[1]
|
Kobiyama, K. and Ley, K. (2018) Atherosclerosis: A Chronic Inflammatory Disease with an Autoimmune Component. Circulation Research, 123, 1118-1120. https://doi.org/10.1161/circresaha.118.313816
|
[2]
|
Nedkoff, L., Briffa, T., Zemedikun, D., Herrington, S. and Wright, F.L. (2023) Global Trends in Atherosclerotic Cardiovascular Disease. Clinical Therapeutics, 45, 1087-1091. https://doi.org/10.1016/j.clinthera.2023.09.020
|
[3]
|
中国医师协会中西医结合分会心血管专业委员会, 中华中医药学会心血管病分会. 动脉粥样硬化中西医防治专家共识(2021年) [J]. 中国中西医结合杂志, 2022, 42(3): 287-293.
|
[4]
|
胡德俊, 彭泽燕, 何东初. 雷公藤的药理作用研究进展[J]. 医药导报, 2018, 37(5): 586-592.
|
[5]
|
Roy, P., Orecchioni, M. and Ley, K. (2021) How the Immune System Shapes Atherosclerosis: Roles of Innate and Adaptive Immunity. Nature Reviews Immunology, 22, 251-265. https://doi.org/10.1038/s41577-021-00584-1
|
[6]
|
Tao, Z., Xiao, Q., Che, X., Zhang, H., Geng, N. and Shao, Q. (2022) Regulating Mitochondrial Homeostasis and Inhibiting Inflammatory Responses through Celastrol. Annals of Translational Medicine, 10, Article 400. https://doi.org/10.21037/atm-21-7015
|
[7]
|
李世杰, 张诗雨, 孙阳, 等. 雷公藤甲素对ox-LDL诱发的血管内皮细胞炎症反应的抑制作用及机制研究[J]. 世界科学技术-中医药现代化, 2023, 25(4): 1341-1349.
|
[8]
|
Zhang, G., Qin, Q., Zhang, C., Sun, X., Kazama, K., Yi, B., et al. (2023) NDRG1 Signaling Is Essential for Endothelial Inflammation and Vascular Remodeling. Circulation Research, 132, 306-319. https://doi.org/10.1161/circresaha.122.321837
|
[9]
|
Engelen, S.E., Robinson, A.J.B., Zurke, Y. and Monaco, C. (2022) Therapeutic Strategies Targeting Inflammation and Immunity in Atherosclerosis: How to Proceed? Nature Reviews Cardiology, 19, 522-542. https://doi.org/10.1038/s41569-021-00668-4
|
[10]
|
Allen, S.D., Liu, Y., Kim, T., Bobbala, S., Yi, S., Zhang, X., et al. (2019) Celastrol-Loaded PEG-b-PPS Nanocarriers as an Anti-Inflammatory Treatment for Atherosclerosis. Biomaterials Science, 7, 657-668. https://doi.org/10.1039/c8bm01224e
|
[11]
|
程军, 李金平, 田卓, 等. 南蛇藤素对ApoE基因敲除小鼠主动脉粥样硬化斑块内CD40配体表达、巨噬细胞和平滑肌细胞数量的影响[J]. 中国病理生理杂志, 2009, 25(3): 601-603.
|
[12]
|
Tian, S., Wang, Y., Wan, J., Yang, M. and Fu, Z. (2024) Co-Stimulators CD40-CD40L, a Potential Immune-Therapy Target for Atherosclerosis: A Review. Medicine, 103, e37718. https://doi.org/10.1097/md.0000000000037718
|
[13]
|
Gu, L., Bai, W., Li, S., Zhang, Y., Han, Y., Gu, Y., et al. (2013) Celastrol Prevents Atherosclerosis via Inhibiting LOX-1 and Oxidative Stress. PLOS ONE, 8, e65477. https://doi.org/10.1371/journal.pone.0065477
|
[14]
|
Song, C., Wang, Y., Cui, L., Yan, F. and Shen, S. (2019) Triptolide Attenuates Lipopolysaccharide-Induced Inflammatory Responses in Human Endothelial Cells: Involvement of NF-κB Pathway. BMC Complementary and Alternative Medicine, 19, Article No. 198. https://doi.org/10.1186/s12906-019-2616-3
|
[15]
|
程治平, 余斌, 熊军, 等. 雷公藤内酯醇对ApoE-/-小鼠动脉粥样硬化的作用研究[J]. 海南医学, 2014, 25(12): 1725-1729.
|
[16]
|
Luo, L. and Yang, T. (2016) Triptolide Inhibits the Progression of Atherosclerosis in Apolipoprotein E−/− Mice. Experimental and Therapeutic Medicine, 12, 2307-2313. https://doi.org/10.3892/etm.2016.3619
|
[17]
|
何为, 潘建青, 曾叶, 等. 雷公藤内酯酮对小鼠腹腔巨噬细胞分泌NO和TNF-α的影响[J]. 华中科技大学学报(医学版), 2005, 34(2): 153-155.
|
[18]
|
Adebayo, M., Singh, S., Singh, A.P. and Dasgupta, S. (2021) Mitochondrial Fusion and Fission: The Fine‐Tune Balance for Cellular Homeostasis. The FASEB Journal, 35, e21620. https://doi.org/10.1096/fj.202100067r
|
[19]
|
Luan, Y., Ren, K., Luan, Y., Chen, X. and Yang, Y. (2021) Mitochondrial Dynamics: Pathogenesis and Therapeutic Targets of Vascular Diseases. Frontiers in Cardiovascular Medicine, 8, Article 770574. https://doi.org/10.3389/fcvm.2021.770574
|
[20]
|
Hu, M., Luo, Q., Alitongbieke, G., Chong, S., Xu, C., Xie, L., et al. (2017) Celastrol-Induced Nur77 Interaction with TRAF2 Alleviates Inflammation by Promoting Mitochondrial Ubiquitination and Autophagy. Molecular Cell, 66, 141-153.e6. https://doi.org/10.1016/j.molcel.2017.03.008
|
[21]
|
Vekic, J., Stromsnes, K., Mazzalai, S., Zeljkovic, A., Rizzo, M. and Gambini, J. (2023) Oxidative Stress, Atherogenic Dyslipidemia, and Cardiovascular Risk. Biomedicines, 11, Article 2897. https://doi.org/10.3390/biomedicines11112897
|
[22]
|
Batty, M., Bennett, M.R. and Yu, E. (2022) The Role of Oxidative Stress in Atherosclerosis. Cells, 11, Article 3843. https://doi.org/10.3390/cells11233843
|
[23]
|
Zhang, S., Xie, S., Gao, Y. and Wang, Y. (2022) Triptolide Alleviates Oxidized LDL-Induced Endothelial Inflammation by Attenuating the Oxidative Stress-Mediated Nuclear Factor-κ B Pathway. Current Therapeutic Research, 97, Article ID: 100683. https://doi.org/10.1016/j.curtheres.2022.100683
|
[24]
|
Fiorelli, S., Porro, B., Cosentino, N., Di Minno, A., Manega, C.M., Fabbiocchi, F., et al. (2019) Activation of Nrf2/HO-1 Pathway and Human Atherosclerotic Plaque Vulnerability: An in Vitro and in Vivo Study. Cells, 8, Article 356. https://doi.org/10.3390/cells8040356
|
[25]
|
李锋, 李义嘉, 李清仙, 等. 雷公藤红素抑制LDL及HAEC细胞氧化损伤作用[J]. 中国药理学通报, 2016, 32(11): 1578-1584.
|
[26]
|
Yu, X., Tao, W., Jiang, F., Li, C., Lin, J. and Liu, C. (2010) Celastrol Attenuates Hypertension-Induced Inflammation and Oxidative Stress in Vascular Smooth Muscle Cells via Induction of Heme Oxygenase-1. American Journal of Hypertension, 23, 895-903. https://doi.org/10.1038/ajh.2010.75
|
[27]
|
Dabravolski, S.A., Sukhorukov, V.N., Kalmykov, V.A., Orekhov, N.A., Grechko, A.V. and Orekhov, A.N. (2022) Heat Shock Protein 90 as Therapeutic Target for CVDs and Heart Ageing. International Journal of Molecular Sciences, 23, Article 649. https://doi.org/10.3390/ijms23020649
|
[28]
|
Zhao, L., Lei, W., Deng, C., Wu, Z., Sun, M., Jin, Z., et al. (2020) The Roles of Liver X Receptor Α in Inflammation and Inflammation‐Associated Diseases. Journal of Cellular Physiology, 236, 4807-4828. https://doi.org/10.1002/jcp.30204
|
[29]
|
Scorletti, E. and Carr, R.M. (2022) A New Perspective on NAFLD: Focusing on Lipid Droplets. Journal of Hepatology, 76, 934-945. https://doi.org/10.1016/j.jhep.2021.11.009
|
[30]
|
Shi, Y., Jiang, S., Zhao, T., Gong, Y., Liao, D. and Qin, L. (2020) Celastrol Suppresses Lipid Accumulation through LXRα/ABCA1 Signaling Pathway and Autophagy in Vascular Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 532, 466-474. https://doi.org/10.1016/j.bbrc.2020.08.076
|
[31]
|
汪瑜翔, 姜爽, 石雅宁, 等. 雷公藤红素通过激活LXRα/ABCA1通路和细胞自噬抑制巨噬细胞脂质蓄积[J]. 生物化学与生物物理进展, 2021, 48(7): 836-845.
|
[32]
|
Wang, C., Shi, C., Yang, X., Yang, M., Sun, H. and Wang, C. (2014) Celastrol Suppresses Obesity Process via Increasing Antioxidant Capacity and Improving Lipid Metabolism. European Journal of Pharmacology, 744, 52-58. https://doi.org/10.1016/j.ejphar.2014.09.043
|
[33]
|
信长慧, 张竞超, 张付菊. 雷公藤多苷片对高脂小鼠血脂的影响[J]. 中国现代应用药学, 2018, 35(9): 1351-1354.
|
[34]
|
Pyrpyris, N., Dimitriadis, K., Beneki, E., Iliakis, P., Soulaidopoulos, S., Tsioufis, P., et al. (2024) LOX-1 Receptor: A Diagnostic Tool and Therapeutic Target in Atherogenesis. Current Problems in Cardiology, 49, Article ID: 102117. https://doi.org/10.1016/j.cpcardiol.2023.102117
|
[35]
|
Mandel, J., Casari, M., Stepanyan, M., Martyanov, A. and Deppermann, C. (2022) Beyond Hemostasis: Platelet Innate Immune Interactions and Thromboinflammation. International Journal of Molecular Sciences, 23, Article 3868. https://doi.org/10.3390/ijms23073868
|
[36]
|
Poznyak, A.V., Orekhova, V.A., Sukhorukov, V.N., Melnichenko, A.A., Pleshko, E.M. and Orekhov, A.N. (2024) Platelet Implication in Atherosclerosis Pathogenesis. Journal of Angiotherapy, 8, 1-8.
|
[37]
|
Li, X., Zhang, J., Li, Y., Dai, Y., Zhu, H., Jiang, H., et al. (2024) Celastrol Inhibits Platelet Function and Thrombus Formation. Biochemical and Biophysical Research Communications, 693, Article ID: 149366. https://doi.org/10.1016/j.bbrc.2023.149366
|
[38]
|
Hu, H., Straub, A., Tian, Z., Bassler, N., Cheng, J. and Peter, K. (2009) Celastrol, a Triterpene Extracted from Tripterygium Wilfordii Hook F, Inhibits Platelet Activation. Journal of Cardiovascular Pharmacology, 54, 240-245. https://doi.org/10.1097/fjc.0b013e3181b21472
|
[39]
|
Barreca, M.M., Raimondo, S., Conigliaro, A., Siragusa, S., Napolitano, M., Alessandro, R., et al. (2024) The Combination of Natural Compounds Escin-Bromelain-Ginkgo Biloba-Sage Miltiorrhiza (EBGS) Reduces Platelet Adhesion to TNFα-Activated Vascular Endothelium through FAK Signaling. International Journal of Molecular Sciences, 25, Article 9252. https://doi.org/10.3390/ijms25179252
|
[40]
|
Ouyang, M., Qin, T., Liu, H., Lu, J., Peng, C. and Guo, Q. (2020) Enhanced Inflammatory Reaction and Thrombosis in High-Fat Diet-Fed Apoe-/- Mice Are Attenuated by Celastrol. Experimental and Clinical Endocrinology & Diabetes, 129, 339-348. https://doi.org/10.1055/a-1010-5543
|
[41]
|
Elmarasi, M., Elmakaty, I., Elsayed, B., Elsayed, A., Zein, J.A., Boudaka, A., et al. (2024) Phenotypic Switching of Vascular Smooth Muscle Cells in Atherosclerosis, Hypertension, and Aortic Dissection. Journal of Cellular Physiology, 239, e31200. https://doi.org/10.1002/jcp.31200
|
[42]
|
Li, J., Liu, C., Shiao, W., Jayakumar, T., Li, Y., Chang, N., et al. (2018) Inhibitory Effect of PDGF-BB and Serum-Stimulated Responses in Vascular Smooth Muscle Cell Proliferation by Hinokitiol via Up-Regulation of P21 and P53. Archives of Medical Science, 14, 579-587. https://doi.org/10.5114/aoms.2018.75085
|
[43]
|
谷佳, 贺卫和, 张银羽, 等. 雷公藤红素通过调节血管平滑肌细胞表型转化改善血管重塑的作用机制研究[J]. 中国临床药理学杂志, 2023, 39(14): 2033-2038.
|
[44]
|
Heun, Y., Gräff, P., Lagara, A., Schelhorn, R., Mettler, R., Pohl, U., et al. (2020) The GEF Cytohesin-2/ARNO Mediates Resistin Induced Phenotypic Switching in Vascular Smooth Muscle Cells. Scientific Reports, 10, Article No. 3672. https://doi.org/10.1038/s41598-020-60446-z
|
[45]
|
Kang, S., Kim, M.S., Kim, H., Kim, Y., Shin, D., Park, J.H.Y., et al. (2012) Celastrol Attenuates Adipokine Resistin‐associated Matrix Interaction and Migration of Vascular Smooth Muscle Cells. Journal of Cellular Biochemistry, 114, 398-408. https://doi.org/10.1002/jcb.24374
|
[46]
|
Engeland, K. (2022) Cell Cycle Regulation: p53-p21-RB signaling. Cell Death & Differentiation, 29, 946-960. https://doi.org/10.1038/s41418-022-00988-z
|
[47]
|
罗小平, 徐朝军, 宋岚, 等. 雷公藤甲素诱导人冠状动脉平滑肌细胞凋亡的实验研究[J]. 实用临床医学, 2007, 8(8): 6-9.
|
[48]
|
Tao, R., Lu, L., Zhang, R., Hu, J., Ni, J. and Shen, W. (2011) Triptolide Inhibits Rat Vascular Smooth Muscle Cell Proliferation and Cell Cycle Progression via Attenuation of ERK1/2 and Rb Phosphorylation. Experimental and Molecular Pathology, 90, 137-142. https://doi.org/10.1016/j.yexmp.2010.12.001
|
[49]
|
Xu, L., Hao, H., Hao, Y., Wei, G., Li, G., Ma, P., et al. (2019) Aberrant MFN2 Transcription Facilitates Homocysteine‐induced VSMCs Proliferation via the Increased Binding of C‐Myc to DNMT1 in Atherosclerosis. Journal of Cellular and Molecular Medicine, 23, 4611-4626. https://doi.org/10.1111/jcmm.14341
|
[50]
|
Shi, Y., Liu, L., Deng, C., Zhao, T., Shi, Z., Yan, J., et al. (2021) Celastrol Ameliorates Vascular Neointimal Hyperplasia through Wnt5a-Involved Autophagy. International Journal of Biological Sciences, 17, 2561-2575. https://doi.org/10.7150/ijbs.58715
|
[51]
|
Bujor, A., Miron, A., Trifan, A., Luca, S.V., Gille, E., Miron, S., et al. (2020) Phytochemicals and Endothelial Dysfunction: Recent Advances and Perspectives. Phytochemistry Reviews, 20, 653-691. https://doi.org/10.1007/s11101-020-09728-y
|
[52]
|
Li, M., Liu, X., He, Y., Zheng, Q., Wang, M., Wu, Y., et al. (2017) Celastrol Attenuates Angiotensin II Mediated Human Umbilical Vein Endothelial Cells Damage through Activation of Nrf2/ERK1/2/Nox2 Signal Pathway. European Journal of Pharmacology, 797, 124-133. https://doi.org/10.1016/j.ejphar.2017.01.027
|
[53]
|
Huang, Y., Song, C., He, J. and Li, M. (2022) Research Progress in Endothelial Cell Injury and Repair. Frontiers in Pharmacology, 13, Article 997272. https://doi.org/10.3389/fphar.2022.997272
|
[54]
|
Kim, Y., Pae, H., Park, J.E., Lee, Y.C., Woo, J.M., Kim, N., et al. (2011) Heme Oxygenase in the Regulation of Vascular Biology: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants & Redox Signaling, 14, 137-167. https://doi.org/10.1089/ars.2010.3153
|
[55]
|
Lu, C., Zhang, X., Zhang, D., Pei, E., Xu, J., Tang, T., et al. (2015) Short Time Tripterine Treatment Enhances Endothelial Progenitor Cell Function via Heat Shock Protein 32. Journal of Cellular Physiology, 230, 1139-1147. https://doi.org/10.1002/jcp.24849
|
[56]
|
Lu, C., Yu, X., Zuo, K., Zhang, X., Cao, C., Xu, J., et al. (2015) Tripterine Treatment Improves Endothelial Progenitor Cell Function via Integrin-Linked Kinase. Cellular Physiology and Biochemistry, 37, 1089-1103. https://doi.org/10.1159/000430234
|