雷公藤治疗动脉粥样硬化的作用机制研究进展
Research Progress on the Mechanisms of Action of Tripterygium wilfordii Hook.f in the Treatment of Atherosclerosis
DOI: 10.12677/acm.2025.152379, PDF, HTML, XML,   
作者: 王超英:黑龙江中医药大学第二临床医学院,黑龙江 哈尔滨;陈会君*:黑龙江中医药大学附属第二医院心血管科,黑龙江 哈尔滨
关键词: 雷公藤机制动脉粥样硬化研究进展Tripterygium wilfordii Hook.f Mechanism Atherosclerosis Research Progress
摘要: 动脉粥样硬化会出现血管内皮损伤,纤维组织增生,脂质沉积、钙质沉着于血管壁,逐渐形成斑块,造成管腔狭窄。动脉粥样硬化主要侵犯大中型动脉血管,是多种心血管疾病病理基础。其病死率呈现下降趋势,但发病率仍在不断增加,所以动脉粥样硬化的预防和治疗仍需重视。雷公藤具有多种活性成分,可通过调节免疫系统、炎症反应、线粒体功能、氧化应激、脂质代谢、血小板功能、血管重塑以及抗血栓形成等多个途径起到抗动脉粥样硬化的作用。雷公藤因其具有多成分、多途径、多靶点、整体性的特点,可更有效抑制动脉粥样硬化对血管的损伤。文章的意义在于系统总结了雷公藤治疗动脉粥样硬化的潜在机制,为雷公藤的临床应用和新药研发提供了理论依据。
Abstract: Atherosclerosis is characterized by endothelial injury, proliferation of fibrous tissue, lipid deposition, and calcium accumulation in the vascular wall, gradually forming plaques that lead to lumen narrowing. Atherosclerosis mainly invades large and medium-sized arterial vessels, and is the pathological basis of many cardiovascular diseases. Its death rate shows a decreasing trend, but the incidence is still increasing, so the prevention and treatment of atherosclerosis still need attention. Tripterygium wilfordii Hook.f has a variety of active components, which can play an anti-atherosclerotic role by regulating the immune system, inflammatory response, mitochondrial function, oxidative stress, lipid metabolism, platelet function, vascular remodeling, and anti-thrombosis in a number of pathways. Because of its multi-component, multi-pathway, multi-target and holistic characteristics, Tripterygium wilfordii Hook.f can more effectively inhibit the damage of atherosclerosis on blood vessels. The significance of the article is that it systematically summarizes the potential mechanism of Tripterygium wilfordiiHook.f in the treatment of atherosclerosis, and provides a theoretical basis for the clinical application of Tripterygium wilfordii Hook.f and the development of new drugs.
文章引用:王超英, 陈会君. 雷公藤治疗动脉粥样硬化的作用机制研究进展[J]. 临床医学进展, 2025, 15(2): 554-562. https://doi.org/10.12677/acm.2025.152379

1. 引言

动脉粥样硬化(Atherosclerosis, AS)是一种主要侵犯大中型动脉血管的慢性进行性疾病。其特征是受累动脉的动脉壁弹性减低,从内膜开始病变,局部出现脂质积聚、纤维组织增生和钙质沉着,慢慢形成斑块。AS是多种心血管疾病的病理基础,主要包括猝死、中风和心肌梗死等[1]。随着医疗技术的发展,心血管疾病的死亡率持续下降,但因人口增长和老龄化以及其他心血管危险因素增加的影响,全球心血管疾病患者人数仍在增加[2]。目前关于AS的药物治疗上,西医予以调血脂、抗血小板聚集、抗凝、溶栓、扩血管、抗氧化及抗炎等治疗,中医根据辨证论治予以具有清热、化痰、益气、养阴、理气、活血等特性的中药治疗[3]。中药具有多成分、多途径、多靶点、多效应的特点,能为AS的治疗提供更多可能性。

雷公藤(Tripterygium wilfordii Hook.f)是卫矛科雷公藤属植物,采用其根部入药,其含有多种生物碱和二萜类、三萜类、倍半萜类化合物。现代药理研究表明,雷公藤具有抗炎、调节免疫、镇痛、抗动脉粥样硬化、抗排异、抗肿瘤、抗生育、抗支原体、抗艾滋病毒、保护神经、保护肾脏、保护关节软骨等多种药理作用[4]。经查阅大量文献发现,雷公藤活性成分中雷公藤红素、雷公藤甲素、雷公藤内酯酮、雷公藤多苷等具有抗AS的作用。本文对雷公藤对抗AS的作用机制进行系统性的整理,旨在为进一步临床治疗与研究提供依据。

2. 免疫系统相关调节

AS早期是脂蛋白和趋化因子在上皮下积累触发单核细胞流入血管壁,趋化因子受体CCR2及其配体CCL-2调节单核细胞的募集到受累动脉的内膜[5]。Tao [6]和李[7]等发现雷公藤红素和雷公藤甲素可抑制CCL-2的产生。浸润的单核细胞分化成巨噬细胞(Mø)和树突状细胞(DC)。单核细胞衍生的Mø通过清道夫受体摄取修饰的低密度脂蛋白(LDL)形成泡沫细胞,同时释放趋化因子进一步从循环中募集单核细胞、中性粒细胞和淋巴细胞[5]。Tao等[6]发现雷公藤红素可抑制趋化因子CXCL-10的产生。而CXCL-10参与募集活化的T细胞,并在AS斑块中Mø、内皮细胞(EC)和血管平滑肌细胞(VSMC)上高度表达。EC炎性激活,细胞粘附分子的表达增加,如细胞间粘附分子(ICAM)-1、血管细胞粘附分子(VCAM)-1,帮助炎性细胞募集到动脉壁并跨壁迁移[8]。李等[7]发现,雷公藤甲素可抑制氧化低密度脂蛋白(ox-LDL)诱导的ICAM-1和VCAM-1在内皮细胞中表达。中性粒细胞通过分泌活性氧促进血管炎症,导致EC屏障通透性增加,使免疫细胞、细胞因子、脂蛋白在内皮下积累更多。泡沫细胞主要由Mø、DC和VSMC形成,通过摄取斑块内脂质驱动坏死核心形成,导致内质网应激增加和细胞死亡[9]。Allen [10]和程[11]等发现雷公藤红素可通过减少Mø、单核细胞、中性粒细胞等炎性细胞在斑块内聚集,而减小斑块面积。

3. 抑制炎症反应

在AS发生过程中,释放大量炎症因子,加剧炎症的发生,损伤血管调节功能。雷公藤的活性成分可通过调控CD40-CD40L/MAPK/NF-κB信号通路减轻炎症反应。CD40与CD40配体(CD40L)的相互作用是激活适应性免疫细胞的重要共刺激信号,在AS斑块中T细胞、EC、Mø和VSMC均有CD40和CD40L表达。MAPK家族由ERK、JNK和p38MAPK组成。T细胞表面表达的CD40L,在介导调节免疫细胞的活化、存活、增殖以及T细胞应答的p38MAPK、ERK中起关键作用,并触发重要标志物分子的表达和功能性细胞因子的分泌。CD40信号传导的下游分子可激活NF-κB通路,并进一步激活I-κK以催化I-κB磷酸化,导致NF-κB核转位,发挥核转录效应以刺激一些共刺激分子和细胞因子的上调。促炎性Th1可通过分泌IFN-γ、TNF-α、IL-6和IL-12等上调AS。抗炎性Th2通过产生抗炎因子IL-10而显示出抗AS的趋势。恒定的CD40L刺激DC可提供用于Th1应答激活的持久的IL-12应答。活化的Mø能通过连接Mø表面的CD40与T细胞表面的CD40L结合,合成并分泌IL-1β、IL-12、IL-8、TNF-α、IFN-γ等影响AS的发生[12]。程等[11]发现雷公藤红素能抑制ApoE基因敲除小鼠AS斑块中CD40L的表达。Tao等[6]发现雷公藤红素可下调ERK和MAPK中p38蛋白的磷酸化水平。Gu [13]和Song [14]等发现雷公藤红素和雷公藤甲素可通过抑制Iκ-Bα磷酸化及其降解和NF-κB中p65 DNA结合活性及其转录,而抑制NF-κB活化,减轻炎症反应。程等[15]发现雷公藤甲素能上调血清中IL-10表达水平和抑制IL-12表达。Tao [6]和Luo [16]等发现雷公藤红素、雷公藤甲素能抑制Mø分泌IL-6、TNF-α和IL-1β,而雷公藤甲素还抑制IL-8的产生。何等[17]发现雷公藤内酯酮可抑制Mø分泌TNF-α

4. 改善线粒体功能与机体抗氧化能力

4.1. 改善线粒体功能

线粒体在细胞中发挥关键作用,包括通过氧化磷酸化产生能量、整合各种代谢通路、调节细胞凋亡等,而线粒体的分裂与融合是维持线粒体正常形态、功能和分布的关键。动力蛋白相关蛋白1 (Drp1)介导线粒体分裂。线粒体融合蛋白1 (Mfn1)和线粒体融合蛋白2 (Mfn2)参与线粒体外膜的融合[18]。Drp1过表达或Mfn2抑制会导致内皮功能障碍和VSMC增殖抑制。在动物模型中,Mfn1和Mfn2表达的降低会促进AS [19]。Hu等[20]发现雷公藤红素通过与核孤儿受体Nur77结合,促进Nur77从细胞核易位到线粒体中,与肿瘤坏死因子受体相关因子2 (TRAF2)相互作用,Nur77泛素化后,通过与p62的相互作用,引发受损线粒体进行自噬。Tao等[6]发现雷公藤红素能上调Nur77mRNA和蛋白的表达,能促进Drp1的Ser637磷酸化来抑制线粒体分裂,并通过上调Mfn2的表达来促进线粒体融合。

4.2. 抗氧化应激

活性氧(ROS)过量产生或者抗氧化系统能力降低会导致氧化应激状态。烟酰胺腺嘌呤二核苷酸磷酸氧化酶(NOX)和髓过氧化物酶(MPO)是血管内源性ROS产生的重要氧化剂酶,与内源性抗氧化防御系统的超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPX)等抗氧化酶维持血管氧化/抗氧化平衡[21]。在AS中,ROS可与LDL反应形成ox-LDL,ox-LDL刺激NOX增加超氧化物的产生,超氧化物又进一步促进ROS的生成。响应病变形成而释放的细胞因子导致VSMC和Mø中高水平的诱导型一氧化氮合酶(iNOS)表达,产生大量的NO,NO与超氧化物反应生成过氧亚硝酸盐[22]。Gu等[13]发现雷公藤红素抑制ox-LDL诱导的Mø中NOX和MPO的表达水平和活性,减少iNOS、NO和超氧化物的产生,从而减少ROS产生,抑制动脉壁氧化应激。Zhang等[23]发现雷公藤甲素能抑制ox-LDL诱导的内皮细胞中NOX活性,抑制超氧化物和氧化损伤指标8-异前列腺素、丙二醛的产生,提升SOD和SOD-1的活性,从而抑制ROS产生,改善血管内皮细胞氧化应激状态。雷公藤红素可通过调控Nrf2/HO-1信号通路抑制细胞氧化损伤。转录因子核因子E2相关因子2 (Nrf2)是抗氧化系统的重要调节因子。ROS诱导Nrf2激活后,Nrf2会增加抗氧化酶血红素加氧酶-1 (HO-1)、SOD、GPX等表达[24]。李等[25]发现雷公藤红素通过提高Nrf2的表达和抗氧化酶HO-1、SOD及GPX的水平,提升抗氧化应激的能力,抑制主动脉内皮细胞自由基氧化损伤,维护细胞膜结构和细胞核的完整性。Yu等[26]发现雷公藤红素通过调节VSMC中热休克蛋白(HSP) 90的表达,可能有助于降低细胞内氧化应激。HSP90是细胞应激反应的关键伴侣,能激活NF-kB核转位,促进炎症反应和促氧化剂基因转录[27]

5. 调控脂质代谢

脂质代谢异常导致脂质在动脉壁沉积,形成脂质条纹,进一步发展为纤维斑块。雷公藤红素可通过LXRα/ABCA1信号通路和自噬调控脂质代谢。肝X受体α (LXRα)是LXR的一种亚型,通过增加ATP结合盒转运蛋白A1 (ABCA1)的表达来限制Mø和VSMC中胆固醇的蓄积[28]。脂滴是一种富含甘油三酯(TG)的细胞器,能通过脂肪吞噬靶向溶酶体,被降解为脂肪酸。在自噬过程中,细胞质形式的LC3从LC3-I到LC3-II转化,p62是自噬的选择性货物受体与LC3-II相互作用将货物递送至自噬体,在自噬增强时在溶酶体中降解。当自噬受到抑制,p62含量会增加[29]。Shi [30]和汪[31]等发现雷公藤红素通过促进载脂VSMC/Mø中LXRα和ABCA1表达,增加LC3-II/LC3-I比率,降低p62表达,激活自噬通量来抑制ox-LDL诱导的细胞内脂质沉积,从而抑制VSMC和Mø源性泡沫细胞的形成。高脂饮食是AS形成的一个重要的危险因素,易引起血脂异常。Wang等[32]发现与长期高脂肪乳剂喂养大鼠组相比,雷公藤红素能通过提高血浆高密度脂蛋白胆固醇(HDL-c)、载脂蛋白(Apo) A-I和ABCA1表达水平来促进胆固醇逆向转运,并降低血浆中TC、TG、ApoB、LDL-c水平,改善脂质代谢。信等[33]发现注射雷公藤多苷能降低高血脂模型小鼠血清TC、TG、LDL-c以及动脉粥样硬化指数,提高血清卵磷脂胆固醇酰基转移酶水平和肝脂酶和脂蛋白脂酶的活性。当Mø受到刺激时,凝集素样氧化低密度脂蛋白受体-1 (LOX-1)可充当ox-LDL的清道夫受体,负责摄取ox-LDL,促成泡沫细胞形成[34]。Gu等[13]发现雷公藤红素通过降低LOX-1在mRNA和蛋白质水平上的表达,来抑制Mø对ox-LDL的摄取,抑制泡沫细胞形成,减小斑块,延缓AS的进展。

6. 抑制血小板功能与抗血栓形成

血管壁损伤后,GFP被激活、粘附、改变形状、分泌颗粒内容物并开始形成聚集体,导致血栓形成和血管完整性的恢复。α颗粒、δ颗粒是GFP的储存颗粒,在GFP聚集、凝血因子活化和凝块收缩中发挥关键作用。活化GFP的特征是P-选择素暴露,而P-选择素是一种跨膜蛋白,与P-选择素糖蛋白配体-1 (PSGL-1)相互作用能促进GFP、白细胞、内皮之间的粘附,介导炎症过程。ADP通过促进GFP糖蛋白IIb/IIIa (GPIIb/IIIa)的构象变化,导致整合素状态从低亲和力或关闭状态变为高亲和力或开放状态。胶原蛋白相关肽(CRP)与GFPGPVI结合能实现GFP和胶原之间的稳定连接,导致GFP完全活化[35] [36]。Li等[37]发现雷公藤红素能减少CRP或凝血酶诱导的GFP聚集和δα颗粒的分泌,降低GFP扩散活性和减少凝块回缩,降低钙动员,延长尾出血时间并抑制动脉/静脉血栓形成。Hu等[38]发现雷公藤红素通过体外抑制ADP诱导GFP的P-选择素表达和GPIIb/IIIa构象变化,抑制GFP上凝血酶和佛波酯诱导的P-选择素表达,而抑制GFP活化。还抑制ADP诱导的GFP聚集和GFP与纤维蛋白原的粘附。AS病变后,活化的GFP可通过分泌基质金属蛋白酶(MMP-2和MMP-9)促进局部血栓形成[39]。Ouyang等[40]发现雷公藤红素能抑制高脂饮食诱导的ApoE敲除小鼠主动脉中MMP2和MMP9的表达,起到抗血栓作用。

7. 调节血管重塑机制与保护血管内皮细胞

7.1. 抑制平滑肌细胞增殖

在AS发生过程中,VSMC从中层侵入内膜和内膜中VSMC增殖共同导致斑块形成。在早期斑块内VSMC主要为合成型,表达骨桥蛋白(OPN)、胶原蛋白等蛋白质,并分泌生长因子和细胞因子,促进AS的发展。收缩型VSMC主要在血管壁的外膜介质中,控制血管张力和直径,表达α-平滑肌肌动蛋白(α-SMA)、平滑肌肌球蛋白重链(SM-MHC)和平滑肌蛋白22α (SM22α)等蛋白质。这些蛋白质水平的变化标志着从收缩表型到合成表型的转变。GFP衍生生长因子BB (PDGF-BB)可抑制VSMC中α-SMA表达,促进OPN表达,可通过激活STAT3,抑制VSMC的细胞周期进程和迁移。整合素和金属蛋白酶也可控制VSMC行为和表型[41] [42]。谷等[43]发现雷公藤红素能通过抑制PDGF-BB诱导的VSMC细胞增殖和迁移,促进STAT3磷酸化,促进SM-MHC、α-SMA、SM22α等表达,抑制OPN表达,而抑制损伤触发的VSMC表型转化和增殖。抵抗素是一种脂肪组织特异性分泌型脂肪因子,在AS过程中能诱导VSMC表型转换,包括形态变化、合成活性增加、增殖和迁移[44]。Kang等[45]发现雷公藤红素通过在转录水平上抑制THP-1衍生的Mø中抵抗素的分泌,减弱抵抗素诱导的TLR-4,降低整合素β2/β3表达,降低抵抗素增强的VSMC与胶原蛋白I粘附的相互作用,降低胶原蛋白I/IV表达和减弱MMP-2活性,而减少抵抗素诱导的人主动脉平滑肌细胞增殖和迁移。VSMC在动脉中膜以低指数增殖或持续存在于细胞周期的G0期。P53激活后,诱导细胞周期蛋白依赖性激酶抑制剂p21cip1转录,p21cip1阻断几种细胞周期蛋白-CDK复合物的活性,导致视网膜母细胞瘤蛋白(pRb)低磷酸化。p53蛋白水平升高,细胞周期进展在G1期出现短暂停滞或引发细胞凋亡[42] [46]。罗等[47]发现雷公藤甲素可能通过激活P53基因表达抑制人冠状动脉平滑肌细胞的生长并诱导其凋亡。Tao等[48]发现雷公藤甲素通过降低ERK1/2 MAP激酶和pRb磷酸化水平,增加VSMC上的p21cip1表达,并通过将细胞周期阻滞在G0/G1期,而抑制大鼠血管平滑肌细胞增殖和细胞周期进程。c-Myc是细胞增殖和转化的主要调节因子,分布在VSMC的细胞质和细胞核中。c-Myc升高会导致动脉粥样硬化斑块形成过程中VSMC的异常增殖[49]。Shi等[50]发现雷公藤红素能通过自噬介导的c-MYC降解抑制VSMC的异常增殖。

7.2. 保护血管内皮

AS最先出现的病理变化是血管内皮损伤。血管内皮是衬在血管腔内表面上的单层细胞,是循环血液和内皮下组织之间的被动和选择性半渗透屏障,可释放多种物质。血管紧张素II是内皮衍生的收缩因子,参与内皮的氧化损伤和炎症反应[51]。Li等[52]发现雷公藤红素通过激活Nrf2/ERK1/2/Nox2信号通路减轻血管紧张素II介导的内皮细胞损伤。内皮祖细胞(EPC)是血管生成组织的干细胞,可分化并增殖成成熟的EC,在内皮修复和血管生成中发挥重要作用[53]。热休克蛋白(HSP) 32也叫HO-1,具有抗氧化,保护细胞免于凋亡,参与血管生成[54]。Lu等[55] [56]发现雷公藤红素可通过诱导HSP32表达、抑制JNK活化和调节整合素连接激酶及其下游效应子(包括:Akt、GSK-3ββ-catenin和细胞周期蛋白D1的水平)的机制来改善EPC功能,降低ox-LDL诱导的体外EPC的氧化应激、凋亡和衰老。

8. 讨论与展望

依据AS及其导致的血管病变的临床表现,中医病名可诊断为“中风”“眩晕”“胸痹”“脉痹”“脉积”等。中医学认为AS的发生、发展与五脏六腑相关,其病因多与先天禀赋不足、年老体虚、七情所伤、饮食、劳倦等因素相关,因气血阴阳不足,形成痰浊、血瘀、寒凝、气滞、热毒等病理因素,而这些病理物质导致气血阴阳更虚,虚实错杂,邪气伏留于脉络,导致癥积脉络,使脉络受损,促进AS发展[3]

动脉粥样硬化基本病理改变是在动脉内膜面形成斑块,继续加重可出现钙化、血栓形成和斑块内出血等。其病变易累及大中型动脉,如主动脉、冠状动脉、脑动脉等,而动脉管腔变窄甚至闭塞,可造成组织或脏器的缺血性改变。以冠状动脉粥样硬化引起的心肌梗塞,以及脑动脉粥样硬化引起的脑梗塞是心血管疾病中死亡率最高的。雷公藤可通过调节免疫系统,抑制炎症反应,抗氧化应激,调节脂质代谢,改善线粒体功能,抑制血小板功能,抗血栓形成,抑制平滑肌细胞增殖,保护内皮细胞等治疗动脉粥样硬化,其中涉及CD40-CD40L/MAPK/NF-κB、Nrf2/HO-1、LXRα/ABCA1、TLR-4、Nrf2/ERK1/2/Nox2等信号通路的作用。雷公藤多途径、多靶点、整体性的特点决定了其作用途径的广泛性,使其可有效抑制动脉粥样硬化多损伤机制。希冀在未来的研究对雷公藤治疗动脉粥样硬化的机制进行进一步阐述,并通过动物实验进一步开发雷公藤的作用,促进临床应用。

NOTES

*通讯作者。

参考文献

[1] Kobiyama, K. and Ley, K. (2018) Atherosclerosis: A Chronic Inflammatory Disease with an Autoimmune Component. Circulation Research, 123, 1118-1120.
https://doi.org/10.1161/circresaha.118.313816
[2] Nedkoff, L., Briffa, T., Zemedikun, D., Herrington, S. and Wright, F.L. (2023) Global Trends in Atherosclerotic Cardiovascular Disease. Clinical Therapeutics, 45, 1087-1091.
https://doi.org/10.1016/j.clinthera.2023.09.020
[3] 中国医师协会中西医结合分会心血管专业委员会, 中华中医药学会心血管病分会. 动脉粥样硬化中西医防治专家共识(2021年) [J]. 中国中西医结合杂志, 2022, 42(3): 287-293.
[4] 胡德俊, 彭泽燕, 何东初. 雷公藤的药理作用研究进展[J]. 医药导报, 2018, 37(5): 586-592.
[5] Roy, P., Orecchioni, M. and Ley, K. (2021) How the Immune System Shapes Atherosclerosis: Roles of Innate and Adaptive Immunity. Nature Reviews Immunology, 22, 251-265.
https://doi.org/10.1038/s41577-021-00584-1
[6] Tao, Z., Xiao, Q., Che, X., Zhang, H., Geng, N. and Shao, Q. (2022) Regulating Mitochondrial Homeostasis and Inhibiting Inflammatory Responses through Celastrol. Annals of Translational Medicine, 10, Article 400.
https://doi.org/10.21037/atm-21-7015
[7] 李世杰, 张诗雨, 孙阳, 等. 雷公藤甲素对ox-LDL诱发的血管内皮细胞炎症反应的抑制作用及机制研究[J]. 世界科学技术-中医药现代化, 2023, 25(4): 1341-1349.
[8] Zhang, G., Qin, Q., Zhang, C., Sun, X., Kazama, K., Yi, B., et al. (2023) NDRG1 Signaling Is Essential for Endothelial Inflammation and Vascular Remodeling. Circulation Research, 132, 306-319.
https://doi.org/10.1161/circresaha.122.321837
[9] Engelen, S.E., Robinson, A.J.B., Zurke, Y. and Monaco, C. (2022) Therapeutic Strategies Targeting Inflammation and Immunity in Atherosclerosis: How to Proceed? Nature Reviews Cardiology, 19, 522-542.
https://doi.org/10.1038/s41569-021-00668-4
[10] Allen, S.D., Liu, Y., Kim, T., Bobbala, S., Yi, S., Zhang, X., et al. (2019) Celastrol-Loaded PEG-b-PPS Nanocarriers as an Anti-Inflammatory Treatment for Atherosclerosis. Biomaterials Science, 7, 657-668.
https://doi.org/10.1039/c8bm01224e
[11] 程军, 李金平, 田卓, 等. 南蛇藤素对ApoE基因敲除小鼠主动脉粥样硬化斑块内CD40配体表达、巨噬细胞和平滑肌细胞数量的影响[J]. 中国病理生理杂志, 2009, 25(3): 601-603.
[12] Tian, S., Wang, Y., Wan, J., Yang, M. and Fu, Z. (2024) Co-Stimulators CD40-CD40L, a Potential Immune-Therapy Target for Atherosclerosis: A Review. Medicine, 103, e37718.
https://doi.org/10.1097/md.0000000000037718
[13] Gu, L., Bai, W., Li, S., Zhang, Y., Han, Y., Gu, Y., et al. (2013) Celastrol Prevents Atherosclerosis via Inhibiting LOX-1 and Oxidative Stress. PLOS ONE, 8, e65477.
https://doi.org/10.1371/journal.pone.0065477
[14] Song, C., Wang, Y., Cui, L., Yan, F. and Shen, S. (2019) Triptolide Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Human Endothelial Cells: Involvement of NF-κB Pathway. BMC Complementary and Alternative Medicine, 19, Article No. 198.
https://doi.org/10.1186/s12906-019-2616-3
[15] 程治平, 余斌, 熊军, 等. 雷公藤内酯醇对ApoE-/-小鼠动脉粥样硬化的作用研究[J]. 海南医学, 2014, 25(12): 1725-1729.
[16] Luo, L. and Yang, T. (2016) Triptolide Inhibits the Progression of Atherosclerosis in Apolipoprotein E−/− Mice. Experimental and Therapeutic Medicine, 12, 2307-2313.
https://doi.org/10.3892/etm.2016.3619
[17] 何为, 潘建青, 曾叶, 等. 雷公藤内酯酮对小鼠腹腔巨噬细胞分泌NO和TNF-α的影响[J]. 华中科技大学学报(医学版), 2005, 34(2): 153-155.
[18] Adebayo, M., Singh, S., Singh, A.P. and Dasgupta, S. (2021) Mitochondrial Fusion and Fission: The Fine‐Tune Balance for Cellular Homeostasis. The FASEB Journal, 35, e21620.
https://doi.org/10.1096/fj.202100067r
[19] Luan, Y., Ren, K., Luan, Y., Chen, X. and Yang, Y. (2021) Mitochondrial Dynamics: Pathogenesis and Therapeutic Targets of Vascular Diseases. Frontiers in Cardiovascular Medicine, 8, Article 770574.
https://doi.org/10.3389/fcvm.2021.770574
[20] Hu, M., Luo, Q., Alitongbieke, G., Chong, S., Xu, C., Xie, L., et al. (2017) Celastrol-Induced Nur77 Interaction with TRAF2 Alleviates Inflammation by Promoting Mitochondrial Ubiquitination and Autophagy. Molecular Cell, 66, 141-153.e6.
https://doi.org/10.1016/j.molcel.2017.03.008
[21] Vekic, J., Stromsnes, K., Mazzalai, S., Zeljkovic, A., Rizzo, M. and Gambini, J. (2023) Oxidative Stress, Atherogenic Dyslipidemia, and Cardiovascular Risk. Biomedicines, 11, Article 2897.
https://doi.org/10.3390/biomedicines11112897
[22] Batty, M., Bennett, M.R. and Yu, E. (2022) The Role of Oxidative Stress in Atherosclerosis. Cells, 11, Article 3843.
https://doi.org/10.3390/cells11233843
[23] Zhang, S., Xie, S., Gao, Y. and Wang, Y. (2022) Triptolide Alleviates Oxidized LDL-Induced Endothelial Inflammation by Attenuating the Oxidative Stress-Mediated Nuclear Factor-κ B Pathway. Current Therapeutic Research, 97, Article ID: 100683.
https://doi.org/10.1016/j.curtheres.2022.100683
[24] Fiorelli, S., Porro, B., Cosentino, N., Di Minno, A., Manega, C.M., Fabbiocchi, F., et al. (2019) Activation of Nrf2/HO-1 Pathway and Human Atherosclerotic Plaque Vulnerability: An in Vitro and in Vivo Study. Cells, 8, Article 356.
https://doi.org/10.3390/cells8040356
[25] 李锋, 李义嘉, 李清仙, 等. 雷公藤红素抑制LDL及HAEC细胞氧化损伤作用[J]. 中国药理学通报, 2016, 32(11): 1578-1584.
[26] Yu, X., Tao, W., Jiang, F., Li, C., Lin, J. and Liu, C. (2010) Celastrol Attenuates Hypertension-Induced Inflammation and Oxidative Stress in Vascular Smooth Muscle Cells via Induction of Heme Oxygenase-1. American Journal of Hypertension, 23, 895-903.
https://doi.org/10.1038/ajh.2010.75
[27] Dabravolski, S.A., Sukhorukov, V.N., Kalmykov, V.A., Orekhov, N.A., Grechko, A.V. and Orekhov, A.N. (2022) Heat Shock Protein 90 as Therapeutic Target for CVDs and Heart Ageing. International Journal of Molecular Sciences, 23, Article 649.
https://doi.org/10.3390/ijms23020649
[28] Zhao, L., Lei, W., Deng, C., Wu, Z., Sun, M., Jin, Z., et al. (2020) The Roles of Liver X Receptor Α in Inflammation and Inflammation‐Associated Diseases. Journal of Cellular Physiology, 236, 4807-4828.
https://doi.org/10.1002/jcp.30204
[29] Scorletti, E. and Carr, R.M. (2022) A New Perspective on NAFLD: Focusing on Lipid Droplets. Journal of Hepatology, 76, 934-945.
https://doi.org/10.1016/j.jhep.2021.11.009
[30] Shi, Y., Jiang, S., Zhao, T., Gong, Y., Liao, D. and Qin, L. (2020) Celastrol Suppresses Lipid Accumulation through LXRα/ABCA1 Signaling Pathway and Autophagy in Vascular Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 532, 466-474.
https://doi.org/10.1016/j.bbrc.2020.08.076
[31] 汪瑜翔, 姜爽, 石雅宁, 等. 雷公藤红素通过激活LXRα/ABCA1通路和细胞自噬抑制巨噬细胞脂质蓄积[J]. 生物化学与生物物理进展, 2021, 48(7): 836-845.
[32] Wang, C., Shi, C., Yang, X., Yang, M., Sun, H. and Wang, C. (2014) Celastrol Suppresses Obesity Process via Increasing Antioxidant Capacity and Improving Lipid Metabolism. European Journal of Pharmacology, 744, 52-58.
https://doi.org/10.1016/j.ejphar.2014.09.043
[33] 信长慧, 张竞超, 张付菊. 雷公藤多苷片对高脂小鼠血脂的影响[J]. 中国现代应用药学, 2018, 35(9): 1351-1354.
[34] Pyrpyris, N., Dimitriadis, K., Beneki, E., Iliakis, P., Soulaidopoulos, S., Tsioufis, P., et al. (2024) LOX-1 Receptor: A Diagnostic Tool and Therapeutic Target in Atherogenesis. Current Problems in Cardiology, 49, Article ID: 102117.
https://doi.org/10.1016/j.cpcardiol.2023.102117
[35] Mandel, J., Casari, M., Stepanyan, M., Martyanov, A. and Deppermann, C. (2022) Beyond Hemostasis: Platelet Innate Immune Interactions and Thromboinflammation. International Journal of Molecular Sciences, 23, Article 3868.
https://doi.org/10.3390/ijms23073868
[36] Poznyak, A.V., Orekhova, V.A., Sukhorukov, V.N., Melnichenko, A.A., Pleshko, E.M. and Orekhov, A.N. (2024) Platelet Implication in Atherosclerosis Pathogenesis. Journal of Angiotherapy, 8, 1-8.
[37] Li, X., Zhang, J., Li, Y., Dai, Y., Zhu, H., Jiang, H., et al. (2024) Celastrol Inhibits Platelet Function and Thrombus Formation. Biochemical and Biophysical Research Communications, 693, Article ID: 149366.
https://doi.org/10.1016/j.bbrc.2023.149366
[38] Hu, H., Straub, A., Tian, Z., Bassler, N., Cheng, J. and Peter, K. (2009) Celastrol, a Triterpene Extracted from Tripterygium Wilfordii Hook F, Inhibits Platelet Activation. Journal of Cardiovascular Pharmacology, 54, 240-245.
https://doi.org/10.1097/fjc.0b013e3181b21472
[39] Barreca, M.M., Raimondo, S., Conigliaro, A., Siragusa, S., Napolitano, M., Alessandro, R., et al. (2024) The Combination of Natural Compounds Escin-Bromelain-Ginkgo Biloba-Sage Miltiorrhiza (EBGS) Reduces Platelet Adhesion to TNFα-Activated Vascular Endothelium through FAK Signaling. International Journal of Molecular Sciences, 25, Article 9252.
https://doi.org/10.3390/ijms25179252
[40] Ouyang, M., Qin, T., Liu, H., Lu, J., Peng, C. and Guo, Q. (2020) Enhanced Inflammatory Reaction and Thrombosis in High-Fat Diet-Fed Apoe-/- Mice Are Attenuated by Celastrol. Experimental and Clinical Endocrinology & Diabetes, 129, 339-348.
https://doi.org/10.1055/a-1010-5543
[41] Elmarasi, M., Elmakaty, I., Elsayed, B., Elsayed, A., Zein, J.A., Boudaka, A., et al. (2024) Phenotypic Switching of Vascular Smooth Muscle Cells in Atherosclerosis, Hypertension, and Aortic Dissection. Journal of Cellular Physiology, 239, e31200.
https://doi.org/10.1002/jcp.31200
[42] Li, J., Liu, C., Shiao, W., Jayakumar, T., Li, Y., Chang, N., et al. (2018) Inhibitory Effect of PDGF-BB and Serum-Stimulated Responses in Vascular Smooth Muscle Cell Proliferation by Hinokitiol via Up-Regulation of P21 and P53. Archives of Medical Science, 14, 579-587.
https://doi.org/10.5114/aoms.2018.75085
[43] 谷佳, 贺卫和, 张银羽, 等. 雷公藤红素通过调节血管平滑肌细胞表型转化改善血管重塑的作用机制研究[J]. 中国临床药理学杂志, 2023, 39(14): 2033-2038.
[44] Heun, Y., Gräff, P., Lagara, A., Schelhorn, R., Mettler, R., Pohl, U., et al. (2020) The GEF Cytohesin-2/ARNO Mediates Resistin Induced Phenotypic Switching in Vascular Smooth Muscle Cells. Scientific Reports, 10, Article No. 3672.
https://doi.org/10.1038/s41598-020-60446-z
[45] Kang, S., Kim, M.S., Kim, H., Kim, Y., Shin, D., Park, J.H.Y., et al. (2012) Celastrol Attenuates Adipokine Resistin‐associated Matrix Interaction and Migration of Vascular Smooth Muscle Cells. Journal of Cellular Biochemistry, 114, 398-408.
https://doi.org/10.1002/jcb.24374
[46] Engeland, K. (2022) Cell Cycle Regulation: p53-p21-RB signaling. Cell Death & Differentiation, 29, 946-960.
https://doi.org/10.1038/s41418-022-00988-z
[47] 罗小平, 徐朝军, 宋岚, 等. 雷公藤甲素诱导人冠状动脉平滑肌细胞凋亡的实验研究[J]. 实用临床医学, 2007, 8(8): 6-9.
[48] Tao, R., Lu, L., Zhang, R., Hu, J., Ni, J. and Shen, W. (2011) Triptolide Inhibits Rat Vascular Smooth Muscle Cell Proliferation and Cell Cycle Progression via Attenuation of ERK1/2 and Rb Phosphorylation. Experimental and Molecular Pathology, 90, 137-142.
https://doi.org/10.1016/j.yexmp.2010.12.001
[49] Xu, L., Hao, H., Hao, Y., Wei, G., Li, G., Ma, P., et al. (2019) Aberrant MFN2 Transcription Facilitates Homocysteine‐induced VSMCs Proliferation via the Increased Binding of C‐Myc to DNMT1 in Atherosclerosis. Journal of Cellular and Molecular Medicine, 23, 4611-4626.
https://doi.org/10.1111/jcmm.14341
[50] Shi, Y., Liu, L., Deng, C., Zhao, T., Shi, Z., Yan, J., et al. (2021) Celastrol Ameliorates Vascular Neointimal Hyperplasia through Wnt5a-Involved Autophagy. International Journal of Biological Sciences, 17, 2561-2575.
https://doi.org/10.7150/ijbs.58715
[51] Bujor, A., Miron, A., Trifan, A., Luca, S.V., Gille, E., Miron, S., et al. (2020) Phytochemicals and Endothelial Dysfunction: Recent Advances and Perspectives. Phytochemistry Reviews, 20, 653-691.
https://doi.org/10.1007/s11101-020-09728-y
[52] Li, M., Liu, X., He, Y., Zheng, Q., Wang, M., Wu, Y., et al. (2017) Celastrol Attenuates Angiotensin II Mediated Human Umbilical Vein Endothelial Cells Damage through Activation of Nrf2/ERK1/2/Nox2 Signal Pathway. European Journal of Pharmacology, 797, 124-133.
https://doi.org/10.1016/j.ejphar.2017.01.027
[53] Huang, Y., Song, C., He, J. and Li, M. (2022) Research Progress in Endothelial Cell Injury and Repair. Frontiers in Pharmacology, 13, Article 997272.
https://doi.org/10.3389/fphar.2022.997272
[54] Kim, Y., Pae, H., Park, J.E., Lee, Y.C., Woo, J.M., Kim, N., et al. (2011) Heme Oxygenase in the Regulation of Vascular Biology: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants & Redox Signaling, 14, 137-167.
https://doi.org/10.1089/ars.2010.3153
[55] Lu, C., Zhang, X., Zhang, D., Pei, E., Xu, J., Tang, T., et al. (2015) Short Time Tripterine Treatment Enhances Endothelial Progenitor Cell Function via Heat Shock Protein 32. Journal of Cellular Physiology, 230, 1139-1147.
https://doi.org/10.1002/jcp.24849
[56] Lu, C., Yu, X., Zuo, K., Zhang, X., Cao, C., Xu, J., et al. (2015) Tripterine Treatment Improves Endothelial Progenitor Cell Function via Integrin-Linked Kinase. Cellular Physiology and Biochemistry, 37, 1089-1103.
https://doi.org/10.1159/000430234