[1]
|
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492
|
[2]
|
Dobruch, J. and Oszczudłowski, M. (2021) Bladder Cancer: Current Challenges and Future Directions. Medicina, 57, Article No. 749. https://doi.org/10.3390/medicina57080749
|
[3]
|
Charlton, M.E., Adamo, M., Sun, L. and Deorah, S. (2014) Bladder Cancer Collaborative Stage Variables and Their Data Quality, Usage, and Clinical Implications: A Review of SEER Data, 2004‐2010. Cancer, 120, 3815-3825. https://doi.org/10.1002/cncr.29047
|
[4]
|
van Osch, F.H., Jochems, S.H., van Schooten, F., Bryan, R.T. and Zeegers, M.P. (2016) Quantified Relations between Exposure to Tobacco Smoking and Bladder Cancer Risk: A Meta-Analysis of 89 Observational Studies. International Journal of Epidemiology, 45, 857-870. https://doi.org/10.1093/ije/dyw044
|
[5]
|
Johnson, S.B. and Yu, J.B. (2018) Bladder Preserving Trimodality Therapy for Muscle-Invasive Bladder Cancer. Current Oncology Reports, 20, Article No. 66. https://doi.org/10.1007/s11912-018-0711-0
|
[6]
|
Oswald, D., Pallauf, M., Herrmann, T.R.W., et al. (2022) Transurethral Resection of Bladder Tumors (TURBT). Urologe A, 61, 71-82.
|
[7]
|
Oddens, J., Brausi, M., Sylvester, R., Bono, A., van de Beek, C., van Andel, G., et al. (2013) Final Results of an EORTC-GU Cancers Group Randomized Study of Maintenance Bacillus Calmette-Guérin in Intermediate-and High-Risk Ta, T1 Papillary Carcinoma of the Urinary Bladder: One-Third Dose versus Full Dose and 1 Year versus 3 Years of Maintenance. European Urology, 63, 462-472. https://doi.org/10.1016/j.eururo.2012.10.039
|
[8]
|
Okobi, T.J., Uhomoibhi, T.O., Akahara, D.E., Odoma, V.A., Sanusi, I.A., Okobi, O.E., et al. (2023) Immune Checkpoint Inhibitors as a Treatment Option for Bladder Cancer: Current Evidence. Cureus, 15, e40031. https://doi.org/10.7759/cureus.40031
|
[9]
|
张兰兰, 李向敏, 樊再雯. 免疫检查点抑制剂耐药机制的研究进展[J]. 肿瘤防治研究, 2020, 47(8): 636-640.
|
[10]
|
Chen, X., Chen, H., He, D., Cheng, Y., Zhu, Y., Xiao, M., et al. (2021) Analysis of Tumor Microenvironment Characteristics in Bladder Cancer: Implications for Immune Checkpoint Inhibitor Therapy. Frontiers in Immunology, 12, Article ID: 672158. https://doi.org/10.3389/fimmu.2021.672158
|
[11]
|
Huang, M., Liu, L., Zhu, J., Jin, T., Chen, Y., Xu, L., et al. (2021) Identification of Immune-Related Subtypes and Characterization of Tumor Microenvironment Infiltration in Bladder Cancer. Frontiers in Cell and Developmental Biology, 9, Article ID: 723817. https://doi.org/10.3389/fcell.2021.723817
|
[12]
|
Schneider, A.K., Chevalier, M.F. and Derré, L. (2019) The Multifaceted Immune Regulation of Bladder Cancer. Nature Reviews Urology, 16, 613-630. https://doi.org/10.1038/s41585-019-0226-y
|
[13]
|
Chiba, Y., Mizoguchi, I., Hasegawa, H., Ohashi, M., Orii, N., Nagai, T., et al. (2017) Regulation of Myelopoiesis by Proinflammatory Cytokines in Infectious Diseases. Cellular and Molecular Life Sciences, 75, 1363-1376. https://doi.org/10.1007/s00018-017-2724-5
|
[14]
|
Veglia, F., Perego, M. and Gabrilovich, D. (2018) Myeloid-Derived Suppressor Cells Coming of Age. Nature Immunology, 19, 108-119. https://doi.org/10.1038/s41590-017-0022-x
|
[15]
|
Zheng, Z., Zheng, X., Zhu, Y., Yao, Z., Zhao, W., Zhu, Y., et al. (2021) IL‐6 Promotes the Proliferation and Immunosuppressive Function of Myeloid‐Derived Suppressor Cells via the MAPK Signaling Pathway in Bladder Cancer. BioMed Research International, 2021, Article ID: 5535578. https://doi.org/10.1155/2021/5535578
|
[16]
|
Leblond, M.M., Zdimerova, H., Desponds, E. and Verdeil, G. (2021) Tumor-Associated Macrophages in Bladder Cancer: Biological Role, Impact on Therapeutic Response and Perspectives for Immunotherapy. Cancers, 13, Article No. 4712. https://doi.org/10.3390/cancers13184712
|
[17]
|
Cassetta, L. and Pollard, J.W. (2018) Targeting Macrophages: Therapeutic Approaches in Cancer. Nature Reviews Drug Discovery, 17, 887-904. https://doi.org/10.1038/nrd.2018.169
|
[18]
|
Gu, L., Guo, H., Wu, L. and Yuan, J. (2023) Prognostic Analysis and Validation of LncRNAs in Bladder Cancer on the Basis of Neutrophil Extracellular Traps. The Journal of Gene Medicine, 25, e3525. https://doi.org/10.1002/jgm.3525
|
[19]
|
Liu, K., Zhao, K., Wang, L. and Sun, E. (2018) The Prognostic Values of Tumor-Infiltrating Neutrophils, Lymphocytes and Neutrophil/Lymphocyte Rates in Bladder Urothelial Cancer. Pathology—Research and Practice, 214, 1074-1080. https://doi.org/10.1016/j.prp.2018.05.010
|
[20]
|
Ikarashi, D., Kitano, S., Tsuyukubo, T., Yamashita, M., Matsuura, T., Maekawa, S., et al. (2024) Pathological Complete Response to Neoadjuvant Chemotherapy May Improve Antitumor Immune Response via Reduction of Regulatory T Cells in Muscle-Invasive Bladder Cancer. Scientific Reports, 14, Article No. 1442. https://doi.org/10.1038/s41598-024-51273-7
|
[21]
|
Koyama, S. and Nishikawa, H. (2021) Mechanisms of Regulatory T Cell Infiltration in Tumors: Implications for Innovative Immune Precision Therapies. Journal for ImmunoTherapy of Cancer, 9, e002591. https://doi.org/10.1136/jitc-2021-002591
|
[22]
|
Garris, C.S., Wong, J.L., Ravetch, J.V. and Knorr, D.A. (2021) Dendritic Cell Targeting with Fc-Enhanced CD40 Antibody Agonists Induces Durable Antitumor Immunity in Humanized Mouse Models of Bladder Cancer. Science Translational Medicine, 13, eabd1346. https://doi.org/10.1126/scitranslmed.abd1346
|
[23]
|
Segura, J. (2020) Decoding the Heterogeneity of Human Dendritic Cell Subsets. Trends in Immunology, 41, 1062-1071.
|
[24]
|
Katz, S.I., Parker, D. and Turk, J.L. (1974) B-Cell Suppression of Delayed Hypersensitivity Reactions. Nature, 251, 550-551. https://doi.org/10.1038/251550a0
|
[25]
|
Shang, J., Zha, H. and Sun, Y. (2020) Phenotypes, Functions, and Clinical Relevance of Regulatory B Cells in Cancer. Frontiers in Immunology, 11, Article ID: 582657. https://doi.org/10.3389/fimmu.2020.582657
|
[26]
|
Derakhshani, A., Vahidian, F., Alihasanzadeh, M., Mokhtarzadeh, A., Lotfi Nezhad, P. and Baradaran, B. (2019) Mast Cells: A Double-Edged Sword in Cancer. Immunology Letters, 209, 28-35. https://doi.org/10.1016/j.imlet.2019.03.011
|
[27]
|
Aponte-López, A. and Muñoz-Cruz, S. (2020) Mast Cells in the Tumor Microenvironment. In: Birbrair, A., Ed., Tumor Microenvironment: Hematopoietic Cells—Part B, Springer International Publishing, 159-173. https://doi.org/10.1007/978-3-030-49270-0_9
|
[28]
|
Zeltz, C., Primac, I., Erusappan, P., Alam, J., Noel, A. and Gullberg, D. (2020) Cancer-Associated Fibroblasts in Desmoplastic Tumors: Emerging Role of Integrins. Seminars in Cancer Biology, 62, 166-181. https://doi.org/10.1016/j.semcancer.2019.08.004
|
[29]
|
Du, Y., Cao, J., Jiang, X., Cai, X., Wang, B., Wang, Y., et al. (2021) Comprehensive Analysis of CXCL12 Expression Reveals the Significance of Inflammatory Fibroblasts in Bladder Cancer Carcinogenesis and Progression. Cancer Cell International, 21, Article No. 613. https://doi.org/10.1186/s12935-021-02314-y
|
[30]
|
Liu, B., Pan, S., Liu, J. and Kong, C. (2021) Cancer-Associated Fibroblasts and the Related Runt-Related Transcription Factor 2 (RUNX2) Promote Bladder Cancer Progression. Gene, 775, Article ID: 145451. https://doi.org/10.1016/j.gene.2021.145451
|
[31]
|
Frerichs, L.M., Frerichs, B., Petzsch, P., Köhrer, K., Windolf, J., Bittersohl, B., et al. (2023) Tumorigenic Effects of Human Mesenchymal Stromal Cells and Fibroblasts on Bladder Cancer Cells. Frontiers in Oncology, 13, Article ID: 1228185. https://doi.org/10.3389/fonc.2023.1228185
|
[32]
|
Liang, T., Tao, T., Wu, K., Liu, L., Xu, W., Zhou, D., et al. (2023) Cancer‐Associated Fibroblast‐Induced Remodeling of Tumor Microenvironment in Recurrent Bladder Cancer. Advanced Science, 10, e2303230. https://doi.org/10.1002/advs.202303230
|
[33]
|
Yang, M., Wang, B., Hou, W., Zeng, H., He, W., Zhang, X., et al. (2024) NAD+ Metabolism Enzyme NNMT in Cancer-Associated Fibroblasts Drives Tumor Progression and Resistance to Immunotherapy by Modulating Macrophages in Urothelial Bladder Cancer. Journal for ImmunoTherapy of Cancer, 12, e009281. https://doi.org/10.1136/jitc-2024-009281
|
[34]
|
Morales-Barrera, R., Suárez, C., de Castro, A.M., Racca, F., Valverde, C., Maldonado, X., et al. (2016) Targeting Fibroblast Growth Factor Receptors and Immune Checkpoint Inhibitors for the Treatment of Advanced Bladder Cancer: New Direction and New Hope. Cancer Treatment Reviews, 50, 208-216. https://doi.org/10.1016/j.ctrv.2016.09.018
|
[35]
|
Wang, J., Li, D., Cang, H. and Guo, B. (2019) Crosstalk between Cancer and Immune Cells: Role of Tumor‐Associated Macrophages in the Tumor Microenvironment. Cancer Medicine, 8, 4709-4721. https://doi.org/10.1002/cam4.2327
|
[36]
|
钱俊安, 张琳, 杨萌, 等. 免疫抑制细胞在膀胱癌TME中的免疫抑制作用机制及特异性治疗研究进展[J]. 山东医药, 2022, 62(24): 107-110.
|
[37]
|
苏峥, 任海朋, 依荷芭丽·迟. 调节性T细胞与肿瘤免疫治疗的研究进展[J]. 癌症进展, 2023, 21(8): 824-829+865.
|