类风湿关节炎合并心血管疾病影响因素的研究进展
Research Progress on Influencing Factors of Rheumatoid Arthritis Complicated with Cardiovascular Disease
摘要: 类风湿关节炎患者发生心血管疾病的风险较一般人群明显升高,已不能用传统的心血管危险因素解释,类风湿关节炎本身的疾病特征如自身免疫、全身性炎症状态、疾病活动水平、及药物治疗等都影响心血管疾病的发生和发展。本综述就类风湿关节炎合并心血管疾病影响因素做出阐述,为疾病的预防及管理提供参考。
Abstract: The risk of cardiovascular disease in patients with rheumatoid arthritis is significantly higher than that in the general population, which can no longer be explained by traditional cardiovascular risk factors. The disease characteristics of rheumatoid arthritis, such as autoimmunity, systemic inflammatory state, disease activity level, and drug treatment, all affect the occurrence and development of cardiovascular disease. This review expounds the influencing factors of rheumatoid arthritis complicated with cardiovascular disease, and provides reference for disease prevention and management.
文章引用:杨芳卉, 崔轶霞. 类风湿关节炎合并心血管疾病影响因素的研究进展[J]. 临床医学进展, 2025, 15(2): 513-521. https://doi.org/10.12677/acm.2025.152374

1. 引言

类风湿关节炎是一种以滑膜损伤为基本病理改变的自身免疫性关节炎,可累及全身多个器官,心血管(CV)事件的发生是导致类风湿关节炎患者死亡的主要原因[1]。动脉粥样硬化是最常见的CVD形式。一项观察性荟萃分析报道,与普通人群相比,类风湿关节炎与心血管事件风险增加48% (RR 1.48 [95%CI 1.36~1.62]),心肌梗死和CVA的风险分别增加了68% (合并RR 1.68 [95% CI 1.40~2.03])和41% (合并RR 1.41 [95% CI 1.14~1.74]) [2]。Karpouzas的研究评估了无症状或无冠状动脉疾病诊断的RA患者与对照组相比冠状动脉斑块的存在、负担和组成差异,研究显示,与对照组相比RA患者有斑块的比例更高(71% vs 45%, p < 0.0001);13.5%的RA总节段含有斑块,而对照组为6% (p < 0.0001),所有斑块类型均较高(p < 0.001) [3]。因此,需要识别RA患者心血管疾病的早期迹象,以便可以引入有效的心血管保护措施。目前缺乏经过验证的RA特异性CVD风险预测模型,对RA患者,指南推荐采用Framingham和系统冠状动脉风险评估(SCORE)风险预测模型1.5倍的乘法系数,以纠正RA患者与一般人群相比心血管疾病风险增加的情况[4]。有研究证明颈动脉超声对类风湿关节炎患者心血管危险分层是有用的[5]。使用颈动脉超声筛查无症状动脉粥样硬化斑块可被视为类风湿关节炎患者CVD风险评估的一部分[4]

2. RA患者CVD传统影响因素

2.1. 性别

人们对RA合并CVD中性别差异仍缺乏足够的了解。雌激素的抗动脉粥样硬化作用已被广泛认同,女性绝经前动脉粥样硬化发病率较低。但有研究表明,传统因素和RA特异性因素存在性别差异,但心血管疾病危险因素的相对风险在性别之间没有差异,这导致男女之间的人群归因风险(PAR)没有显著差异。在40岁以上的RA患者中,CVD发生率存在性别差异,这与传统的CVD危险因素和RA疾病活动性标志物无关[6]。同样有荟萃分析报道,RA患者两种性别的心血管事件风险增加相似,女性(合并RR 1.50 [95% CI 1.24~1.80]);男性(合并RR 1.53 [95% CI 1.38~1.70]) [2]。RA患者CVD相对危险似乎并不依赖于性别。

2.2. 年龄

在类风湿关节炎患者中,随着年龄的增长,CVD的风险升高。Dalbeni在RA与动脉粥样硬化进展相关的因素研究显示,发现年龄可能是主要的决定因素,老年组1年后颈动脉内膜–中层厚度(cIMT)和斑块的存在显著增加,颈动脉节段扩张性(cCD)显著降低,而年轻RA患者无显著差异[7]。随着年龄增长,RA患者关节功能受损加重、肌肉萎缩导致的体力活动较少,血管壁弹性减退等增加CVD风险。

2.3. 吸烟

吸烟是RA患者发生心血管疾病的独立危险因素。吸烟在动脉粥样硬化早期阶段造成动脉内皮损伤[8],加速动脉粥样硬化发展。在RA患者中,吸烟状况、吸烟年限、每日吸烟数和“吸烟年数”(吸烟年限与每日香烟数量的乘积)均与cIMT升高相关(所有病例均p < 0.05) [9]。吸烟与不利的心血管疾病风险特征,如更高的疾病活动度和更多的关节损伤及RF和ACPA也存在相关[10] [11],吸烟者对抗肿瘤坏死因子治疗的反应较小[12],这些都会导致不良的CVD结局。因此,戒烟是预防RA患者心血管疾病最重要的措施之一。

2.4. 高血压

高血压在类风湿关节炎中很常见[13] [14]。多项研究报道,高血压是RA患者心血管疾病最大的危险因素,高血压可损伤血管内皮细胞,促进动脉粥样硬化形成与发展,增加CVD风险[6] [15] [16]。早期RA患者中,高血压可以预测新的心血管事件[17]。高血压是RA患者发生CVD可控的危险因素之一,在临床对RA患者高血压的筛查与管理至关重要。

2.5. 体重

超重和肥胖是普通人群心血管疾病常见的危险因素。类风湿关节炎患者的BMI没有显著增加,这类患者肌肉质量较低,脂肪比例较高,中心性肥胖更为普遍。Giles研究的结果表明,RA患者和非RA对照组尽管在BMI或腰围方面没有显著差异,但腹部脂肪分布存在显著差异。与对照组相比,RA组中较高水平的内脏脂肪与某些心脏代谢风险因素的联系更为密切[18]。与BMI正常的非RA受试者相比,低BMI发生率的RA受试者心血管死亡风险显著更高(HR 3.34, [95% CI 2.23~4.99])。与在随访期间保持正常BMI的非RA受试者相比,BMI正常的RA受试者在随访期间经历低BMI的心血管死亡风险也更高(HR 2.09 [95% CI 1.50~2.92]) [19]

2.6. 血脂

在类风湿性关节炎中,血脂水平与心血管疾病风险之间的关系是矛盾的。在一般人群中,总胆固醇(TC)与低密度脂蛋白胆固醇(LDL-C)水平是心血管风险的可靠标志,但在类风湿关节炎患者中并非如此。Karpouzas的研究显示,与LDL-C ≥ 1.8 mmol/L的RA患者相比,LDL-C < 1.8 mmol/L的RA患者有更大的冠状动脉粥样硬化存在,阻塞性斑块存在,斑块段数增加,狭窄严重程度增加,高风险斑块存在的可能性更大[20]。LDL-C与心血管风险之间关系的差异可能与炎症、脂蛋白结构或功能改变有关。在早期或未经治疗的疾病中,炎症与更高的LDL分解代谢率、通过LDL受体的肝脏清除和氧化相关,最终导致LDL水平降低。与TC和LDL的报告相反,高密度脂蛋白胆固醇(HDL)和心血管事件之间的关联与一般人群相似,HDL浓度越高,心血管风险越低。RA患者HDL的抗炎、抗氧化特性、促细胞胆固醇外流和逆转胆固醇转运的能力受损。胆固醇流出能力(CEC)是高密度脂蛋白胆固醇接受巨噬细胞胆固醇的能力,与普通人群的心血管事件有关[21]。研究发现通过ATP结合盒G1膜转运体(ABCG1)转运的CEC与广泛动脉粥样硬化( ≥ 5个斑块) (校正优势比0.50 [95% CI 0.28~0.88])、部分钙化斑块(RR 0.71 [95% CI 0.53~0.94])和低衰减斑块(RR 0.63 [95% CI 0.43~0.91]/标准差增量)呈负相关[22]。在RA的心血管风险评估和预防方面不可忽略血脂带来的潜在风险,对于低LDL浓度的RA患者需要加强筛查和预防动脉粥样硬化性心血管疾病。

2.7. 胰岛素抵抗和糖尿病

糖尿病在RA中也更为普遍,并与CVD的存在相关[23]。胰岛素抵抗(IR)是2型糖尿病发展的一个危险因素,一些研究报道了RA中的一些细胞因子(TNF、IL-1、IL-6)参与了IR的病理生理过程[24] [25]。然而在Giles的研究中发现,尽管与对照组相比,所有RA患者的全身IR水平都较高,但很少有迹象表明,在心血管风险增加的人群中,这些较高的水平会增加冠状动脉或颈动脉亚临床动脉粥样硬化进展的风险[26]。RA胰岛素抵抗与CVD的关系仍需在将来进一步研究。

3. RA相关风险因素

传统的心血管危险因素不能完全解释RA患者心血管风险升高的原因。在一项对236名RA患者和4635名社区居民进行的纵向队列研究中,即使在调整了队列成员(RA队列vs社区队列)和传统的CV危险因素(年龄、性别、糖尿病、收缩压、体重指数、吸烟和高胆固醇血症)之后,与仅调整年龄和性别相比,发病率比仅从3.96,[95% CI 1.86~8.43]下降到3.17,[95% CI 1.33~6.36] [27]。因此,RA相关风险因素应该被考虑到心血管疾病风险中。

3.1. 炎症

炎症在RA患者心血管事件的发生中起重要作用。最初研究报道动脉粥样硬化主要是由于脂质在动脉壁的堆积,但目前的证据表明炎症可能起重要作用。在动脉粥样硬化早期阶段,高血压与吸烟造成动脉内皮损伤,内皮细胞被激活,并增加粘附分子、趋化因子和细胞因子的表达。炎症细胞(特别是单核细胞和T淋巴细胞)迁移、粘附和浸润动脉壁,形成动脉粥样硬化斑块。浸润的免疫细胞通过分泌趋化因子和细胞因子来延续炎症过程,促进平滑肌细胞增殖和巨噬细胞吸收LDL,形成泡沫细胞,导致斑块增厚并形成坏死核心。T细胞和巨噬细胞之间的相互作用会抑制胶原蛋白的合成,并增加其降解,从而导致斑块纤维帽变薄,导致血栓形成物质暴露于血流中,增加斑块破裂和动脉血栓形成的风险[28] [29]。CRP是反映全身炎症状态的常用指标。Erre的研究发现,在一组无心血管事件的RA患者中,CRP浓度每增加20 mg /L与10年心血管事件风险增加1%相关[30]。在前瞻性研究中,当持续考虑DAS28-CRP时,颈动脉斑块发生的可能性几乎显著增加(OR 1.38, [95% CI 1.00~1.02], p = 0.052) [31]。许多炎性细胞因子,如IL-1、IL-6、TNF等都共同参与RA和心血管疾病的发生发展[32]。RA疾病活动度与CVD发生相关。在一个中位随访2.7年的RA患者大队列中,对传统CV危险因素进行多变量分析调整后,发现随着疾病活动性的改善,CV风险降低的显著趋势:CDAI评分每降低10分,CV风险降低21%,从高水平疾病活动性到缓解降低53%,与处于缓解类别的患者相比,在基线时具有中度或高度疾病活动性的患者发生颈动脉斑块的风险更高(OR 2.26, [95% CI 1.02~5.00], p = 0.044) [33]。高的疾病活动度与更脆弱的非混合型斑块(NCP)或混合型斑块(MP)显著相关(OR 4.5, [95% CI 1.4~14.4], p = 0.01) [3]。此外,炎症与CVD传统危险因素之间存在相互影响。炎症和脂质成分之间的相互作用不仅仅是血清水平的改变,更会导致脂质结构和功能发生改变。急性期蛋白,如血清淀粉样蛋白A和磷脂酶A2可以改变HDL的组成和功能,炎症可能对HDL代谢的基本酶(如肝脂肪酶)或HDL本身的酶含量(如对氧磷酶降低)产生重大影响;这可能会将HDL转化为更有利于氧化、促动脉粥样硬化的复合物。这种改变也涉及甘油三酯和LDL。炎症与高血压之间也存在相互影响,高水平的CRP可能通过上调血管紧张素1受体的表达、降低内皮一氧化氮来影响肾素–血管紧张素系统,从而诱发高血压。这些变化导致内皮素-1生成增加、白细胞粘附、血小板活化和纤溶酶原激活剂抑制剂1水平升高,随后发生纤维蛋白溶解和动脉粥样硬化血栓形成[29]

3.2. 病程

有限的研究报道,RA持续时间似乎逐渐影响冠状动脉斑块[34],但Arts的研究结果显示,RA患者患病前10年的心血管疾病风险与患病后10年的心血管疾病风险比较,两组之间的生存分布相似,无显著差异,p = 0.82,疾病持续时间似乎并不独立影响RA患者心血管疾病的风险,RA局部或全身性炎症的存在和严重程度的相关性可能比与疾病持续时间的相关性更强[35]。根据现有研究结果无法证明RA疾病持续时间与CVD风险独立相关,随着疾病的发展,疾病风险因素负担累积,导致CVD风险增加。

3.3. 自身抗体

RA产生的自身抗体RF和ACPA与更严重的疾病和更糟糕的预后相关。一项对新发RA患者心血管事件发生率的随访研究报道,抗环瓜氨酸肽2 (抗ccp2)抗体的发生和/或水平与ACS (HR 1.46, [95%CI 1.03~2.06]),中风(HR 1.47, [95%CI 1.03~2.10]),CV相关死亡与抗CCP2水平相关的P = 0.024)和MACE (HR 1.34, [95%CI 1.06~1.70])相关。除ACS外,IgM-RF的存在与所有CV终点相关,IgA-RF仅与CV相关死亡相关,调整吸烟状况,收入和DAS28评分可降低大多数HR,而IgA RF仍与CV相关死亡相关(HR 1.61, [95%CI 1.05~2.48]) [36]。Humphreys的研究也表明,在抗体阳性亚组的RA患者中CV死亡率有所增加[37]。抗CCP抗体阳性患者的ESR、CRP和疾病活动性PGA始终高于抗CCP抗体阴性病例[38]。RA患者由于长期慢性炎症的存在,CVD风险增加,而自身抗体通过促进炎症反应、损伤血管内皮等方式,进一步加剧心血管疾病的风险。

4. 治疗药物的影响

临床上治疗RA的药物有多种,主要包括非甾体抗炎药(NSAIDs)、糖皮质激素及改善病情抗风湿药(DMARDs)。这些药物对RA患者心血管疾病的影响是多方面的。

4.1. 非甾体抗炎药

NSAIDs用于关节炎患者的长期心血管安全性一直存在争议。研究报道,造成CVD风险增加的NSAIDs主要是2004年退出市场的罗非昔布[39]-[42]。NSAIDs对已经确诊的心血管疾病(如心肌梗死(MI)、中风和心血管死亡)有增加其风险的可能[43]-[45]。选择性地非甾体抗炎药特异性抑制COX-2活性,抑制前列腺素I2的生成,使血栓素升高,促进血栓形成。另一方面其抗炎作用可减轻心血管的负担,降低CVD发生风险。Cheng的研究显示,塞来昔布组的心血管死亡率低于非选择性非甾体抗炎药组(RR = 0.75, [95% CI 0.57~0.99], I2 = 0%),与安慰剂相比,风险无显著差异(RR 3.02, [95% CI 0.36~25.27], I2 = 0%) [46]

4.2. 糖皮质激素

糖皮质激素是一种有效的抗炎药物,在RA患者中常被作为转换改善病情抗风湿药物的桥接治疗。但其对血压、血糖、血脂均会产生不利影响,导致心血管风险增加。Coburn的回顾性队列研究报道,在老年合并症医疗保险队列中,糖皮质激素与调整模型中复合心血管结局的剂量依赖性增加相关,≤ 5 mg的预测年发病率为1.4% ([95%CI 1.2%~1.6%]),> 5~10 mg的预测年发病率为1.6% ([95%CI 1.4%~1.9%]),> 10 mg的预测年发病率为1.8% ([95% CI 1.2%~2.5%]);在较年轻的CDM队列中,糖皮质激素总体上没有增加心血管综合预后的风险,但在心血管不良预后风险较高的患者中发现了与医疗保险相似的剂量依赖性风险[47]。一项从香港全市数据库招募无MACE的RA患者研究同样发现,糖皮质激素与RA患者MACE的持续时间和剂量依赖性增加风险相关。非常低剂量的强的松龙(每日 < 5 mg)似乎不会产生过多的心血管风险[48]。小剂量短期使用糖皮质激素对RA合并CVD治疗的有利方面似乎更多。糖皮质激素治疗类风湿性关节炎的风险和危害之间的平衡需要依靠临床医生准确评估与把握。

4.3. 改善病情抗风湿药(DMARDs)

DMARDs是治疗RA的核心药物,分为传统合成DMARDs (cs DMARDs)、生物制剂DMARDs (b DMARDs)及靶向合成DMARDs (tsDMARDs)。这些药物可以有效控制RA的活性,减轻关节炎症,防止骨关节的结构破坏,从而减低CVD发生风险,但同时可能带来血栓事件的风险。

csDMARDs (如甲氨蝶呤MTX)以及bDMARDs (如TNF抑制剂TNFi、IL-6受体拮抗剂)通常与RA患者CVD风险降低相关。2011年的一项荟萃分析发现,与不使用甲氨蝶呤相比,使用甲氨蝶呤与心血管事件发生率降低21%相关[49]。Westlake等人的一项系统综述也发现在RA中使用MTX与临床CVD发病率和死亡率的降低相关[50]。Greenberg的研究在校正年龄、性别、心血管危险因素和RA疾病特征后,TNF拮抗剂组患者发生主要复合心血管终点事件的风险低于非生物制剂DMARDs组(HR 0.39, [95% CI 0.19~0.82]) [51]。在接受托珠单抗治疗的RA患者的5年随访期间,心血管风险、cIMT、和心血管并发症的发生率均未升高[52]。tsDMARDs是目前RA治疗的研究热点。有关JAK抑制与心血管事件风险之间关系的研究正在进行中。ORAL Surveillance是第一个评估托法替尼在CV风险高的RA人群中的安全性的研究,发现托法替尼与TNFi相比MACE风险增加。托法替尼5 mg/2次/天组MACE发生率更高(8.3%; 17/204)和每天两次10毫克(7.7%; 17/222)与TNFi (4.2%; 9/214)。HR(联合托法替尼剂量vs TNFi)为1.98 ([95%CI 0.95~4.14]) [53]。在使用DMARDs治疗RA合并CVD时,需全面评估患者心血管情况,谨慎选择药物,并密切监测心血管相关指标变化。

5. 遗传易感因素影响

遗传和环境因素是RA发病的诱因。类风湿关节炎中CVD风险增加的部分原因可能是常见的遗传易感性因素。Torkamani等人发现RA和CAD之间共有55种疾病相关的单核苷酸多态性(SNP)。RA和CAD相关的许多SNP与核因子κB (NFκB)结合位点的富集和失调有关[54] [55]。类风湿关节炎心血管死亡的最强遗传风险因素是HLA相关基因。HLA-DRB1基因与急性心肌梗死以及普通人群CRP水平之间的关联[56]。HLADRB1*04与关节外特征和更严重的疾病相关。该等位基因可能有利于持续性炎症,并与RA患者心血管事件和心血管死亡风险增加有关[57]

心血管疾病仍然是类风湿性关节炎患者的主要问题。传统心血管危险因素与RA相关因素的相互作用影响心血管疾病的发生及发展。未来的工作应侧重于在病程早期识别高危患者,并制定针对改善RA患者病情控制心血管疾病风险的治疗方案。

NOTES

*通讯作者。

参考文献

[1] Aviña‐Zubieta, J.A., Choi, H.K., Sadatsafavi, M., Etminan, M., Esdaile, J.M. and Lacaille, D. (2008) Risk of Cardiovascular Mortality in Patients with Rheumatoid Arthritis: A Meta‐Analysis of Observational Studies. Arthritis Care & Research, 59, 1690-1697.
https://doi.org/10.1002/art.24092
[2] Avina-Zubieta, J.A., Thomas, J., Sadatsafavi, M., Lehman, A.J. and Lacaille, D. (2012) Risk of Incident Cardiovascular Events in Patients with Rheumatoid Arthritis: A Meta-Analysis of Observational Studies. Annals of the Rheumatic Diseases, 71, 1524-1529.
https://doi.org/10.1136/annrheumdis-2011-200726
[3] Karpouzas, G.A., Malpeso, J., Choi, T., Li, D., Munoz, S. and Budoff, M.J. (2014) Prevalence, Extent and Composition of Coronary Plaque in Patients with Rheumatoid Arthritis without Symptoms or Prior Diagnosis of Coronary Artery Disease. Annals of the Rheumatic Diseases, 73, 1797-1804.
https://doi.org/10.1136/annrheumdis-2013-203617
[4] Agca, R., Heslinga, S.C., Rollefstad, S., Heslinga, M., McInnes, I.B., Peters, M.J.L., et al. (2017) EULAR Recommendations for Cardiovascular Disease Risk Management in Patients with Rheumatoid Arthritis and Other Forms of Inflammatory Joint Disorders: 2015/2016 Update. Annals of the Rheumatic Diseases, 76, 17-28.
https://doi.org/10.1136/annrheumdis-2016-209775
[5] Corrales, A., González-Juanatey, C., Peiró, M.E., Blanco, R., Llorca, J. and González-Gay, M.A. (2014) Carotid Ultrasound Is Useful for the Cardiovascular Risk Stratification of Patients with Rheumatoid Arthritis: Results of a Population-Based Study. Annals of the Rheumatic Diseases, 73, 722-727.
https://doi.org/10.1136/annrheumdis-2012-203101
[6] Crowson, C.S., Rollefstad, S., Ikdahl, E., Kitas, G.D., van Riel, P.L.C.M., Gabriel, S.E., et al. (2018) Impact of Risk Factors Associated with Cardiovascular Outcomes in Patients with Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 77, 48-54.
https://doi.org/10.1136/annrheumdis-2017-211735
[7] Dalbeni, A., Giollo, A., Bevilacqua, M., Cioffi, G., Tagetti, A., Cattazzo, F., et al. (2020) Traditional Cardiovascular Risk Factors and Residual Disease Activity Are Associated with Atherosclerosis Progression in Rheumatoid Arthritis Patients. Hypertension Research, 43, 922-928.
https://doi.org/10.1038/s41440-020-0441-1
[8] Skeoch, S. and Bruce, I.N. (2015) Atherosclerosis in Rheumatoid Arthritis: Is It All about Inflammation? Nature Reviews Rheumatology, 11, 390-400.
https://doi.org/10.1038/nrrheum.2015.40
[9] Gerli, R., Sherer, Y.N., Vaudo, G., Schillaci, G., Gilburd, B., Giordano, A., et al. (2005) Early Atherosclerosis in Rheumatoid Arthritis: Effects of Smoking on Thickness of the Carotid Artery Intima Media. Annals of the New York Academy of Sciences, 1051, 281-290.
https://doi.org/10.1196/annals.1361.069
[10] de Rooy, D.P.C., van Nies, J.A.B., Kapetanovic, M.C., Kristjansdottir, H., Andersson, M.L.E., Forslind, K., et al. (2014) Smoking as a Risk Factor for the Radiological Severity of Rheumatoid Arthritis: A Study on Six Cohorts. Annals of the Rheumatic Diseases, 73, 1384-1387.
https://doi.org/10.1136/annrheumdis-2013-203940
[11] Roelsgaard, I.K., Ikdahl, E., Rollefstad, S., Wibetoe, G., Esbensen, B.A., Kitas, G.D., et al. (2019) Smoking Cessation Is Associated with Lower Disease Activity and Predicts Cardiovascular Risk Reduction in Rheumatoid Arthritis Patients. Rheumatology, 59, 1997-2004.
https://doi.org/10.1093/rheumatology/kez557
[12] Hyrich, K.L., Watson, K.D., Silman, A.J. and Symmons, D.P.M. (2006) Predictors of Response to Anti-TNF-αTherapy among Patients with Rheumatoid Arthritis: Results from the British Society for Rheumatology Biologics Register. Rheumatology, 45, 1558-1565.
https://doi.org/10.1093/rheumatology/kel149
[13] Hadwen, B., Stranges, S. and Barra, L. (2021) Risk Factors for Hypertension in Rheumatoid Arthritis Patients—A Systematic Review. Autoimmunity Reviews, 20, Article 102786.
https://doi.org/10.1016/j.autrev.2021.102786
[14] Panoulas, V.F., Metsios, G.S., Pace, A.V., John, H., Treharne, G.J., Banks, M.J., et al. (2008) Hypertension in Rheumatoid Arthritis. Rheumatology, 47, 1286-1298.
https://doi.org/10.1093/rheumatology/ken159
[15] Semb, A.G., Ikdahl, E., Wibetoe, G., Crowson, C. and Rollefstad, S. (2020) Atherosclerotic Cardiovascular Disease Prevention in Rheumatoid Arthritis. Nature Reviews Rheumatology, 16, 361-379.
https://doi.org/10.1038/s41584-020-0428-y
[16] Hollan, I., Dessein, P.H., Ronda, N., Wasko, M.C., Svenungsson, E., Agewall, S., et al. (2015) Prevention of Cardiovascular Disease in Rheumatoid Arthritis. Autoimmunity Reviews, 14, 952-969.
https://doi.org/10.1016/j.autrev.2015.06.004
[17] Innala, L., Möller, B., Ljung, L., Magnusson, S., Smedby, T., Södergren, A., et al. (2011) Cardiovascular Events in Early RA Are a Result of Inflammatory Burden and Traditional Risk Factors: A Five Year Prospective Study. Arthritis Research & Therapy, 13, Article No. R131.
https://doi.org/10.1186/ar3442
[18] Giles, J.T., Allison, M., Blumenthal, R.S., Post, W., Gelber, A.C., Petri, M., et al. (2010) Abdominal Adiposity in Rheumatoid Arthritis: Association with Cardiometabolic Risk Factors and Disease Characteristics. Arthritis & Rheumatism, 62, 3173-3182.
https://doi.org/10.1002/art.27629
[19] Kremers, H.M., Nicola, P.J., Crowson, C.S., Ballman, K.V. and Gabriel, S.E. (2004) Prognostic Importance of Low Body Mass Index in Relation to Cardiovascular Mortality in Rheumatoid Arthritis. Arthritis & Rheumatism, 50, 3450-3457.
https://doi.org/10.1002/art.20612
[20] Karpouzas, G.A., Ormseth, S.R., Ronda, N., Hernandez, E. and Budoff, M.J. (2022) Lipoprotein Oxidation May Underlie the Paradoxical Association of Low Cholesterol with Coronary Atherosclerotic Risk in Rheumatoid Arthritis. Journal of Autoimmunity, 129, Article 102815.
https://doi.org/10.1016/j.jaut.2022.102815
[21] Qiu, C., Zhao, X., Zhou, Q. and Zhang, Z. (2017) High-Density Lipoprotein Cholesterol Efflux Capacity Is Inversely Associated with Cardiovascular Risk: A Systematic Review and Meta-Analysis. Lipids in Health and Disease, 16, Article No. 212.
https://doi.org/10.1186/s12944-017-0604-5
[22] Karpouzas, G.A., Papotti, B., Ormseth, S.R., Palumbo, M., Hernandez, E., Adorni, M.P., et al. (2023) ATP-Binding Cassette G1 Membrane Transporter-Mediated Cholesterol Efflux Capacity Influences Coronary Atherosclerosis and Cardiovascular Risk in Rheumatoid Arthritis. Journal of Autoimmunity, 136, Article 103029.
https://doi.org/10.1016/j.jaut.2023.103029
[23] Baghdadi, L.R., Woodman, R.J., Shanahan, E.M. and Mangoni, A.A. (2015) The Impact of Traditional Cardiovascular Risk Factors on Cardiovascular Outcomes in Patients with Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. PLOS ONE, 10, e0117952.
https://doi.org/10.1371/journal.pone.0117952
[24] Chen, L., Chen, R., Wang, H. and Liang, F. (2015) Mechanisms Linking Inflammation to Insulin Resistance. International Journal of Endocrinology, 2015, 1-9.
https://doi.org/10.1155/2015/508409
[25] Wasko, M.C., Kay, J., Hsia, E.C. and Rahman, M.U. (2011) Diabetes Mellitus and Insulin Resistance in Patients with Rheumatoid Arthritis: Risk Reduction in a Chronic Inflammatory Disease. Arthritis Care & Research, 63, 512-521.
https://doi.org/10.1002/acr.20414
[26] Giles, J.T., Danielides, S., Szklo, M., Post, W.S., Blumenthal, R.S., Petri, M., et al. (2015) Insulin Resistance in Rheumatoid Arthritis: Disease‐Related Indicators and Associations with the Presence and Progression of Subclinical Atherosclerosis. Arthritis & Rheumatology, 67, 626-636.
https://doi.org/10.1002/art.38986
[27] Del Rincón, I., Williams, K., Stern, M.P., Freeman, G.L. and Escalante, A. (2001) High Incidence of Cardiovascular Events in a Rheumatoid Arthritis Cohort Not Explained by Traditional Cardiac Risk Factors. Arthritis & Rheumatism, 44, 2737-2745.
https://doi.org/10.1002/1529-0131(200112)44:12<2737::aid-art460>3.0.co;2-#
[28] Libby, P. (2012). Inflammation in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, 2045-2051.
[29] Lauper, K. and Gabay, C. (2017). Cardiovascular Risk in Patients with Rheumatoid Arthritis. Seminars in Immunopathology, 39, 447-459.
[30] Erre, G.L., Cacciapaglia, F., Sakellariou, G., Manfredi, A., Bartoloni, E., Viapiana, O., et al. (2022) C-Reactive Protein and 10-Year Cardiovascular Risk in Rheumatoid Arthritis. European Journal of Internal Medicine, 104, 49-54.
https://doi.org/10.1016/j.ejim.2022.07.001
[31] Ferraz-Amaro, I., Corrales, A., Atienza-Mateo, B., Vegas-Revenga, N., Prieto-Peña, D., Blanco, R., et al. (2021) Moderate and High Disease Activity Predicts the Development of Carotid Plaque in Rheumatoid Arthritis Patients without Classic Cardiovascular Risk Factors: Six Years Follow-Up Study. Journal of Clinical Medicine, 10, Article 4975.
https://doi.org/10.3390/jcm10214975
[32] Weber, B.N., Giles, J.T. and Liao, K.P. (2023) Shared Inflammatory Pathways of Rheumatoid Arthritis and Atherosclerotic Cardiovascular Disease. Nature Reviews Rheumatology, 19, 417-428.
https://doi.org/10.1038/s41584-023-00969-7
[33] Solomon, D.H., Reed, G.W., Kremer, J.M., Curtis, J.R., Farkouh, M.E., Harrold, L.R., et al. (2015) Disease Activity in Rheumatoid Arthritis and the Risk of Cardiovascular Events. Arthritis & Rheumatology, 67, 1449-1455.
https://doi.org/10.1002/art.39098
[34] Masuda, H., Miyazaki, T., Shimada, K., Tamura, N., Matsudaira, R., Yoshihara, T., et al. (2014) Disease Duration and Severity Impacts on Long-Term Cardiovascular Events in Japanese Patients with Rheumatoid Arthritis. Journal of Cardiology, 64, 366-370.
https://doi.org/10.1016/j.jjcc.2014.02.018
[35] Arts, E.E.A., Fransen, J., den Broeder, A.A., Popa, C.D. and van Riel, P.L.C.M. (2015) The Effect of Disease Duration and Disease Activity on the Risk of Cardiovascular Disease in Rheumatoid Arthritis Patients. Annals of the Rheumatic Diseases, 74, 998-1003.
https://doi.org/10.1136/annrheumdis-2013-204531
[36] Westerlind, H., Rönnelid, J., Hansson, M., Alfredsson, L., Mathsson‐Alm, L., Serre, G., et al. (2020) Anti-Citrullinated Protein Antibody Specificities, Rheumatoid Factor Isotypes, and Incident Cardiovascular Events in Patients with Rheumatoid Arthritis. Arthritis & Rheumatology, 72, 1658-1667.
https://doi.org/10.1002/art.41381
[37] Humphreys, J.H., Warner, A., Chipping, J., Marshall, T., Lunt, M., Symmons, D.P.M., et al. (2014) Mortality Trends in Patients with Early Rheumatoid Arthritis over 20 Years: Results from the Norfolk Arthritis Register. Arthritis Care & Research, 66, 1296-1301.
https://doi.org/10.1002/acr.22296
[38] Kastbom, A., Strandberg, G., Lindroos, A. and Skogh, T. (2004) Anti-CCP Antibody Test Predicts the Disease Course during 3 Years in Early Rheumatoid Arthritis (The Swedish TIRA Project). Annals of the Rheumatic Diseases, 63, 1085-1089.
https://doi.org/10.1136/ard.2003.016808
[39] Kerr, D.J., Dunn, J.A., Langman, M.J., Smith, J.L., Midgley, R.S.J., Stanley, A., et al. (2007) Rofecoxib and Cardiovascular Adverse Events in Adjuvant Treatment of Colorectal Cancer. New England Journal of Medicine, 357, 360-369.
https://doi.org/10.1056/nejmoa071841
[40] McGettigan, P. and Henry, D. (2006) Cardiovascular Risk and Inhibition of Cyclooxygenase: A Systematic Review of the Observational Studies of Selective and Nonselective Inhibitors of Cyclooxygenase 2. JAMA, 296, 1633-1644.
https://doi.org/10.1001/jama.296.13.jrv60011
[41] Bresalier, R.S., Sandler, R.S., Quan, H., Bolognese, J.A., Oxenius, B., Horgan, K., et al. (2005) Cardiovascular Events Associated with Rofecoxib in a Colorectal Adenoma Chemoprevention Trial. New England Journal of Medicine, 352, 1092-1102.
https://doi.org/10.1056/nejmoa050493
[42] Lindhardsen, J., Gislason, G.H., Jacobsen, S., Ahlehoff, O., Olsen, A.S., Madsen, O.R., et al. (2014) Non-Steroidal Anti-Inflammatory Drugs and Risk of Cardiovascular Disease in Patients with Rheumatoid Arthritis: A Nationwide Cohort Study. Annals of the Rheumatic Diseases, 73, 1515-1521.
https://doi.org/10.1136/annrheumdis-2012-203137
[43] Trelle, S., Reichenbach, S., Wandel, S., Hildebrand, P., Tschannen, B., Villiger, P.M., et al. (2011) Cardiovascular Safety of Non-Steroidal Anti-Inflammatory Drugs: Network Meta-Analysis. BMJ, 342, c7086.
https://doi.org/10.1136/bmj.c7086
[44] McGettigan, P. and Henry, D. (2011) Cardiovascular Risk with Non-Steroidal Anti-Inflammatory Drugs: Systematic Review of Population-Based Controlled Observational Studies. PLOS Medicine, 8, e1001098.
https://doi.org/10.1371/journal.pmed.1001098
[45] Kearney, P.M., Baigent, C., Godwin, J., Halls, H., Emberson, J.R. and Patrono, C. (2006) Do Selective Cyclo-Oxygenase-2 Inhibitors and Traditional Non-Steroidal Anti-Inflammatory Drugs Increase the Risk of Atherothrombosis? Meta-Analysis of Randomised Trials. BMJ, 332, 1302-1308.
https://doi.org/10.1136/bmj.332.7553.1302
[46] Cheng, B., Chen, J., Zhang, X., Gao, Q., Li, W., Yan, L., et al. (2021) Cardiovascular Safety of Celecoxib in Rheumatoid Arthritis and Osteoarthritis Patients: A Systematic Review and Meta-Analysis. PLOS ONE, 16, e0261239.
https://doi.org/10.1371/journal.pone.0261239
[47] Coburn, B.W., Baker, J.F., Hsu, J.Y., Wu, Q., Xie, F., Curtis, J.R., et al. (2024) Association of Cardiovascular Outcomes with Low‐Dose Glucocorticoid Prescription in Patients with Rheumatoid Arthritis. Arthritis & Rheumatology, 76, 1585-1593.
https://doi.org/10.1002/art.42928
[48] So, H., Lam, T.O., Meng, H., Lam, S.H.M. and Tam, L. (2023) Time and Dose-Dependent Effect of Systemic Glucocorticoids on Major Adverse Cardiovascular Event in Patients with Rheumatoid Arthritis: A Population-Based Study. Annals of the Rheumatic Diseases, 82, 1387-1393.
https://doi.org/10.1136/ard-2023-224185
[49] Micha, R., Imamura, F., Wyler von Ballmoos, M., Solomon, D.H., Hernán, M.A., Ridker, P.M., et al. (2011) Systematic Review and Meta-Analysis of Methotrexate Use and Risk of Cardiovascular Disease. The American Journal of Cardiology, 108, 1362-1370.
https://doi.org/10.1016/j.amjcard.2011.06.054
[50] Westlake, S.L., Colebatch, A.N., Baird, J., Kiely, P., Quinn, M., Choy, E., et al. (2009) The Effect of Methotrexate on Cardiovascular Disease in Patients with Rheumatoid Arthritis: A Systematic Literature Review. Rheumatology, 49, 295-307.
https://doi.org/10.1093/rheumatology/kep366
[51] Greenberg, J.D., Kremer, J.M., Curtis, J.R., Hochberg, M.C., Reed, G., Tsao, P., et al. (2011) Tumour Necrosis Factor Antagonist Use and Associated Risk Reduction of Cardiovascular Events among Patients with Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 70, 576-582.
https://doi.org/10.1136/ard.2010.129916
[52] Gerasimova, E.V., Popkova, T.V., Kirillova, I.G., Gerasimova, D.A., Nasonov, E.L. and Lila, A.M. (2024) Interleukin-6: Cardiovascular Aspects of Long-Term Cytokine Suppression in Patients with Rheumatoid Arthritis. International Journal of Molecular Sciences, 25, Article 12425.
https://doi.org/10.3390/ijms252212425
[53] Charles-Schoeman, C., Buch, M.H., Dougados, M., Bhatt, D.L., Giles, J.T., Ytterberg, S.R., et al. (2023) Risk of Major Adverse Cardiovascular Events with Tofacitinib versus Tumour Necrosis Factor Inhibitors in Patients with Rheumatoid Arthritis with or without a History of Atherosclerotic Cardiovascular Disease: A Post Hoc Analysis from ORAL Surveillance. Annals of the Rheumatic Diseases, 82, 119-129.
https://doi.org/10.1136/ard-2022-222259
[54] Torkamani, A., Topol, E.J. and Schork, N.J. (2008) Pathway Analysis of Seven Common Diseases Assessed by Genome-Wide Association. Genomics, 92, 265-272.
https://doi.org/10.1016/j.ygeno.2008.07.011
[55] Karczewski, K.J., Dudley, J.T., Kukurba, K.R., Chen, R., Butte, A.J., Montgomery, S.B., et al. (2013) Systematic Functional Regulatory Assessment of Disease-Associated Variants. Proceedings of the National Academy of Sciences, 110, 9607-9612.
https://doi.org/10.1073/pnas.1219099110
[56] Paakkanen, R., Lokki, M., Seppänen, M., Tierala, I., Nieminen, M.S. and Sinisalo, J. (2012) Proinflammatory HLA-DRB1*01-Haplotype Predisposes to ST-Elevation Myocardial Infarction. Atherosclerosis, 221, 461-466.
https://doi.org/10.1016/j.atherosclerosis.2012.01.024
[57] Gonzalez‐Gay, M.A., Gonzalez‐Juanatey, C., Lopez‐Diaz, M.J., Piñeiro, A., Garcia‐Porrua, C., Miranda‐Filloy, J.A., et al. (2007) HLA-DRB1 and Persistent Chronic Inflammation Contribute to Cardiovascular Events and Cardiovascular Mortality in Patients with Rheumatoid Arthritis. Arthritis Care & Research, 57, 125-132.
https://doi.org/10.1002/art.22482