[1]
|
Berthoud, H., Münzberg, H. and Morrison, C.D. (2017) Blaming the Brain for Obesity: Integration of Hedonic and Homeostatic Mechanisms. Gastroenterology, 152, 1728-1738. https://doi.org/10.1053/j.gastro.2016.12.050
|
[2]
|
de Araujo, I.E., Schatzker, M. and Small, D.M. (2020) Rethinking Food Reward. Annual Review of Psychology, 71, 139-164. https://doi.org/10.1146/annurev-psych-122216-011643
|
[3]
|
Morales, I. (2022) Brain Regulation of Hunger and Motivation: The Case for Integrating Homeostatic and Hedonic Concepts and Its Implications for Obesity and Addiction. Appetite, 177, Article ID: 106146. https://doi.org/10.1016/j.appet.2022.106146
|
[4]
|
Rossi, M.A. and Stuber, G.D. (2018) Overlapping Brain Circuits for Homeostatic and Hedonic Feeding. Cell Metabolism, 27, 42-56. https://doi.org/10.1016/j.cmet.2017.09.021
|
[5]
|
Saper, C.B., Chou, T.C. and Elmquist, J.K. (2002) The Need to Feed: Homeostatic and Hedonic Control of Eating. Neuron, 36, 199-211. https://doi.org/10.1016/s0896-6273(02)00969-8
|
[6]
|
Bai, L., Mesgarzadeh, S., Ramesh, K.S., Huey, E.L., Liu, Y., Gray, L.A., et al. (2019) Genetic Identification of Vagal Sensory Neurons That Control Feeding. Cell, 179, 1129-1143.e23. https://doi.org/10.1016/j.cell.2019.10.031
|
[7]
|
Berthoud, H., Albaugh, V.L. and Neuhuber, W.L. (2021) Gut-Brain Communication and Obesity: Understanding Functions of the Vagus Nerve. Journal of Clinical Investigation, 131, e143770. https://doi.org/10.1172/jci143770
|
[8]
|
Ahmed, U., Chang, Y., Zafeiropoulos, S., Nassrallah, Z., Miller, L. and Zanos, S. (2022) Strategies for Precision Vagus Neuromodulation. Bioelectronic Medicine, 8, Article No. 9. https://doi.org/10.1186/s42234-022-00091-1
|
[9]
|
Prescott, S.L. and Liberles, S.D. (2022) Internal Senses of the Vagus Nerve. Neuron, 110, 579-599. https://doi.org/10.1016/j.neuron.2021.12.020
|
[10]
|
Paintal, A.S. (1973) Vagal Sensory Receptors and Their Reflex Effects. Physiological Reviews, 53, 159-227. https://doi.org/10.1152/physrev.1973.53.1.159
|
[11]
|
Zhao, Q., Yu, C.D., Wang, R., Xu, Q.J., Dai Pra, R., Zhang, L., et al. (2022) A Multidimensional Coding Architecture of the Vagal Interoceptive System. Nature, 603, 878-884. https://doi.org/10.1038/s41586-022-04515-5
|
[12]
|
Howland, R.H. (2014) Vagus Nerve Stimulation. Current Behavioral Neuroscience Reports, 1, 64-73. https://doi.org/10.1007/s40473-014-0010-5
|
[13]
|
Levinthal, D.J. and Strick, P.L. (2020) Multiple Areas of the Cerebral Cortex Influence the Stomach. Proceedings of the National Academy of Sciences of the United States of America, 117, 13078-13083. https://doi.org/10.1073/pnas.2002737117
|
[14]
|
Müller, S.J., Teckentrup, V., Rebollo, I., Hallschmid, M. and Kroemer, N.B. (2022) Vagus Nerve Stimulation Increases Stomach-Brain Coupling via a Vagal Afferent Pathway. Brain Stimulation, 15, 1279-1289. https://doi.org/10.1016/j.brs.2022.08.019
|
[15]
|
Rebollo, I., Devauchelle, A., Béranger, B. and Tallon-Baudry, C. (2018) Stomach-Brain Synchrony Reveals a Novel, Delayed-Connectivity Resting-State Network in Humans. eLife, 7, e33321. https://doi.org/10.7554/elife.33321
|
[16]
|
Berthoud, H.R., Blackshaw, L.A., Brookes, S.J.H. and Grundy, D. (2004) Neuroanatomy of Extrinsic Afferents Supplying the Gastrointestinal Tract. Neurogastroenterology & Motility, 16, 28-33. https://doi.org/10.1111/j.1743-3150.2004.00471.x
|
[17]
|
Betley, J.N., Xu, S., Cao, Z.F.H., Gong, R., Magnus, C.J., Yu, Y., et al. (2015) Neurons for Hunger and Thirst Transmit a Negative-Valence Teaching Signal. Nature, 521, 180-185. https://doi.org/10.1038/nature14416
|
[18]
|
Chen, J., Cheng, M., Wang, L., Zhang, L., Xu, D., Cao, P., et al. (2020) A Vagal-NTS Neural Pathway That Stimulates Feeding. Current Biology, 30, 3986-3998.e5. https://doi.org/10.1016/j.cub.2020.07.084
|
[19]
|
Kim, K., Seeley, R.J. and Sandoval, D.A. (2018) Signalling from the Periphery to the Brain That Regulates Energy Homeostasis. Nature Reviews Neuroscience, 19, 185-196. https://doi.org/10.1038/nrn.2018.8
|
[20]
|
Williams, E.K., Chang, R.B., Strochlic, D.E., Umans, B.D., Lowell, B.B. and Liberles, S.D. (2016) Sensory Neurons That Detect Stretch and Nutrients in the Digestive System. Cell, 166, 209-221. https://doi.org/10.1016/j.cell.2016.05.011
|
[21]
|
Cork, S.C. (2018) The Role of the Vagus Nerve in Appetite Control: Implications for the Pathogenesis of Obesity. Journal of Neuroendocrinology, 30, e12643. https://doi.org/10.1111/jne.12643
|
[22]
|
D’Agostino, G., Lyons, D.J., Cristiano, C., Burke, L.K., Madara, J.C., Campbell, J.N., et al. (2016) Appetite Controlled by a Cholecystokinin Nucleus of the Solitary Tract to Hypothalamus Neurocircuit. eLife, 5, e12225. https://doi.org/10.7554/elife.12225
|
[23]
|
Hussain, S.S. and Bloom, S.R. (2012) The Regulation of Food Intake by the Gut-Brain Axis: Implications for Obesity. International Journal of Obesity, 37, 625-633. https://doi.org/10.1038/ijo.2012.93
|
[24]
|
Kaelberer, M.M., Buchanan, K.L., Klein, M.E., Barth, B.B., Montoya, M.M., Shen, X., et al. (2018) A Gut-Brain Neural Circuit for Nutrient Sensory Transduction. Science, 361, eaat5236. https://doi.org/10.1126/science.aat5236
|
[25]
|
de Lartigue, G. and Diepenbroek, C. (2016) Novel Developments in Vagal Afferent Nutrient Sensing and Its Role in Energy Homeostasis. Current Opinion in Pharmacology, 31, 38-43. https://doi.org/10.1016/j.coph.2016.08.007
|
[26]
|
Han, W., Tellez, L.A., Perkins, M.H., Perez, I.O., Qu, T., Ferreira, J., et al. (2018) A Neural Circuit for Gut-Induced Reward. Cell, 175, 665-678.e23. https://doi.org/10.1016/j.cell.2018.08.049
|
[27]
|
Liu, C., Bookout, A.L., Lee, S., Sun, K., Jia, L., Lee, C., et al. (2014) PPARγ in Vagal Neurons Regulates High-Fat Diet Induced Thermogenesis. Cell Metabolism, 19, 722-730. https://doi.org/10.1016/j.cmet.2014.01.021
|
[28]
|
Li, M., Tan, H., Lu, Z., Tsang, K.S., Chung, A.J. and Zuker, C.S. (2022) Gut-Brain Circuits for Fat Preference. Nature, 610, 722-730. https://doi.org/10.1038/s41586-022-05266-z
|
[29]
|
Liu, W.W. and Bohórquez, D.V. (2022) The Neural Basis of Sugar Preference. Nature Reviews Neuroscience, 23, 584-595. https://doi.org/10.1038/s41583-022-00613-5
|
[30]
|
de Lartigue, G. (2016) Role of the Vagus Nerve in the Development and Treatment of Diet‐induced Obesity. The Journal of Physiology, 594, 5791-5815. https://doi.org/10.1113/jp271538
|
[31]
|
Lee, P.C. and Dixon, J.B. (2017) Food for Thought: Reward Mechanisms and Hedonic Overeating in Obesity. Current Obesity Reports, 6, 353-361. https://doi.org/10.1007/s13679-017-0280-9
|
[32]
|
Small, D.M. and Prescott, J. (2005) Odor/Taste Integration and the Perception of Flavor. Experimental Brain Research, 166, 345-357. https://doi.org/10.1007/s00221-005-2376-9
|
[33]
|
Holman, G.L. (1969) Intragastric Reinforcement Effect. Journal of Comparative and Physiological Psychology, 69, 432-441. https://doi.org/10.1037/h0028233
|
[34]
|
Gutierrez, R., Fonseca, E. and Simon, S.A. (2020) The Neuroscience of Sugars in Taste, Gut-Reward, Feeding Circuits, and Obesity. Cellular and Molecular Life Sciences, 77, 3469-3502. https://doi.org/10.1007/s00018-020-03458-2
|
[35]
|
Jin, H., Fishman, Z.H., Ye, M., Wang, L. and Zuker, C.S. (2021) Top-Down Control of Sweet and Bitter Taste in the Mammalian Brain. Cell, 184, 257-271.e16. https://doi.org/10.1016/j.cell.2020.12.014
|
[36]
|
Veldhuizen, M.G., Douglas, D., Aschenbrenner, K., Gitelman, D.R. and Small, D.M. (2011) The Anterior Insular Cortex Represents Breaches of Taste Identity Expectation. The Journal of Neuroscience, 31, 14735-14744. https://doi.org/10.1523/jneurosci.1502-11.2011
|
[37]
|
Ootani, S., Umezaki, T., Shin, T. and Murata, Y. (1995) Convergence of Afferents from the SLN and GPN in Cat Medullary Swallowing Neurons. Brain Research Bulletin, 37, 397-404. https://doi.org/10.1016/0361-9230(95)00018-6
|
[38]
|
Spector, A.C. (2000) Linking Gustatory Neurobiology to Behavior in Vertebrates. Neuroscience & Biobehavioral Reviews, 24, 391-416. https://doi.org/10.1016/s0149-7634(00)00013-0
|
[39]
|
Ackroff, K., Yiin, Y. and Sclafani, A. (2010) Post-Oral Infusion Sites That Support Glucose-Conditioned Flavor Preferences in Rats. Physiology & Behavior, 99, 402-411. https://doi.org/10.1016/j.physbeh.2009.12.012
|
[40]
|
Boakes, R.A., Colagiuri, B. and Mahon, M. (2010) Learned Avoidance of Flavors Signaling Reduction in a Nutrient. Journal of Experimental Psychology: Animal Behavior Processes, 36, 117-125. https://doi.org/10.1037/a0016772
|
[41]
|
Berthoud, H., Morrison, C.D., Ackroff, K. and Sclafani, A. (2021) Learning of Food Preferences: Mechanisms and Implications for Obesity & Metabolic Diseases. International Journal of Obesity, 45, 2156-2168. https://doi.org/10.1038/s41366-021-00894-3
|
[42]
|
Sclafani, A. and Ackroff, K. (2012) Role of Gut Nutrient Sensing in Stimulating Appetite and Conditioning Food Preferences. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 302, R1119-R1133. https://doi.org/10.1152/ajpregu.00038.2012
|
[43]
|
Beutler, L.R., Chen, Y., Ahn, J.S., Lin, Y., Essner, R.A. and Knight, Z.A. (2017) Dynamics of Gut-Brain Communication Underlying Hunger. Neuron, 96, 461-475.e5. https://doi.org/10.1016/j.neuron.2017.09.043
|
[44]
|
Berthoud, H. (2011) Metabolic and Hedonic Drives in the Neural Control of Appetite: Who Is the Boss? Current Opinion in Neurobiology, 21, 888-896. https://doi.org/10.1016/j.conb.2011.09.004
|
[45]
|
Schultz, W. (2015) Neuronal Reward and Decision Signals: From Theories to Data. Physiological Reviews, 95, 853-951. https://doi.org/10.1152/physrev.00023.2014
|
[46]
|
Joshi, A., Schott, M., la Fleur, S.E. and Barrot, M. (2022) Role of the Striatal Dopamine, GABA and Opioid Systems in Mediating Feeding and Fat Intake. Neuroscience & Biobehavioral Reviews, 139, Article ID: 104726. https://doi.org/10.1016/j.neubiorev.2022.104726
|
[47]
|
Tellez, L.A., Medina, S., Han, W., Ferreira, J.G., Licona-Limón, P., Ren, X., et al. (2013) A Gut Lipid Messenger Links Excess Dietary Fat to Dopamine Deficiency. Science, 341, 800-802. https://doi.org/10.1126/science.1239275
|
[48]
|
Berland, C., Castel, J., Terrasi, R., Montalban, E., Foppen, E., Martin, C., et al. (2022) Identification of an Endocannabinoid Gut-Brain Vagal Mechanism Controlling Food Reward and Energy Homeostasis. Molecular Psychiatry, 27, 2340-2354. https://doi.org/10.1038/s41380-021-01428-z
|
[49]
|
Cluny, N., Vemuri, V., Chambers, A., Limebeer, C., Bedard, H., Wood, J., et al. (2010) A Novel Peripherally Restricted Cannabinoid Receptor Antagonist, AM6545, Reduces Food Intake and Body Weight, but Does Not Cause Malaise, in Rodents. British Journal of Pharmacology, 161, 629-642. https://doi.org/10.1111/j.1476-5381.2010.00908.x
|
[50]
|
DiPatrizio, N.V. (2021) Endocannabinoids and the Gut-Brain Control of Food Intake and Obesity. Nutrients, 13, Article 1214. https://doi.org/10.3390/nu13041214
|
[51]
|
Bellono, N.W., Bayrer, J.R., Leitch, D.B., Castro, J., Zhang, C., O’Donnell, T.A., et al. (2017) Enterochromaffin Cells Are Gut Chemosensors That Couple to Sensory Neural Pathways. Cell, 170, 185-198.e16. https://doi.org/10.1016/j.cell.2017.05.034
|
[52]
|
Buchanan, K.L., Rupprecht, L.E., Kaelberer, M.M., Sahasrabudhe, A., Klein, M.E., Villalobos, J.A., et al. (2022) The Preference for Sugar over Sweetener Depends on a Gut Sensor Cell. Nature Neuroscience, 25, 191-200. https://doi.org/10.1038/s41593-021-00982-7
|
[53]
|
Lu, V.B., Rievaj, J., O’Flaherty, E.A., Smith, C.A., Pais, R., Pattison, L.A., et al. (2019) Adenosine Triphosphate Is Co-Secreted with Glucagon-Like Peptide-1 to Modulate Intestinal Enterocytes and Afferent Neurons. Nature Communications, 10, Article No. 1029. https://doi.org/10.1038/s41467-019-09045-9
|
[54]
|
Tan, H., Sisti, A.C., Jin, H., Vignovich, M., Villavicencio, M., Tsang, K.S., et al. (2020) The Gut-Brain Axis Mediates Sugar Preference. Nature, 580, 511-516. https://doi.org/10.1038/s41586-020-2199-7
|
[55]
|
Appleton, K.M., Tuorila, H., Bertenshaw, E.J., de Graaf, C. and Mela, D.J. (2018) Sweet Taste Exposure and the Subsequent Acceptance and Preference for Sweet Taste in the Diet: Systematic Review of the Published Literature. The American Journal of Clinical Nutrition, 107, 405-419. https://doi.org/10.1093/ajcn/nqx031
|
[56]
|
Heinze, J.M., Costanzo, A., Baselier, I., Fritsche, A., Frank-Podlech, S. and Keast, R. (2018) Detection Thresholds for Four Different Fatty Stimuli Are Associated with Increased Dietary Intake of Processed High-Caloric Food. Appetite, 123, 7-13. https://doi.org/10.1016/j.appet.2017.12.003
|
[57]
|
Maliphol, A.B., Garth, D.J. and Medler, K.F. (2013) Diet-Induced Obesity Reduces the Responsiveness of the Peripheral Taste Receptor Cells. PLOS ONE, 8, e79403. https://doi.org/10.1371/journal.pone.0079403
|
[58]
|
May, C.E., Vaziri, A., Lin, Y.Q., Grushko, O., Khabiri, M., Wang, Q., et al. (2019) High Dietary Sugar Reshapes Sweet Taste to Promote Feeding Behavior in Drosophila Melanogaster. Cell Reports, 27, 1675-1685.e7. https://doi.org/10.1016/j.celrep.2019.04.027
|
[59]
|
Vaziri, A., Khabiri, M., Genaw, B.T., May, C.E., Freddolino, P.L. and Dus, M. (2020) Persistent Epigenetic Reprogramming of Sweet Taste by Diet. Science Advances, 6, eabc8492. https://doi.org/10.1126/sciadv.abc8492
|
[60]
|
Wang, Q., Lin, Y.Q., Lai, M., Su, Z., Oyston, L.J., Clark, T., et al. (2020) PGC1α Controls Sucrose Taste Sensitization in Drosophila. Cell Reports, 31, Article ID: 107480. https://doi.org/10.1016/j.celrep.2020.03.044
|
[61]
|
Weiss, M.S., Hajnal, A., Czaja, K. and Di Lorenzo, P.M. (2019) Taste Responses in the Nucleus of the Solitary Tract of Awake Obese Rats Are Blunted Compared with Those in Lean Rats. Frontiers in Integrative Neuroscience, 13, Article 35. https://doi.org/10.3389/fnint.2019.00035
|
[62]
|
Meldrum, D.R., Morris, M.A. and Gambone, J.C. (2017) Obesity Pandemic: Causes, Consequences, and Solutions—But Do We Have the Will? Fertility and Sterility, 107, 833-839. https://doi.org/10.1016/j.fertnstert.2017.02.104
|
[63]
|
Ifland, J.R., Preuss, H.G., Marcus, M.T., Rourke, K.M., Taylor, W.C., Burau, K., et al. (2009) Refined Food Addiction: A Classic Substance Use Disorder. Medical Hypotheses, 72, 518-526. https://doi.org/10.1016/j.mehy.2008.11.035
|
[64]
|
Adair, D., Truong, D., Esmaeilpour, Z., Gebodh, N., Borges, H., Ho, L., et al. (2020) Electrical Stimulation of Cranial Nerves in Cognition and Disease. Brain Stimulation, 13, 717-750. https://doi.org/10.1016/j.brs.2020.02.019
|
[65]
|
Steidel, K., Krause, K., Menzler, K., Strzelczyk, A., Immisch, I., Fuest, S., et al. (2021) Transcutaneous Auricular Vagus Nerve Stimulation Influences Gastric Motility: A Randomized, Double-Blind Trial in Healthy Individuals. Brain Stimulation, 14, 1126-1132. https://doi.org/10.1016/j.brs.2021.06.006
|
[66]
|
von Wrede, R., Rings, T., Schach, S., Helmstaedter, C. and Lehnertz, K. (2021) Transcutaneous Auricular Vagus Nerve Stimulation Induces Stabilizing Modifications in Large-Scale Functional Brain Networks: Towards Understanding the Effects of taVNS in Subjects with Epilepsy. Scientific Reports, 11, Article No. 7906. https://doi.org/10.1038/s41598-021-87032-1
|
[67]
|
Val-Laillet, D., Biraben, A., Randuineau, G. and Malbert, C.H. (2010) Chronic Vagus Nerve Stimulation Decreased Weight Gain, Food Consumption and Sweet Craving in Adult Obese Minipigs. Appetite, 55, 245-252. https://doi.org/10.1016/j.appet.2010.06.008
|
[68]
|
Fallgatter, A.J., Neuhauser, B., Herrmann, M.J., Ehlis, A., Wagener, A., Scheuerpflug, P., et al. (2003) Far Field Potentials from the Brain Stem after Transcutaneous Vagus Nerve Stimulation. Journal of Neural Transmission, 110, 1437-1443. https://doi.org/10.1007/s00702-003-0087-6
|
[69]
|
Neuser, M.P., Teckentrup, V., Kühnel, A., Hallschmid, M., Walter, M. and Kroemer, N.B. (2020) Vagus Nerve Stimulation Boosts the Drive to Work for Rewards. Nature Communications, 11, Article No. 3555. https://doi.org/10.1038/s41467-020-17344-9
|
[70]
|
Hong, G., Pintea, B., Lingohr, P., Coch, C., Randau, T., Schaefer, N., et al. (2018) Effect of Transcutaneous Vagus Nerve Stimulation on Muscle Activity in the Gastrointestinal Tract (transVaGa): A Prospective Clinical Trial. International Journal of Colorectal Disease, 34, 417-422. https://doi.org/10.1007/s00384-018-3204-6
|