[1]
|
Du, K., Zhu, Y., Mao, R., Qu, Y., Cui, B., Ma, Y., et al. (2022) Medium-Long Term Prognosis Prediction for Idiopathic Pulmonary Fibrosis Patients Based on Quantitative Analysis of Fibrotic Lung Volume. Respiratory Research, 23, Article No. 372. https://doi.org/10.1186/s12931-022-02276-3
|
[2]
|
Gupta, N., Paryani, M., Patel, S., Bariya, A., Srivastava, A., Pathak, Y., et al. (2024) Therapeutic Strategies for Idiopathic Pulmonary Fibrosis—Thriving Present and Promising Tomorrow. The Journal of Clinical Pharmacology, 64, 779-798. https://doi.org/10.1002/jcph.2408
|
[3]
|
Raghu, G., Remy-Jardin, M., Richeldi, L., Thomson, C.C., Inoue, Y., Johkoh, T., et al. (2022) Idiopathic Pulmonary Fibrosis (An Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 205, e18-e47. https://doi.org/10.1164/rccm.202202-0399st
|
[4]
|
中华医学会呼吸病学分会与中国医师协会呼吸医师分会. 间质性肺疾病多学科讨论规范中国专家共识[J]. 中华结核和呼吸杂志, 2023, 46(12): 1176-1188.
|
[5]
|
Mei, Q., Liu, Z., Zuo, H., Yang, Z. and Qu, J. (2022) Idiopathic Pulmonary Fibrosis: An Update on Pathogenesis. Frontiers in Pharmacology, 12, Article 797292. https://doi.org/10.3389/fphar.2021.797292
|
[6]
|
Fließer, E., Jandl, K., Lins, T., Birnhuber, A., Valzano, F., Kolb, D., et al. (2024) Lung Fibrosis Is Linked to Increased Endothelial Cell Activation and Dysfunctional Vascular Barrier Integrity. American Journal of Respiratory Cell and Molecular Biology, 71, 318-331. https://doi.org/10.1165/rcmb.2024-0046oc
|
[7]
|
来志龙, 徐寒梅, 赵万州, 等. 特发性肺纤维化相关信号通路及治疗药物研究进展[J]. 药学进展, 2022, 46(7): 535-544.
|
[8]
|
刘理静, 钱红, 孟庆欣, 等. 青藤碱激活Keap1/Nrf2信号通路抑制氧化应激和肺纤维化[J]. 中国临床药理学与治疗学, 2023, 28(9): 979-987.
|
[9]
|
Hao, W., Li, M., Cai, Q., Wu, S., Li, X., He, Q., et al. (2022) Roles of NRF2 in Fibrotic Diseases: From Mechanisms to Therapeutic Approaches. Frontiers in Physiology, 13, Article 889792. https://doi.org/10.3389/fphys.2022.889792
|
[10]
|
He, F., Ru, X. and Wen, T. (2020) NRF2, a Transcription Factor for Stress Response and Beyond. International Journal of Molecular Sciences, 21, Article 4777. https://doi.org/10.3390/ijms21134777
|
[11]
|
Cuadrado, A. (2015) Structural and Functional Characterization of Nrf2 Degradation by Glycogen Synthase Kinase 3/β-TrCP. Free Radical Biology and Medicine, 88, 147-157. https://doi.org/10.1016/j.freeradbiomed.2015.04.029
|
[12]
|
Jiang, S., Yang, Y., Li, T., Ma, Z., Hu, W., Deng, C., et al. (2016) An Overview of the Mechanisms and Novel Roles of Nrf2 in Cardiovascular Diseases. Expert Opinion on Therapeutic Targets, 20, 1413-1424. https://doi.org/10.1080/14728222.2016.1250887
|
[13]
|
高雅然, 胡明, 吕佩源. 选择性自噬接头蛋白p62与Keap1-Nrf2信号通路在神经退行性疾病中的研究进展[J]. 国际神经病学神经外科学杂志, 2020, 47(4): 439-442.
|
[14]
|
Wu, S., Lu, H. and Bai, Y. (2019) Nrf2 in Cancers: A Double-Edged Sword. Cancer Medicine, 8, 2252-2267. https://doi.org/10.1002/cam4.2101
|
[15]
|
Lu, N., Tan, G., Tan, H., Zhang, X., Lv, Y., Song, X., et al. (2022) Maackiain Prevents Amyloid-β-Induced Cellular Injury via Priming PKC-Nrf2 Pathway. BioMed Research International, 2022, Article ID: 4243210. https://doi.org/10.1155/2022/4243210
|
[16]
|
Yao, J., Zhang, J., Tai, W., Deng, S., Li, T., Wu, W., et al. (2019) High-Dose Paraquat Induces Human Bronchial 16HBE Cell Death and Aggravates Acute Lung Intoxication in Mice by Regulating Keap1/p65/Nrf2 Signal Pathway. Inflammation, 42, 471-484. https://doi.org/10.1007/s10753-018-00956-1
|
[17]
|
Chang, K., Chen, Y., Zhang, X., Zhang, W., Xu, N., Zeng, B., et al. (2023) DPP9 Stabilizes Nrf2 to Suppress Ferroptosis and Induce Sorafenib Resistance in Clear Cell Renal Cell Carcinoma. Cancer Research, 83, 3940-3955. https://doi.org/10.1158/0008-5472.can-22-4001
|
[18]
|
Otoupalova, E., Smith, S., Cheng, G. and Thannickal, V.J. (2020) Oxidative Stress in Pulmonary Fibrosis. Comprehensive Physiology, 10, 509-547.
|
[19]
|
Zhang, Y., Mo, Y., Yuan, J., Zhang, Y., Mo, L. and Zhang, Q. (2021) MMP-3 Activation Is Involved in Copper Oxide Nanoparticle-Induced Epithelial-Mesenchymal Transition in Human Lung Epithelial Cells. Nanotoxicology, 15, 1380-1402. https://doi.org/10.1080/17435390.2022.2030822
|
[20]
|
Estornut, C., Milara, J., Bayarri, M.A., Belhadj, N. and Cortijo, J. (2022) Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Frontiers in Pharmacology, 12, Article 794997. https://doi.org/10.3389/fphar.2021.794997
|
[21]
|
Srivastava, S., Singh, D., Patel, S. and Singh, M.R. (2017) Role of Enzymatic Free Radical Scavengers in Management of Oxidative Stress in Autoimmune Disorders. International Journal of Biological Macromolecules, 101, 502-517. https://doi.org/10.1016/j.ijbiomac.2017.03.100
|
[22]
|
Bellezza, I., Giambanco, I., Minelli, A. and Donato, R. (2018) Nrf2-Keap1 Signaling in Oxidative and Reductive Stress. Biochimica et Biophysica Acta—Molecular Cell Research, 1865, 721-733. https://doi.org/10.1016/j.bbamcr.2018.02.010
|
[23]
|
Zhang, Q., Ye, W., Liu, Y., Niu, D., Zhao, X., Li, G., et al. (2023) S-Allylmercapto-n-Acetylcysteine Ameliorates Pulmonary Fibrosis in Mice via Nrf2 Pathway Activation and NF-κB, TGF-Β1/Smad2/3 Pathway Suppression. Biomedicine & Pharmacotherapy, 157, Article 114018. https://doi.org/10.1016/j.biopha.2022.114018
|
[24]
|
Zhang, Z., Qu, J., Zheng, C., Zhang, P., Zhou, W., Cui, W., et al. (2018) Nrf2 Antioxidant Pathway Suppresses Numb-Mediated Epithelial-Mesenchymal Transition during Pulmonary Fibrosis. Cell Death & Disease, 9, Article No. 83. https://doi.org/10.1038/s41419-017-0198-x
|
[25]
|
Cui, Y., Zhao, J., Chen, J., Kong, Y., Wang, M., Ma, Y., et al. (2022) Cyanidin-3-Galactoside from aronia Melanocarpa Ameliorates Silica-Induced Pulmonary Fibrosis by Modulating the TGF-β/mTOR and NRF2/HO-1 Pathways. Food Science & Nutrition, 10, 2558-2567. https://doi.org/10.1002/fsn3.2861
|
[26]
|
Mutsaers, S.E., Miles, T., Prêle, C.M. and Hoyne, G.F. (2023) Emerging Role of Immune Cells as Drivers of Pulmonary Fibrosis. Pharmacology & Therapeutics, 252, Article 108562. https://doi.org/10.1016/j.pharmthera.2023.108562
|
[27]
|
Xu, Y., Lan, P. and Wang, T. (2023) The Role of Immune Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Medicina, 59, Article 1984. https://doi.org/10.3390/medicina59111984
|
[28]
|
Kobayashi, E.H., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H., et al. (2016) Nrf2 Suppresses Macrophage Inflammatory Response by Blocking Proinflammatory Cytokine Transcription. Nature Communications, 7, Article No. 11624. https://doi.org/10.1038/ncomms11624
|
[29]
|
Wu, Y., Zhang, Y., Jiang, F., He, S., Zhang, Y., Chen, D., et al. (2023) 4-OI Ameliorates Bleomycin-Induced Pulmonary Fibrosis by Activating Nrf2 and Suppressing Macrophage-Mediated Epithelial-Mesenchymal Transition. Inflammation Research, 72, 1133-1145. https://doi.org/10.1007/s00011-023-01733-z
|
[30]
|
Park, W., Wei, S., Kim, B., Kim, B., Bae, S., Chae, Y.C., et al. (2023) Diversity and Complexity of Cell Death: A Historical Review. Experimental & Molecular Medicine, 55, 1573-1594. https://doi.org/10.1038/s12276-023-01078-x
|
[31]
|
Klionsky, D.J., Petroni, G., Amaravadi, R.K., Baehrecke, E.H., Ballabio, A., Boya, P., et al. (2021) Autophagy in Major Human Diseases. The EMBO Journal, 40, e108863. https://doi.org/10.15252/embj.2021108863
|
[32]
|
陈凤, 张伟, 杨公涛. 基于细胞自噬论“伏毒”的微观机制及在特发性肺纤维化中的作用[J]. 世界中医药, 2021, 16(18): 2742-2746.
|
[33]
|
Liu, J., Huang, C., Liu, J., Meng, C., Gu, Q., Du, X., et al. (2023) Nrf2 and Its Dependent Autophagy Activation Cooperatively Counteract Ferroptosis to Alleviate Acute Liver Injury. Pharmacological Research, 187, Article 106563. https://doi.org/10.1016/j.phrs.2022.106563
|
[34]
|
Shen, B., Wang, Y., Cheng, J., Peng, Y., Zhang, Q., Li, Z., et al. (2023) Pterostilbene Alleviated NAFLD via AMPK/mTOR Signaling Pathways and Autophagy by Promoting Nrf2. Phytomedicine, 109, Article 154561. https://doi.org/10.1016/j.phymed.2022.154561
|
[35]
|
Wu, M., Li, H., Zhai, R., Shan, B., Guo, C. and Chen, J. (2024) Tanshinone IIA Positively Regulates the Keap1-Nrf2 System to Alleviate Pulmonary Fibrosis via the Sestrin2-Sqstm1 Signaling Axis-Mediated Autophagy. Phytomedicine, 129, Article 155620. https://doi.org/10.1016/j.phymed.2024.155620
|
[36]
|
Bertheloot, D., Latz, E. and Franklin, B.S. (2021) Necroptosis, Pyroptosis and Apoptosis: An Intricate Game of Cell Death. Cellular & Molecular Immunology, 18, 1106-1121. https://doi.org/10.1038/s41423-020-00630-3
|
[37]
|
Cooley, J.C., Javkhlan, N., Wilson, J.A., Foster, D.G., Edelman, B.L., Ortiz, L.A., et al. (2023) Inhibition of Antiapoptotic BCL-2 Proteins with ABT-263 Induces Fibroblast Apoptosis, Reversing Persistent Pulmonary Fibrosis. JCI Insight, 8, e163762. https://doi.org/10.1172/jci.insight.163762
|
[38]
|
Zheng, F., Wu, X., Zhang, J., Fu, Z. and Zhang, Y. (2022) Sevoflurane Reduces Lipopolysaccharide-Induced Apoptosis and Pulmonary Fibrosis in the RAW264.7 Cells and Mice Models to Ameliorate Acute Lung Injury by Eliminating Oxidative Damages. Redox Report, 27, 139-149. https://doi.org/10.1080/13510002.2022.2096339
|
[39]
|
康慧敏, 李柔, 王汉钦, 等. 不同浓度鸦胆子苦醇对小鼠矽肺纤维化的影响[J]. 环境与职业医学, 2024, 41(5): 539-545.
|
[40]
|
Chen, F., Kang, R., Tang, D. and Liu, J. (2024) Ferroptosis: Principles and Significance in Health and Disease. Journal of Hematology & Oncology, 17, Article No. 41. https://doi.org/10.1186/s13045-024-01564-3
|
[41]
|
Pei, Z., Qin, Y., Fu, X., Yang, F., Huo, F., Liang, X., et al. (2022) Inhibition of Ferroptosis and Iron Accumulation Alleviates Pulmonary Fibrosis in a Bleomycin Model. Redox Biology, 57, Article 102509. https://doi.org/10.1016/j.redox.2022.102509
|
[42]
|
Sun, L., He, X., Kong, J., Yu, H. and Wang, Y. (2024) Menstrual Blood-Derived Stem Cells Exosomal miR-Let-7 to Ameliorate Pulmonary Fibrosis through Inhibiting Ferroptosis by Sp3/HDAC2/Nrf2 Signaling Pathway. International Immunopharmacology, 126, Article 111316. https://doi.org/10.1016/j.intimp.2023.111316
|
[43]
|
张仲景, 王叔和, 林亿, 等. 金匮要略方论[M]. 第2版. 北京: 中国中医药出版社, 2021.
|
[44]
|
Wei, Y., Wang, J., Han, D., Huang, T.X., Bai, L., Zhou, X.M., et al. (2023) Protective Effect and Mechanism of Maiwei Yangfei Decoction on Pulmonary Fibrosis Mice Based on Nrf2 Regulation of Oxidative Stress. China Journal of Chinese Materia Medica, 48, 6682-6692.
|
[45]
|
常玉骞, 孙胤羚, 张玮, 等. 肺纤维化疾病中Keap1/Nrf2/ARE相关信号通路与中药调控[J]. 中国工业医学杂志, 2023, 36(6): 523-527.
|
[46]
|
Fois, A.G., Sotgiu, E., Scano, V., Negri, S., Mellino, S., Zinellu, E., et al. (2020) Effects of Pirfenidone and Nintedanib on Markers of Systemic Oxidative Stress and Inflammation in Patients with Idiopathic Pulmonary Fibrosis: A Preliminary Report. Antioxidants, 9, Article 1064. https://doi.org/10.3390/antiox9111064
|
[47]
|
Liu, Y., Lu, F., Kang, L., Wang, Z. and Wang, Y. (2017) Pirfenidone Attenuates Bleomycin-Induced Pulmonary Fibrosis in Mice by Regulating Nrf2/bach1 Equilibrium. BMC Pulmonary Medicine, 17, Article No. 63. https://doi.org/10.1186/s12890-017-0405-7
|
[48]
|
El-Horany, H.E., Atef, M.M., Abdel Ghafar, M.T., Fouda, M.H., Nasef, N.A., Hegab, I.I., et al. (2023) Empagliflozin Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Rats by Modulating Sesn2/AMPK/Nrf2 Signaling and Targeting Ferroptosis and Autophagy. International Journal of Molecular Sciences, 24, Article 9481. https://doi.org/10.3390/ijms24119481
|
[49]
|
Lan, Y., Cheng, M., Ji, H., Bi, Y., Han, Y., Yang, C., et al. (2022) Melatonin Ameliorates Bleomycin-Induced Pulmonary Fibrosis via Activating Nrf2 and Inhibiting Galectin-3 Expression. Acta Pharmacologica Sinica, 44, 1029-1037. https://doi.org/10.1038/s41401-022-01018-x
|
[50]
|
Mahmoudi, Z., Kalantar, H., Mansouri, E., Mohammadi, E. and Khodayar, M.J. (2023) Dimethyl Fumarate Attenuates Paraquat-Induced Pulmonary Oxidative Stress, Inflammation and Fibrosis in Mice. Pesticide Biochemistry and Physiology, 190, Article 105336. https://doi.org/10.1016/j.pestbp.2023.105336
|
[51]
|
Wang, Y., Wei, J., Deng, H., Zheng, L., Yang, H. and Lv, X. (2022) The Role of Nrf2 in Pulmonary Fibrosis: Molecular Mechanisms and Treatment Approaches. Antioxidants, 11, Article 1685. https://doi.org/10.3390/antiox11091685
|
[52]
|
Cheng, W., Zeng, Y. and Wang, D. (2022) Stem Cell-Based Therapy for Pulmonary Fibrosis. Stem Cell Research & Therapy, 13, Article 492. https://doi.org/10.1186/s13287-022-03181-8
|
[53]
|
Lee, E.J., Cárdenes, N., Álvarez, D., Sellarés, J., Sembrat, J., Aranda, P., et al. (2019) Mesenchymal Stem Cells Reduce ER Stress via Perk-Nrf2 Pathway in an Aged Mouse Model. Respirology, 25, 417-426. https://doi.org/10.1111/resp.13646
|
[54]
|
Hu, W., Yang, J., Xue, J., Ma, J., Wu, S., Wang, J., et al. (2023) Secretome of hESC-Derived MSC-Like Immune and Matrix Regulatory Cells Mitigate Pulmonary Fibrosis through Antioxidant and Anti-Inflammatory Effects. Biomedicines, 11, Article 463. https://doi.org/10.3390/biomedicines11020463
|
[55]
|
Chancellor, D., Barrett, D., Nguyen-Jatkoe, L., Millington, S. and Eckhardt, F. (2023) The State of Cell and Gene Therapy in 2023. Molecular Therapy, 31, 3376-3388. https://doi.org/10.1016/j.ymthe.2023.11.001
|
[56]
|
Li, X., Le, Y., Zhang, Z., Nian, X., Liu, B. and Yang, X. (2023) Viral Vector-Based Gene Therapy. International Journal of Molecular Sciences, 24, Article 7736. https://doi.org/10.3390/ijms24097736
|
[57]
|
Huang, Y., Wang, A., Jin, S., Liu, F. and Xu, F. (2023) Activation of the NLRP3 Inflammasome by HMGB1 through Inhibition of the Nrf2/HO-1 Pathway Promotes Bleomycin-Induced Pulmonary Fibrosis after Acute Lung Injury in Rats. Allergologia et Immunopathologia, 51, 56-67. https://doi.org/10.15586/aei.v51i3.668
|
[58]
|
Chang, X., Liu, C., Han, Y., Li, Q., Guo, B. and Jiang, H. (2023) Efficient Transfected Liposomes Co-Loaded with pNRF2 and Pirfenidone Improves Safe Delivery for Enhanced Pulmonary Fibrosis Reversion. Molecular Therapy—Nucleic Acids, 32, 415-431. https://doi.org/10.1016/j.omtn.2023.04.006
|
[59]
|
Liu, J., Wu, Z., Liu, Y., Zhan, Z., Yang, L., Wang, C., et al. (2022) Ros-Responsive Liposomes as an Inhaled Drug Delivery Nanoplatform for Idiopathic Pulmonary Fibrosis Treatment via Nrf2 Signaling. Journal of Nanobiotechnology, 20, Article 213. https://doi.org/10.1186/s12951-022-01435-4
|