解脲支原体:致病机制的多维解析
Ureaplasma Urealyticum: A Multidimensional Elucidating of Pathogenic Mechanisms
DOI: 10.12677/acm.2025.152371, PDF, HTML, XML,   
作者: 王雪纯, 黄世峰*:重庆医科大学附属第一医院医学检验科,重庆
关键词: 解脲支原体致病机制毒力因子Ureaplasma Urealyticum Pathogenesis Toxin Factor
摘要: 解脲支原体(Ureaplasma urealyticum,简称UU)作为一种重要的条件致病菌,广泛分布于人类泌尿生殖系统中,与多种感染性疾病和妊娠相关并发症密切相关,包括泌尿生殖道感染、早产、胎膜早破、支气管肺发育不良、新生儿脑膜炎及败血症等。本文将深入探讨解脲支原体的致病机制,从吸附特性、侵袭能力、免疫逃逸策略以及毒力因子等多个维度进行详细阐述。
Abstract: As an important conditionally pathogenic bacteria, Ureaplasma urealyticum (UU)is widely distributed in the human urogenital system and closely related to a variety of infectious diseases and pregnancy-related complications, including urogenital infections, preterm birth, premature rupture of membranes, bronchopulmonary dysplasia, neonatal meningitis and sepsis. This article delves into the pathogenic mechanisms of Ureaplasma urealyticum, providing detailed elaborations from multiple dimensions such as its adherence properties, invasive capabilities, immune evasion strategies, and virulence factors.
文章引用:王雪纯, 黄世峰. 解脲支原体:致病机制的多维解析[J]. 临床医学进展, 2025, 15(2): 490-496. https://doi.org/10.12677/acm.2025.152371

1. 引言

解脲支原体于1954年首次发现,在2002年,Robertson等人基于血清学交叉反应性、人类IgA1蛋白酶活性等特征,将14种公认的血清型标准菌株分为两个生物型,即微小脲原体:Ureaplasma parvum (parvo生物型,UP)包括血清型1,3,6,14;解脲支原体:Ureaplasma urealyticum (T960生物型,UU),包括血清型2,4,5,7~13 (在下文中我们将用UU来表示解脲支原体)。在临床鉴定阳性的样本中,UP远多于UU [1] [2]。近年来研究表明UP在无症状人群中占主导地位,而UU在生殖器–尿路感染中的比例更高[3] [4]。Povlsen等人的研究进一步证实,UU的定植与细菌性阴道病及早产风险存在关联,相比之下,UP多被视为在人类生殖道中无害共生的菌群[5],因此本文我们着重讨论UU的致病机制。UU常见于大多数性活跃成人的生殖器粘膜表面,也可在口腔及上呼吸道中找到[6]。作为已知唯一表现出脲酶活性的人类支原体,UU可以将尿素水解成氨和碳酸,提高局部pH值,促进感染和炎症,与多种疾病的发生发展密切相关,包括非淋球菌性尿道炎、不孕不育、胎膜早破、绒毛膜羊膜炎、早产、支气管肺发育不良等[7]-[13]。作为一种重要的条件致病菌,其致病性与多种因素有关,包括不同的生物群、血清型、毒力因子及宿主因素,接下来我们将从黏附、侵袭、免疫逃逸及毒力因子四个方面对UU的致病机制进行介绍,旨在为深入理解UU的致病特性及开发针对性治疗方案提供理论依据,同时促进相关疾病的临床诊治与预防策略的优化。

2. 黏附

UU首先通过黏附素与宿主细胞表面的受体结合并且相互作用,这种吸附作用不仅有助于其在宿主体内的定植,还能够促进其对宿主细胞的侵袭。这些黏附素具有抗原性,包括血清型8特异性的96 kDa表面抗原,多带抗原蛋白,LAMP家族蛋白[14]等,因此,不同血清型的UU在黏附能力上的差异可能影响其致病性和定植能力,并且研究发现N-乙酰神经氨酸(NANA)在UU识别过程中起到关键作用,且尿素的存在能显著增强UU与宿主细胞的黏附。黏附素的存在使UU常黏附在粘膜及多种人类细胞上,例如红细胞[15]、精子[16]、尿道上皮细胞[17]、成纤维细胞、呼吸道上皮细胞[18]等。

3. 侵袭

解脲支原体的侵袭能力是其致病性的关键因素之一。这种微生物能够穿透宿主的生理屏障,进入细胞内部,从而引发感染。一旦黏附,UU可能通过主动侵入或被宿主细胞内吞的方式进入宿主细胞,磷脂酶A和C能够破坏或降解宿主细胞膜,促进细菌的侵袭和迁移。UU的侵袭可能导致宿主细胞的损伤,包括破坏细胞结构和功能,干扰宿主细胞的正常生理功能及细胞周期,像多带抗原蛋白(MBA)、LAMP家族蛋白可参与这一过程[14]

4. 免疫逃逸

UU在长期防御宿主免疫保护方面已经进化出复杂而精密的逃逸机制,包括逃避宿主自噬机制、拮抗宿主营养免疫、调节宿主细胞基因表达(选择性下调宿主细胞抗菌肽基因和其他免疫防御基因的表达)等[14] [19],这些策略使得解脲支原体能够在宿主体内长期存活,从而增加感染的风险。此外,生物膜的形成及MBA的大小变异均有助于UU逃避免疫监视及清除[14] [20] [21],这些免疫逃逸机制使得UU能够在宿主体内长期存活,导致慢性感染,增加治疗难度。

5. 毒力因子

毒力因子是解脲支原体致病性的核心,包括能够破坏宿主细胞结构的酶类、干扰宿主细胞功能的毒素以及促进炎症反应的分子。这些毒力因子的存在使得解脲支原体能够对宿主造成直接的损伤,并可能引发更严重的病理变化。近年来大量研究用来研究UU的毒力因子以明确致病机制来达到更好的治疗效果,其中常被研究的毒力因子包括MBA、IgA蛋白酶、磷脂酶A和C及脲酶。

5.1. MBA

作为UU的主要外膜蛋白,多带抗原蛋白(Multiple Banded Antigen, MBA)在致病过程中扮演着关键角色,它不仅参与宿主细胞的粘附、侵袭,还因其高变异率而有助于UU逃避宿主的免疫监视[20] [22]-[24]。MBA由保守区域和可变区域组成[25],其5'区编码脂蛋白保守的N-末端锚点,这一区域是生物型特异性和多样性的标志[26],3'区编码的C-末端结构域由多个具有血清特异性和交叉反应性表位的重复单元组成,具有抗原性,并在支原体感染期间激发抗体宿主应答[27] [28],是UU感染患者识别的主要抗原[23]。MBA由宿主识别后,能够通过Toll样受体1、2和6 (TLR1、TLR2和TLR6)激活核因子κB (NF-κB)来增加细胞因子和肿瘤坏死因子α (TNF-α)的产生,诱导炎症相关基因表达上调和免疫调节因子释放[14] [29] [30]。研究表明,MBA基因中的串联重复序列在不同的血清型中不同,可能通过重组机制在不同的血清型之间转移,并在侵袭性解脲支原体分离株中表现出大小变化[23] [31]。Dando等人通过动物实验发现,MBA的大小变异可能不是直接的毒力因子,但有助于支原体在羊膜腔内感染中逃避免疫清除[20],抗原大小的变化可能是由于基因中重复序列数量的调控所导致的[31],这种变化可能影响抗体的识别和结合,从而逃避宿主的免疫系统。关于MBA的大小变异机制,Dando等人提出以下观点:1) 基因重复和缺失:重复单元的拷贝数变化,2) 点突变:基因序列中的单个核苷酸变化,3) 剪接变异:RNA剪接过程中的变异导致不同的mRNA剪接体产生,从而翻译成不同大小的蛋白质,4) 相位变异:特定区域的DNA重复序列在转录和翻译过程中发生移码,导致蛋白表达的多样性,5) 水平基因转移:Ureaplasma spp.之间可能通过水平基因转移(HGT)交换遗传物质,影响MBA蛋白的大小和免疫原性。此外,还有生存选择及环境等因素的影响可能导致MBA的大小变化,这些对于探索MBA的毒力与致病性具有重要意义[32]。Robinson等人观察到在慢性感染期间,MBA的大小变化与感染持续时间直接相关,而在急性感染期间,MBA变异较少或没有观察到[33]。当MBA蛋白变异体数量增加时,其表位的多样性和复杂性也随之提高,机体免疫系统难以产生有效的免疫应答,UU的促炎能力减弱,促使感染发展为慢性、持续性感染,这使得UU感染的诊断更加困难[14] [33]。Zheng等人在新生儿的脑脊液和血液中分离出UU的5种不同的血清型(1,3,6,8和10),这表明侵袭性解脲支原体并不限于某一特定血清型,除了血清型差异外,抗原变异和宿主因素可能是影响解脲支原体感染的更重要的决定因素[21]。MBA的变异不仅限于MBA基因本身,还涉及MBA位点内的其他基因,例如,Zimmerman等人发现其他与MBA N端同源的基因,如UU172,可以通过DNA倒位产生嵌合结构,并在表达上发生转换,导致表面蛋白的多样性,增加了细菌逃避宿主免疫反应的能力[25],插入突变可能是MBA变异的另一种机制[34]。在一例从在24周胎龄出生的异卵双胞胎中分离出单独UU的病例中,通过免疫印迹与qPCR确定一个感染UP (血清型6),另一个感染UU (血清型2、5和8),这也是首例展示了MBA在临床感染过程中演变的病例[35]

5.2. 磷脂酶A和C

UU能够表现出磷脂酶A (PL-A)和C (PL-C)的活性,这些酶主要定位在细菌胞膜中,能够破坏或降解宿主细胞膜,影响宿主细胞生物合成,促进细菌的侵袭和迁移。PL-A可进一步分为PL-A1和PL-A2,PL-A2活性远高于PL-A1 [36],其中PL-A2能够通过释放花生四烯酸来改变前列腺素的合成,从而引发早产和炎症反应,PL-C能够水解磷脂,产生第二信使,干扰宿主细胞的信号传导途径,影响细胞的正常功能。DeSilva等人发现所有血清型的PL-A和PL-C活性均对热敏感,并在pH 5-9范围内广泛活跃,激活剂(如二乙醚)普遍增强不同血清型的PL-A2活性,也可以增强血清型8的PL-C活性,抑制剂(十二烷基硫酸钠)增强了血清型3、4的PL-A活性,但对PL-C活性及血清型8的PL-A活性有抑制作用,这些差异可能使某些血清型在特定宿主环境中具有更高的致病潜力[37]

5.3. 蛋白酶

IgA作为粘膜免疫的关键组成部分,能够中和细菌和病毒,发挥重要的防御作用。UU能够产生一种特定的蛋白酶,即IgA蛋白酶,它能够破坏宿主的粘膜免疫防御机制从而帮助UU在宿主体内定植和持续存在。研究表明,IgA1蛋白酶活性普遍存在于UU的所有14种血清型中,使其成为首个被发现具有这种活性的支原体物种[38]。进一步的研究揭示了IgA蛋白酶的物种和亚类特异性,且UU只能裂解人类IgA1,不裂解人类IgA2,这表明即使在同一宿主中,IgA蛋白酶对IgA的不同亚类具有不同的特异性[39]

5.4. 脲酶

UU的脲酶活性可以水解尿素产生氨导致pH值升高,一方面高浓度的氨可以直接损伤组织,尤其是粘膜和上皮细胞,另一方面可以改变尿液的pH值,促进结石(如磷酸镁铵结石)的形成。此外,氨的释放还可能干扰精子与卵子的结合,影响生育能力。氨还可以作为一种刺激物,帮助细菌抵抗宿主的防御机制,增加炎症细胞的活化和炎症介质的释放,加剧已经存在的炎症反应[40],并对细胞产生毒性作用。Ligon等人利用小鼠模型证明了UU脲酶的毒性作用通过氨离子或游离氨介导,并且氟法酰胺(一种有效的脲酶抑制剂)可以防止这种毒性[41]

CO(NH2)2 + H2O→2NH3 + H2CO3

尿素分解分子式

5.5. 溶血素

有资料中提到UU具有两种溶血素,分别是hlyA和hlyC。目前已知的猪痢疾蛇形螺旋体和分枝杆菌属中缺乏hlyA基因是不致病的,这些病原体利用hlyA基因编码的溶血素可能通过形成孔洞破坏宿主细胞膜,导致溶血和细胞损伤,hlyC基因在肺炎支原体(MP)中有同源基因,其溶血作用可能与过氧化氢(H2O2)有关,然而UU的溶血活性并不被过氧化氢酶抑制,这表明UU的溶血活性可能不是由H2O2引起的。因此上述证据导致我们猜测hlyA可能成为UU的一个新的毒力因子,但其确切的致病机制仍需要进行进一步研究[42]

6. 结论

解脲支原体(Ureaplasma urealyticum)是一种广泛存在于人类的泌尿生殖道中的常见的致病性微生物,尤其是在免疫系统较弱的个体中,它与多种泌尿生殖系统疾病及新生儿呼吸系统及神经系统等疾病的发生密切相关。近年来,关于解脲支原体的致病机制研究不断深入,逐渐揭示了其独特的致病特征,其致病性是一个复杂的过程,涉及多个层面的相互作用。首先,UU的侵袭能力使其能够穿透宿主的生理屏障,进入细胞内部,这是其致病性的起点。其次,UU通过特定的表面蛋白与宿主细胞受体的结合,增强了其在宿主体内的定植和侵袭能力。此外,UU的免疫逃逸策略,包括表面抗原的变化和抗免疫分子的产生,使其能够在宿主体内长期存活,避免被免疫系统清除。毒力因子的存在是UU致病性的核心,包括MBA、IgA蛋白酶、磷脂酶A和C及脲酶等,这些因子包括能够破坏宿主细胞结构的酶类、干扰宿主细胞功能的毒素以及促进炎症反应的分子。MBA可以在侵袭性解脲支原体菌株中表现出大小变化,可以帮助逃避宿主免疫系统的清除,并且MBA的变异可以进一步影响感染持续时间,关于其变异机制仍有待进一步探索。磷脂酶A和C通过作用于细胞膜影响宿主细胞生物合成,促进细菌的侵袭,二者作用机制不同,未来可以着重于这两种酶在UU感染过程中的相互作用及其对致病性的影响。脲酶作为UU致病的直接毒力因子,未来探索针对UU脲酶的抑制剂可能成为治疗UU感染的新策略。因此,通过了解UU的致病机制,对于开发有效的预防和治疗策略至关重要,通过综合考虑UU的侵袭、吸附、免疫逃逸和毒力因子,我们可以更全面地理解其在宿主体内的致病作用,并为临床治疗提供科学依据。

NOTES

*通讯作者。

参考文献

[1] Volgmann, T., Ohlinger, R. and Panzig, B. (2005) Ureaplasma urealyticum-Harmless Commensal or Underestimated Enemy of Human Reproduction? A Review. Archives of Gynecology and Obstetrics, 273, 133-139.
https://doi.org/10.1007/s00404-005-0030-1
[2] Rumyantseva, T., Khayrullina, G., Guschin, A. and Donders, G. (2019) Prevalence of Ureaplasma spp. and Mycoplasma hominis in Healthy Women and Patients with Flora Alterations. Diagnostic Microbiology and Infectious Disease, 93, 227-231.
https://doi.org/10.1016/j.diagmicrobio.2018.10.001
[3] Deguchi, T., Yoshida, T., Miyazawa, T., Yasuda, M., Tamaki, M., Ishiko, H., et al. (2004) Association of Ureaplasma urealyticum (Biovar 2) with Nongonococcal Urethritis. Sexually Transmitted Diseases, 31, 192-195.
https://doi.org/10.1097/01.olq.0000114653.26951.71
[4] Zhu, C., Hu, Z., Dong, C., Zhang, C., Wan, M. and Ling, Y. (2011) Investigation of Ureaplasma urealyticum Biovars and Their Relationship with Antimicrobial Resistance. Indian Journal of Medical Microbiology, 29, 288-292.
https://doi.org/10.4103/0255-0857.83915
[5] Povlsen, K., Thorsen, P. and Lind, I. (2001) Relationship of Ureaplasma urealyticum Biovars to the Presence or Absence of Bacterial Vaginosis in Pregnant Women and to the Time of Delivery. European Journal of Clinical Microbiology and Infectious Diseases, 20, 65-67.
https://doi.org/10.1007/pl00011237
[6] Cassell, G.H., Waites, K.B., Watson, H.L., Crouse, D.T. and Harasawa, R. (1993) Ureaplasma urealyticum Intrauterine Infection: Role in Prematurity and Disease in Newborns. Clinical Microbiology Reviews, 6, 69-87.
https://doi.org/10.1128/cmr.6.1.69
[7] Sweeney, E.L., Kallapur, S.G., Gisslen, T., Lambers, D.S., Chougnet, C.A., Stephenson, S., et al. (2015) Placental Infection with Ureaplasma Species Is Associated with Histologic Chorioamnionitis and Adverse Outcomes in Moderately Preterm and Late-Preterm Infants. Journal of Infectious Diseases, 213, 1340-1347.
https://doi.org/10.1093/infdis/jiv587
[8] Bachmann, L.H., Manhart, L.E., Martin, D.H., Seña, A.C., Dimitrakoff, J., Jensen, J.S., et al. (2015) Advances in the Understanding and Treatment of Male Urethritis. Clinical Infectious Diseases, 61, S763-S769.
https://doi.org/10.1093/cid/civ755
[9] Zeng, J., Wu, T., Wang, L., Yu, L., Lin, H. and Chen, Z. (2024) Characteristics of Reproductive Tract Infections Caused by Common Pathogens among the Outpatients of Reproductive Medicine Center in Putian: Retrospective Study. BMC Infectious Diseases, 24, Article No. 315.
https://doi.org/10.1186/s12879-024-09180-9
[10] Huang, C., Zhu, H.L., Xu, K.R., Wang, S.Y., Fan, L.Q. and Zhu, W.B. (2015) Mycoplasma and Ureaplasma Infection and Male Infertility: A Systematic Review and Meta-Analysis. Andrology, 3, 809-816.
https://doi.org/10.1111/andr.12078
[11] Ruiz, L., Moles, L., Gueimonde, M. and Rodriguez, J.M. (2016) Perinatal Microbiomes’ Influence on Preterm Birth and Preterms’ Health: Influencing Factors and Modulation Strategies. Journal of Pediatric Gastroenterology and Nutrition, 63, e193-e203.
https://doi.org/10.1097/mpg.0000000000001196
[12] Chen, X., Huang, X., Zhou, Q., Kang, H., Qiu, H., Shi, L., et al. (2024) Association between Ureaplasma urealyticum Colonization and Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review and Meta-Analysis. Frontiers in Pediatrics, 12, Article 1436568.
https://doi.org/10.3389/fped.2024.1436568
[13] Oh, K.J., Romero, R., Kim, H.J., Jung, E., Gotsch, F., Suksai, M., et al. (2022) The Role of Intraamniotic Inflammation in Threatened Midtrimester Miscarriage. American Journal of Obstetrics and Gynecology, 227, 895.e1-895.e13.
https://doi.org/10.1016/j.ajog.2022.07.007
[14] Yiwen, C., Yueyue, W., Lianmei, Q., Cuiming, Z. and Xiaoxing, Y. (2021) Infection Strategies of Mycoplasmas: Unraveling the Panoply of Virulence Factors. Virulence, 12, 788-817.
https://doi.org/10.1080/21505594.2021.1889813
[15] Saada, A.B., Terespolski, Y., Adoni, A. and Kahane, I. (1991) Adherence of Ureaplasma urealyticum to Human Erythrocytes. Infection and Immunity, 59, 467-469.
https://doi.org/10.1128/iai.59.1.467-469.1991
[16] Busolo, F., Zanchetta, R. and Bertoloni, G. (1984) Mycoplasmic Localization Patterns on Spermatozoa from Infertile Men. Fertility and Sterility, 42, 412-417.
https://doi.org/10.1016/s0015-0282(16)48082-9
[17] Shepard, M.C. and Masover, G.K. (1979) Special Features of Ureaplasmas. In: Barile, M.F. and Razin, S., Eds., The Mycoplasmas, Elsevier, 451-494.
https://doi.org/10.1016/b978-0-12-078401-1.50023-6
[18] Smith, D.G.E., Russell, W.C. and Thirkell, D. (1994) Adherence of Ureaplasma urealyticum to Human Epithelial Cells. Microbiology, 140, 2893-2898.
https://doi.org/10.1099/00221287-140-10-2893
[19] Guo, F., Tang, Y., Xiang, J., et al. (2020) Advances in Immune Escape Mechanism of Ureaplasma Species: Review. Chinese Journal of Cellular and Molecular Immunology, 36, 755-759.
[20] Dando, S.J., Nitsos, I., Kallapur, S.G., Newnham, J.P., Polglase, G.R., Pillow, J.J., et al. (2012) The Role of the Multiple Banded Antigen of Ureaplasma parvum in Intra-Amniotic Infection: Major Virulence Factor or Decoy? PLOS ONE, 7, e29856.
https://doi.org/10.1371/journal.pone.0029856
[21] Zheng, X., Watson, H.L., Waites, K.B. and Cassell, G.H. (1992) Serotype Diversity and Antigen Variation among Invasive Isolates of Ureaplasma urealyticum from Neonates. Infection and Immunity, 60, 3472-3474.
https://doi.org/10.1128/iai.60.8.3472-3474.1992
[22] Watson, H.L., Blalock, D.K. and Cassell, G.H. (1990) Variable Antigens of Ureaplasma urealyticum Containing Both Serovar-Specific and Serovar-Cross-Reactive Epitopes. Infection and Immunity, 58, 3679-3688.
https://doi.org/10.1128/iai.58.11.3679-3688.1990
[23] Zheng, X., Teng, L.J., Watson, H.L., Glass, J.I., Blanchard, A. and Cassell, G.H. (1995) Small Repeating Units within the Ureaplasma urealyticum MB Antigen Gene Encode Serovar Specificity and Are Associated with Antigen Size Variation. Infection and Immunity, 63, 891-898.
https://doi.org/10.1128/iai.63.3.891-898.1995
[24] Rocha, E.P.C. (2002) Genomic Repeats, Genome Plasticity and the Dynamics of Mycoplasma Evolution. Nucleic Acids Research, 30, 2031-2042.
https://doi.org/10.1093/nar/30.9.2031
[25] Zimmerman, C.R., Rosengarten, R. and Spergser, J. (2010) Ureaplasma Antigenic Variation beyond MBA Phase Variation: DNA Inversions Generating Chimeric Structures and Switching in Expression of the MBA N-Terminal Paralogue Uu172. Molecular Microbiology, 79, 663-676.
https://doi.org/10.1111/j.1365-2958.2010.07474.x
[26] Teng, L.J., Zheng, X., Glass, J.I., Watson, H.L., Tsai, J. and Cassell, G.H. (1994) Ureaplasma urealyticum Biovar Specificity and Diversity Are Encoded in Multiple-Banded Antigen Gene. Journal of Clinical Microbiology, 32, 1464-1469.
https://doi.org/10.1128/jcm.32.6.1464-1469.1994
[27] Kokkayil, P. and Dhawan, B. (2015) Ureaplasma: Current Perspectives. Indian Journal of Medical Microbiology, 33, 205-214.
https://doi.org/10.4103/0255-0857.154850
[28] Paralanov, V., Lu, J., Duffy, L.B., Crabb, D.M., Shrivastava, S., Methé, B.A., et al. (2012) Comparative Genome Analysis of 19 Ureaplasma urealyticum and Ureaplasma parvumstrains. BMC Microbiology, 12, Article No. 88.
https://doi.org/10.1186/1471-2180-12-88
[29] Sprong, K.E., Mabenge, M., Wright, C.A. and Govender, S. (2020) Ureaplasma Species and Preterm Birth: Current Perspectives. Critical Reviews in Microbiology, 46, 169-181.
https://doi.org/10.1080/1040841x.2020.1736986
[30] Shimizu, T., Kida, Y. and Kuwano, K. (2008) Ureaplasma parvum Lipoproteins, Including MB Antigen, Activate NF-κB through TLR1, TLR2 and TLR6. Microbiology, 154, 1318-1325.
https://doi.org/10.1099/mic.0.2007/016212-0
[31] Zheng, X., Teng, L., Glass, J.I., Blanchard, A., Cao, Z., Kempf, M.C., et al. (1994) Size Variation of a Major Serotype‐specific Antigen of Ureaplasma urealyticum. Annals of the New York Academy of Sciences, 730, 299-301.
https://doi.org/10.1111/j.1749-6632.1994.tb44272.x
[32] Dando, S.J., Nitsos, I., Polglase, G.R., Newnham, J.P., Jobe, A.H. and Knox, C.L. (2014) Ureaplasma parvum Undergoes Selection in Utero Resulting in Genetically Diverse Isolates Colonizing the Chorioamnion of Fetal Sheep1. Biology of Reproduction, 90, 1-10.
https://doi.org/10.1095/biolreprod.113.113456
[33] Robinson, J.W., Dando, S.J., Nitsos, I., Newnham, J., Polglase, G.R., Kallapur, S.G., et al. (2013) Ureaplasma parvum Serovar 3 Multiple Banded Antigen Size Variation after Chronic Intra-Amniotic Infection/Colonization. PLOS ONE, 8, e62746.
https://doi.org/10.1371/journal.pone.0062746
[34] Yang, T., Li, X., Zhang, Y., Kong, Y., Yu, H., Ruan, Z., et al. (2020) Comparative Genomics of Three Clinical Ureaplasma Species: Analysis of Their Core Genomes and Multiple-Banded Antigen Locus. Future Microbiology, 15, 49-61.
https://doi.org/10.2217/fmb-2019-0090
[35] Beeton, M.L., Maxwell, N.C., Chalker, V.J., Brown, R.J., Aboklaish, A.F. and Spiller, O.B. (2016) Isolation of Separate Ureaplasma Species from Endotracheal Secretions of Twin Patients. Pediatrics, 138, e20160565.
https://doi.org/10.1542/peds.2016-0565
[36] De Silva, N.S. and Quinn, P.A. (1986) Endogenous Activity of Phospholipases a and C in Ureaplasma urealyticum. Journal of Clinical Microbiology, 23, 354-359.
https://doi.org/10.1128/jcm.23.2.354-359.1986
[37] De Silva, N.S. and Quinn, P.A. (1999) Characterization of Phospholipase A1, A2, C Activity in Ureaplasma urealyticum Membranes. Molecular and Cellular Biochemistry, 201, 159-167.
https://doi.org/10.1023/a:1007082507407
[38] Robertson, J.A., Stemler, M.E. and Stemke, G.W. (1984) Immunoglobulin a Protease Activity of Ureaplasma urealyticum. Journal of Clinical Microbiology, 19, 255-258.
https://doi.org/10.1128/jcm.19.2.255-258.1984
[39] Kapatais-Zoumbos, K., Chandler, D.K. and Barile, M.F. (1985) Survey of Immunoglobulin a Protease Activity among Selected Species of Ureaplasma and Mycoplasma: Specificity for Host Immunoglobulin A. Infection and Immunity, 47, 704-709.
https://doi.org/10.1128/iai.47.3.704-709.1985
[40] Neyrolles, O., Ferris, S., Behbahani, N., Montagnier, L. and Blanchard, A. (1996) Organization of Ureaplasma urealyticum Urease Gene Cluster and Expression in a Suppressor Strain of Escherichia coli. Journal of Bacteriology, 178, 647-655.
https://doi.org/10.1128/jb.178.3.647-655.1996
[41] Ligon, J.V. and Kenny, G.E. (1991) Virulence of Ureaplasmal Urease for Mice. Infection and Immunity, 59, 1170-1171.
https://doi.org/10.1128/iai.59.3.1170-1171.1991
[42] Glass, J.I., Lefkowitz, E.J., Glass, J.S., Heiner, C.R., Chen, E.Y. and Cassell, G.H. (2000) The Complete Sequence of the Mucosal Pathogen Ureaplasma urealyticum. Nature, 407, 757-762.
https://doi.org/10.1038/35037619