[1]
|
Luo, J., Liang, S. and Jin, F. (2024) Gut Microbiota and Healthy Longevity. Science China Life Sciences, 67, 2590-2602. https://doi.org/10.1007/s11427-023-2595-5
|
[2]
|
Schneider, E., O’Riordan, K.J., Clarke, G. and Cryan, J.F. (2024) Feeding Gut Microbes to Nourish the Brain: Unravelling the Diet-Microbiota-Gut-Brain Axis. Nature Metabolism, 6, 1454-1478. https://doi.org/10.1038/s42255-024-01108-6
|
[3]
|
Gubert, C., Kong, G., Renoir, T. and Hannan, A.J. (2020) Exercise, Diet and Stress as Modulators of Gut Microbiota: Implications for Neurodegenerative Diseases. Neurobiology of Disease, 134, Article ID: 104621. https://doi.org/10.1016/j.nbd.2019.104621
|
[4]
|
Li, S., Cai, Y., Wang, S., Luo, L., Zhang, Y., Huang, K., et al. (2024) Gut Microbiota: The Indispensable Player in Neurodegenerative Diseases. Journal of the Science of Food and Agriculture, 104, 7096-7108. https://doi.org/10.1002/jsfa.13509
|
[5]
|
Zhou, H., Huang, D., Sun, Z. and Chen, X. (2024) Effects of Intestinal Desulfovibrio Bacteria on Host Health and Its Potential Regulatory Strategies: A Review. Microbiological Research, 284, Article ID: 127725. https://doi.org/10.1016/j.micres.2024.127725
|
[6]
|
Singh, S.B., Carroll-Portillo, A. and Lin, H.C. (2023) Desulfovibrio in the Gut: The Enemy within? Microorganisms, 11, Article No. 1772. https://doi.org/10.3390/microorganisms11071772
|
[7]
|
Wang, R. (2012) Physiological Implications of Hydrogen Sulfide: A Whiff Exploration That Blossomed. Physiological Reviews, 92, 791-896. https://doi.org/10.1152/physrev.00017.2011
|
[8]
|
Zhao, Z., Ning, J., Bao, X., Shang, M., Ma, J., Li, G., et al. (2021) Fecal Microbiota Transplantation Protects Rotenone-Induced Parkinson’s Disease Mice via Suppressing Inflammation Mediated by the Lipopolysaccharide-TLR4 Signaling Pathway through the Microbiota-Gut-Brain Axis. Microbiome, 9, Article No. 226. https://doi.org/10.1186/s40168-021-01107-9
|
[9]
|
(2024) 2024 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 20, 3708-3821. http://dx.doi.org/10.1002/alz.13809
|
[10]
|
Kumar, A., Singh, A. and Ekavali, (2015) A Review on Alzheimer’s Disease Pathophysiology and Its Management: An Update. Pharmacological Reports, 67, 195-203. https://doi.org/10.1016/j.pharep.2014.09.004
|
[11]
|
Jagust, W. (2018) Imaging the Evolution and Pathophysiology of Alzheimer Disease. Nature Reviews Neuroscience, 19, 687-700. https://doi.org/10.1038/s41583-018-0067-3
|
[12]
|
Xin, S., Tan, L., Cao, X., Yu, J. and Tan, L. (2018) Clearance of Amyloid Beta and Tau in Alzheimer’s Disease: From Mechanisms to Therapy. Neurotoxicity Research, 34, 733-748. https://doi.org/10.1007/s12640-018-9895-1
|
[13]
|
Guo, X., Zhang, X., Tang, P., Chong, L. and Li, R. (2023) Integration of Genome-Wide Association Studies (GWAS) and Microbiome Data Highlights the Impact of Sulfate-Reducing Bacteria on Alzheimer’s Disease. Age and Ageing, 52, afad112. https://doi.org/10.1093/ageing/afad112
|
[14]
|
Birney, E. (2021) Mendelian Randomization. Cold Spring Harbor Perspectives in Medicine, 12, a041302. https://doi.org/10.1101/cshperspect.a041302
|
[15]
|
Xuan, A., Long, D., Li, J., Ji, W., Zhang, M., Hong, L., et al. (2012) Hydrogen Sulfide Attenuates Spatial Memory Impairment and Hippocampal Neuroinflammation in Beta-Amyloid Rat Model of Alzheimer’s Disease. Journal of Neuroinflammation, 9, Article No. 202. https://doi.org/10.1186/1742-2094-9-202
|
[16]
|
Li, C., Wang, N., Zheng, G. and Yang, L. (2021) Oral Administration of Resveratrol-Selenium-Peptide Nanocomposites Alleviates Alzheimer’s Disease-Like Pathogenesis by Inhibiting Aβ Aggregation and Regulating Gut Microbiota. ACS Applied Materials & Interfaces, 13, 46406-46420. https://doi.org/10.1021/acsami.1c14818
|
[17]
|
Chu, X., Hou, Y., Meng, Q., Croteau, D.L., Wei, Y., De, S., et al. (2022) Nicotinamide Adenine Dinucleotide Supplementation Drives Gut Microbiota Variation in Alzheimer’s Mouse Model. Frontiers in Aging Neuroscience, 14, Article ID: 993615. https://doi.org/10.3389/fnagi.2022.993615
|
[18]
|
Ben-Shlomo, Y., Darweesh, S., Llibre-Guerra, J., Marras, C., San Luciano, M. and Tanner, C. (2024) The Epidemiology of Parkinson’s Disease. The Lancet, 403, 283-292. https://doi.org/10.1016/s0140-6736(23)01419-8
|
[19]
|
Morris, H.R., Spillantini, M.G., Sue, C.M. and Williams-Gray, C.H. (2024) The Pathogenesis of Parkinson’s Disease. The Lancet, 403, 293-304. https://doi.org/10.1016/s0140-6736(23)01478-2
|
[20]
|
Braak, H., Gai, W.P. and Del Tredici, K., et al. (2003) Idiopathic Parkinson’s Disease: Possible Routes by Which Vulnerable Neuronal Types May Be Subject to Neuroinvasion by an Unknown Pathogen. Journal of Neural Transmission, 110, 517-536. https://doi.org/10.1007/s00702-002-0808-2
|
[21]
|
Barrenschee, M., Zorenkov, D., Böttner, M., Lange, C., Cossais, F., Scharf, A.B., et al. (2017) Distinct Pattern of Enteric Phospho-Alpha-Synuclein Aggregates and Gene Expression Profiles in Patients with Parkinson’s Disease. Acta Neuropathologica Communications, 5, Article No. 1. https://doi.org/10.1186/s40478-016-0408-2
|
[22]
|
Murros, K.E., Huynh, V.A., Takala, T.M. and Saris, P.E.J. (2021) Desulfovibrio Bacteria Are Associated with Parkinson’s Disease. Frontiers in Cellular and Infection Microbiology, 11, Article ID: 652617. https://doi.org/10.3389/fcimb.2021.652617
|
[23]
|
Lin, A., Zheng, W., He, Y., Tang, W., Wei, X., He, R., et al. (2018) Gut Microbiota in Patients with Parkinson’s Disease in Southern China. Parkinsonism & Related Disorders, 53, 82-88. https://doi.org/10.1016/j.parkreldis.2018.05.007
|
[24]
|
Hälldin, J. and Land, T. (2007) Sulfide Increases Labile Iron Pool in RD4 Cells. BioMetals, 21, 127-131. https://doi.org/10.1007/s10534-007-9099-2
|
[25]
|
Nava, G.M., Carbonero, F., Croix, J.A., Greenberg, E. and Gaskins, H.R. (2011) Abundance and Diversity of Mucosa-Associated Hydrogenotrophic Microbes in the Healthy Human Colon. The ISME Journal, 6, 57-70. https://doi.org/10.1038/ismej.2011.90
|
[26]
|
Tomasova, L., Dobrowolski, L., Jurkowska, H., Wróbel, M., Huc, T., Ondrias, K., et al. (2016) Intracolonic Hydrogen Sulfide Lowers Blood Pressure in Rats. Nitric Oxide, 60, 50-58. https://doi.org/10.1016/j.niox.2016.09.007
|
[27]
|
Singh, S. and Lin, H. (2015) Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract. Microorganisms, 3, 866-889. https://doi.org/10.3390/microorganisms3040866
|
[28]
|
Feldman, E.L., Goutman, S.A., Petri, S., Mazzini, L., Savelieff, M.G., Shaw, P.J., et al. (2022) Amyotrophic Lateral Sclerosis. The Lancet, 400, 1363-1380. https://doi.org/10.1016/s0140-6736(22)01272-7
|
[29]
|
Lee, A., Henderson, R., Aylward, J. and McCombe, P. (2024) Gut Symptoms, Gut Dysbiosis and Gut-Derived Toxins in Als. International Journal of Molecular Sciences, 25, Article No. 1871. https://doi.org/10.3390/ijms25031871
|
[30]
|
Zhang, Y., Ogbu, D., Garrett, S., Xia, Y. and Sun, J. (2021) Aberrant Enteric Neuromuscular System and Dysbiosis in Amyotrophic Lateral Sclerosis. Gut Microbes, 13, Article ID: 1996848. https://doi.org/10.1080/19490976.2021.1996848
|
[31]
|
Spalloni, A., Greco, V., Ciriminna, G., Corasolla Carregari, V., Marini, F., Pieroni, L., et al. (2019) Impact of Pharmacological Inhibition of Hydrogen Sulphide Production in the SOD1G93A-ALS Mouse Model. International Journal of Molecular Sciences, 20, Article No. 2550. https://doi.org/10.3390/ijms20102550
|
[32]
|
Masi, A.D. and Ascenzi, P. (2012) H2S: A “Double Face” Molecule in Health and Disease. BioFactors, 39, 186-196. https://doi.org/10.1002/biof.1061
|
[33]
|
Lu, W. and Wen, J. (2024) Anti-Inflammatory Effects of Hydrogen Sulfide in Axes between Gut and Other Organs. Antioxidants & Redox Signaling. https://doi.org/10.1089/ars.2023.0531
|
[34]
|
Ji, D., Luo, C., Liu, J., Cao, Y., Wu, J., Yan, W., et al. (2022) Insufficient S-Sulfhydration of Methylenetetrahydrofolate Reductase Contributes to the Progress of Hyperhomocysteinemia. Antioxidants & Redox Signaling, 36, 1-14. https://doi.org/10.1089/ars.2021.0029
|
[35]
|
Giovinazzo, D., Bursac, B., Sbodio, J.I., Nalluru, S., Vignane, T., Snowman, A.M., et al. (2021) Hydrogen Sulfide Is Neuroprotective in Alzheimer’s Disease by Sulfhydrating GSK3β and Inhibiting Tau Hyperphosphorylation. Proceedings of the National Academy of Sciences, 118, e2017225118. https://doi.org/10.1073/pnas.2017225118
|
[36]
|
Tripathi, S.J., Chakraborty, S., Miller, E., Pieper, A.A. and Paul, B.D. (2023) Hydrogen Sulfide Signalling in Neurodegenerative Diseases. British Journal of Pharmacology. https://doi.org/10.1111/bph.16170
|
[37]
|
Nie, S., Jing, Z., Wang, J., Deng, Y., Zhang, Y., Ye, Z., et al. (2023) The Link between Increased Desulfovibrio and Disease Severity in Parkinson’s Disease. Applied Microbiology and Biotechnology, 107, 3033-3045. https://doi.org/10.1007/s00253-023-12489-1
|
[38]
|
Davoli, A., Greco, V., Spalloni, A., Guatteo, E., Neri, C., Rizzo, G.R., et al. (2015) Evidence of Hydrogen Sulfide Involvement in Amyotrophic Lateral Sclerosis. Annals of Neurology, 77, 697-709. https://doi.org/10.1002/ana.24372
|
[39]
|
Paul, B.D., Sbodio, J.I., Xu, R., Vandiver, M.S., Cha, J.Y., Snowman, A.M., et al. (2014) Cystathionine γ-Lyase Deficiency Mediates Neurodegeneration in Huntington’s Disease. Nature, 509, 96-100. https://doi.org/10.1038/nature13136
|
[40]
|
Liu, Y., Zhang, Y., Zhu, Y., Tang, A., Liang, H., Yang, Y., et al. (2024) Hydrogen Sulfide in Musculoskeletal Diseases: Molecular Mechanisms and Therapeutic Opportunities. Antioxidants & Redox Signaling. https://doi.org/10.1089/ars.2024.0625
|