley, J.L. (2017) Immunotherapy of Prostate Cancer: Facts and Hopes. Clinical Cancer Research, 23, 6764-6770.
https://doi.org/10.1158/1078-0432.ccr-17-0019
[46] Venturini, N.J. and Drake, C.G. (2018) Immunotherapy for Prostate Cancer. Cold Spring Harbor Perspectives in Medicine, 9, a030627.
https://doi.org/10.1101/cshperspect.a030627
[47] Bou-Dargham, M.J., Sha, L., Sang, Q.A. and Zhang, J. (2020) Immune Landscape of Human Prostate Cancer: Immune Evasion Mechanisms and Biomarkers for Personalized Immunotherapy. BMC Cancer, 20, Article No. 572.
https://doi.org/10.1186/s12885-020-07058-y
[48] Cha, H., Lee, J.H. and Ponnazhagan, S. (2020) Revisiting Immunotherapy: A Focus on Prostate Cancer. Cancer Research, 80, 1615-1623.
https://doi.org/10.1158/0008-5472.can-19-2948
[49] Bansal, D., Reimers, M.A., Knoche, E.M. and Pachynski, R.K. (2021) Immunotherapy and Immunotherapy Combinations in Metastatic Castration-Resistant Prostate Cancer. Cancers, 13, Article No. 334.
https://doi.org/10.3390/cancers13020334
[50] Ma, Z., Zhang, W., Dong, B., Xin, Z., Ji, Y., Su, R., et al. (2022) Docetaxel Remodels Prostate Cancer Immune Microenvironment and Enhances Checkpoint Inhibitor-Based Immunotherapy. Theranostics, 12, 4965-4979.
https://doi.org/10.7150/thno.73152
[51] Zhang, L., Zhou, C., Zhang, S., Chen, X., Liu, J., Xu, F., et al. (2022) Chemotherapy Reinforces Anti-Tumor Immune Response and Enhances Clinical Efficacy of Immune Checkpoint Inhibitors. Frontiers in Oncology, 12, Article ID: 939249.
https://doi.org/10.3389/fonc.2022.939249
[52] Vikas, P., Borcherding, N., Chennamadhavuni, A. and Garje, R. (2020) Therapeutic Potential of Combining PARP Inhibitor and Immunotherapy in Solid Tumors. Frontiers in Oncology, 10, Article No. 570.
https://doi.org/10.3389/fonc.2020.00570
[53] Jiang, M., Jia, K., Wang, L., Li, W., Chen, B., Liu, Y., et al. (2021) Alterations of DNA Damage Response Pathway: Biomarker and Therapeutic Strategy for Cancer Immunotherapy. Acta Pharmaceutica Sinica B, 11, 2983-2994.
https://doi.org/10.1016/j.apsb.2021.01.003
[54] Gazzoni, G., Oliveira, J.P., Reis, P.C.A., Bittar, V., Carvalho, B.M., Vilbert, M., et al. (2024) Efficacy and Safety of PARP Inhibitors (PARPI) with Immune Checkpoint Inhibitors (ICI) in Metastatic Castration-Resistant Prostate Cancer (MCRPC): A Systematic Review and Single-Arm Meta-Analysis. Journal of Clinical Oncology, 42, e17053-e17053.
https://doi.org/10.1200/jco.2024.42.16_suppl.e17053
[55] Ferrara, R., Imbimbo, M., Malouf, R., Paget-Bailly, S., Calais, F., Marchal, C., et al. (2021) Single or Combined Immune Checkpoint Inhibitors Compared to First-Line Platinum-Based Chemotherapy with or without Bevacizumab for People with Advanced Non-Small Cell Lung Cancer. Cochrane Database of Systematic Reviews, 2021, CD013257.
https://doi.org/10.1002/14651858.cd013257.pub3
[56] Sharma, P., Pachynski, R.K., Narayan, V., Fléchon, A., Gravis, G., Galsky, M.D., et al. (2020) Nivolumab Plus Ipilimumab for Metastatic Castration-Resistant Prostate Cancer: Preliminary Analysis of Patients in the Checkmate 650 Trial. Cancer Cell, 38, 489-499.e3.
https://doi.org/10.1016/j.ccell.2020.08.007
[57] Zahm, C.D., Moseman, J.E., Delmastro, L.E. and G. Mcneel, D. (2021) PD-1 and LAG-3 Blockade Improve Anti-Tumor Vaccine Efficacy. OncoImmunology, 10, Article ID: 1912892.
https://doi.org/10.1080/2162402x.2021.1912892
[58] Liao, J. and Zhang, S. (2021) Safety and Efficacy of Personalized Cancer Vaccines in Combination with Immune Checkpoint Inhibitors in Cancer Treatment. Frontiers in Oncology, 11, Article ID: 663264.
https://doi.org/10.3389/fonc.2021.663264
[59] Ellingsen, E.B., Aamdal, E., Guren, T., Lilleby, W., Brunsvig, P.F., Mangsbo, S.M., et al. (2022) Durable and Dynamic Htert Immune Responses Following Vaccination with the Long-Peptide Cancer Vaccine UV1: Long-Term Follow-Up of Three Phase I Clinical Trials. Journal for ImmunoTherapy of Cancer, 10, e004345.
https://doi.org/10.1136/jitc-2021-004345
[60] Lanka, S.M., Zorko, N.A., Antonarakis, E.S. and Barata, P.C. (2023) Metastatic Castration-Resistant Prostate Cancer, Immune Checkpoint Inhibitors, and Beyond. Current Oncology, 30, 4246-4256.
https://doi.org/10.3390/curroncol30040323
[61] Dorff, T., Hirasawa, Y., Acoba, J., Pagano, I., Tamura, D., Pal, S., et al. (2021) Phase Ib Study of Patients with Metastatic Castrate-Resistant Prostate Cancer Treated with Different Sequencing Regimens of Atezolizumab and Sipuleucel-t. Journal for ImmunoTherapy of Cancer, 9, e002931.
https://doi.org/10.1136/jitc-2021-002931
[62] Yuan, Z., Fernandez, D., Dhillon, J., Abraham-Miranda, J., Awasthi, S., Kim, Y., et al. (2020) Proof-of-Principle Phase I Results of Combining Nivolumab with Brachytherapy and External Beam Radiation Therapy for Grade Group 5 Prostate Cancer: Safety, Feasibility, and Exploratory Analysis. Prostate Cancer and Prostatic Diseases, 24, 140-149.
https://doi.org/10.1038/s41391-020-0254-y
[63] Jafari, S., Molavi, O., Kahroba, H., Hejazi, M.S., Maleki-Dizaji, N., Barghi, S., et al. (2020) Clinical Application of Immune Checkpoints in Targeted Immunotherapy of Prostate Cancer. Cellular and Molecular Life Sciences, 77, 3693-3710.
https://doi.org/10.1007/s00018-020-03459-1
[64] Meng, L., Yang, Y., Mortazavi, A. and Zhang, J. (2023) Emerging Immunotherapy Approaches for Treating Prostate Cancer. International Journal of Molecular Sciences, 24, Article No. 14347.
https://doi.org/10.3390/ijms241814347
[65] Adamaki, M. and Zoumpourlis, V. (2021) Immunotherapy as a Precision Medicine Tool for the Treatment of Prostate Cancer. Cancers, 13, Article No. 173.
https://doi.org/10.3390/cancers13020173