|
[1]
|
Dutt, S., Hamza, I. and Bartnikas, T.B. (2022) Molecular Mechanisms of Iron and Heme Metabolism. Annual Review of Nutrition, 42, 311-335. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Mleczko‐Sanecka, K. and Silvestri, L. (2020) Cell‐type‐specific Insights into Iron Regulatory Processes. American Journal of Hematology, 96, 110-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kumfu, S., Chattipakorn, S.C. and Chattipakorn, N. (2022) Iron Overload Cardiomyopathy: Using the Latest Evidence to Inform Future Applications. Experimental Biology and Medicine, 247, 574-583. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Colucci, S., Marques, O. and Altamura, S. (2021) 20 Years of Hepcidin: How Far We Have Come. Seminars in Hematology, 58, 132-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Roetto, A., Mezzanotte, M. and Pellegrino, R.M. (2018) The Functional Versatility of Transferrin Receptor 2 and Its Therapeutic Value. Pharmaceuticals, 11, Article 115. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Boero, M., Pagliaro, P., Tullio, F., Pellegrino, R.M., Palmieri, A., Ferbo, L., et al. (2015) A Comparative Study of Myocardial Molecular Phenotypes of Two Tfr2β Null Mice: Role in Ischemia/reperfusion. BioFactors, 41, 360-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Koleini, N., Shapiro, J.S., Geier, J. and Ardehali, H. (2021) Ironing Out Mechanisms of Iron Homeostasis and Disorders of Iron Deficiency. Journal of Clinical Investigation, 131, e148671. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Mercadante, C.J., Prajapati, M., Parmar, J.H., Conboy, H.L., Dash, M.E., Pettiglio, M.A., et al. (2018) Gastrointestinal Iron Excretion and Reversal of Iron Excess in a Mouse Model of Inherited Iron Excess. Haematologica, 104, 678-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Speich, C., Wegmüller, R., Brittenham, G.M., Zeder, C., Cercamondi, C.I., Buhl, D., et al. (2020) Measurement of Long‐term Iron Absorption and Loss during Iron Supplementation Using a Stable Isotope of Iron (57Fe). British Journal of Haematology, 192, 179-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, G., Qin, Q., Zhang, C., Sun, X., Kazama, K., Yi, B., et al. (2023) NDRG1 Signaling Is Essential for Endothelial Inflammation and Vascular Remodeling. Circulation Research, 132, 306-319. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Vergallo, R. and Crea, F. (2020) Atherosclerotic Plaque Healing. New England Journal of Medicine, 383, 846-857. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Schloss, M.J., Swirski, F.K. and Nahrendorf, M. (2020) Modifiable Cardiovascular Risk, Hematopoiesis, and Innate Immunity. Circulation Research, 126, 1242-1259. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Libby, P. (2021) The Changing Landscape of Atherosclerosis. Nature, 592, 524-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bhatt, D.L., Steg, P.G., Miller, M., Brinton, E.A., Jacobson, T.A., Ketchum, S.B., et al. (2019) Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. New England Journal of Medicine, 380, 11-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Bhatt, D.L., Steg, P.G., Miller, M., Brinton, E.A., Jacobson, T.A., Ketchum, S.B., et al. (2019) Effects of Icosapent Ethyl on Total Ischemic Events. Journal of the American College of Cardiology, 73, 2791-2802. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Vinchi, F., Porto, G., Simmelbauer, A., Altamura, S., Passos, S.T., Garbowski, M., et al. (2019) Atherosclerosis Is Aggravated by Iron Overload and Ameliorated by Dietary and Pharmacological Iron Restriction. European Heart Journal, 41, 2681-2695. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Guo, Y., Zhang, W., Zhou, X., Zhao, S., Wang, J., Guo, Y., et al. (2022) Roles of Ferroptosis in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 9, Article 911564. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dixon, S.J. and Olzmann, J.A. (2024) The Cell Biology of Ferroptosis. Nature Reviews Molecular Cell Biology, 25, 424-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Biswas, S., Xin, L., Panigrahi, S., Zimman, A., Wang, H., Yakubenko, V.P., et al. (2016) Novel Phosphatidylethanolamine Derivatives Accumulate in Circulation in Hyperlipidemic ApoE−/− Mice and Activate Platelets via TLR2. Blood, 127, 2618-2629. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Stockwell, B.R. (2022) Ferroptosis Turns 10: Emerging Mechanisms, Physiological Functions, and Therapeutic Applications. Cell, 185, 2401-2421. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Tu, H., Tang, L., Luo, X., et al. (2021) Insights into the Novel Function of System Xc-in Regulated Cell Death. European Review for Medical and Pharmacological Sciences, 25, 1650-1662.
|
|
[22]
|
Rochette, L., Dogon, G., Rigal, E., Zeller, M., Cottin, Y. and Vergely, C. (2022) Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. International Journal of Molecular Sciences, 24, Article 449. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ju, J., Song, Y. and Wang, K. (2021) Mechanism of Ferroptosis: A Potential Target for Cardiovascular Diseases Treatment. Aging and disease, 12, 261-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Luo, X., Wang, Y., Zhu, X., Chen, Y., Xu, B., Bai, X., et al. (2024) MCL Attenuates Atherosclerosis by Suppressing Macrophage Ferroptosis via Targeting KEAP1/NRF2 Interaction. Redox Biology, 69, Article ID: 102987. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Harman, J.L. and Jørgensen, H.F. (2019) The Role of Smooth Muscle Cells in Plaque Stability: Therapeutic Targeting Potential. British Journal of Pharmacology, 176, 3741-3753. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wu, D., Hu, Q., Wang, Y., Jin, M., Tao, Z. and Wan, J. (2022) Identification of HMOX1 as a Critical Ferroptosis-Related Gene in Atherosclerosis. Frontiers in Cardiovascular Medicine, 9, Article 833642. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Meng, Z., Liang, H., Zhao, J., Gao, J., Liu, C., Ma, X., et al. (2021) HMOX1 Upregulation Promotes Ferroptosis in Diabetic Atherosclerosis. Life Sciences, 284, Article ID: 119935. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Savarese, G., von Haehling, S., Butler, J., Cleland, J.G.F., Ponikowski, P. and Anker, S.D. (2022) Iron deficiency and cardiovascular disease. European Heart Journal, 44, 14-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Malhotra, R., Wunderer, F., Barnes, H.J., Bagchi, A., Buswell, M.D., O’Rourke, C.D., et al. (2019) Hepcidin Deficiency Protects against Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 178-187. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Liu, W., Östberg, N., Yalcinkaya, M., Dou, H., Endo-Umeda, K., Tang, Y., et al. (2022) Erythroid Lineage Jak2V617F Expression Promotes Atherosclerosis through Erythrophagocytosis and Macrophage Ferroptosis. Journal of Clinical Investigation, 132, e155724. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yu, W., Liu, W., Xie, D., Wang, Q., Xu, C., Zhao, H., et al. (2022) High Level of Uric Acid Promotes Atherosclerosis by Targeting NRF2-Mediated Autophagy Dysfunction and Ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9304383. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bao, X., Luo, X., Bai, X., Lv, Y., Weng, X., Zhang, S., et al. (2023) Cigarette Tar Mediates Macrophage Ferroptosis in Atherosclerosis through the Hepcidin/fpn/slc7a11 Signaling Pathway. Free Radical Biology and Medicine, 201, 76-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. [Google Scholar] [CrossRef] [PubMed]
|