[1]
|
Rey, L.K., Wieczorek, S., Akkad, D.A., Linker, R.A., Chan, A. and Hoffjan, S. (2011) Polymorphisms in Genes Encoding Leptin, Ghrelin and Their Receptors in German Multiple Sclerosis Patients. Molecular and Cellular Probes, 25, 255-259. https://doi.org/10.1016/j.mcp.2011.05.004
|
[2]
|
Garg, N. and Smith, T.W. (2015) An Update on Immunopathogenesis, Diagnosis, and Treatment of Multiple Sclerosis. Brain and Behavior, 5, e00362. https://doi.org/10.1002/brb3.362
|
[3]
|
Cross, A.H., Trotter, J.L. and Lyons, J. (2001) B Cells and Antibodies in CNS Demyelinating Disease. Journal of Neuroimmunology, 112, 1-14. https://doi.org/10.1016/s0165-5728(00)00409-4
|
[4]
|
Tomsone, I Logina, A Millers, S Cha, V. (2001) Association of Human Herpesvirus 6 and Human Herpesvirus 7 with Demyelinating Diseases of the Nervous System. Journal of Neurovirology, 7, 564-569. https://doi.org/10.1080/135502801753248150
|
[5]
|
Canto, E. and Oksenberg, J.R. (2018) Multiple Sclerosis Genetics. Multiple Sclerosis Journal, 24, 75-79. https://doi.org/10.1177/1352458517737371
|
[6]
|
Moutsianas, L., Jostins, L., Beecham, A.H., et al. (2015) Class II HLA Interactions Modulate Genetic Risk for Multiple Sclerosis. Nature Genetics, 47, 1107-1113. https://doi.org/10.1038/ng.3395
|
[7]
|
Mycko, M.P., Cichalewska, M., Machlanska, A., Cwiklinska, H., Mariasiewicz, M. and Selmaj, K.W. (2012) MicroRNA-301a Regulation of a T-Helper 17 Immune Response Controls Autoimmune Demyelination. Proceedings of the National Academy of Sciences of the United States of America, 109, E1248-E1257. https://doi.org/10.1073/pnas.1114325109
|
[8]
|
Guerau-de-Arellano, M., Smith, K.M., Godlewski, J., Liu, Y., Winger, R., Lawler, S.E., et al. (2011) Micro-RNA Dysregulation in Multiple Sclerosis Favours Pro-Inflammatory T-Cell-Mediated Autoimmunity. Brain, 134, 3578-3589. https://doi.org/10.1093/brain/awr262
|
[9]
|
Zhang, L., Wu, H., Zhao, M. and Lu, Q. (2020) Identifying the Differentially Expressed Micrornas in Autoimmunity: A Systemic Review and Meta-Analysis. Autoimmunity, 53, 122-136. https://doi.org/10.1080/08916934.2019.1710135
|
[10]
|
Raphael, I., Webb, J., Stuve, O., Haskins, W. and Forsthuber, T. (2014) Body Fluid Biomarkers in Multiple Sclerosis: How Far We Have Come and How They Could Affect the Clinic Now and in the Future. Expert Review of Clinical Immunology, 11, 69-91. https://doi.org/10.1586/1744666x.2015.991315
|
[11]
|
Lünemann, J.D., Jelčić, I., Roberts, S., Lutterotti, A., Tackenberg, B., Martin, R., et al. (2008) Ebna1-Specific T Cells from Patients with Multiple Sclerosis Cross React with Myelin Antigens and Co-Produce IFN-γ and IL-2. The Journal of Experimental Medicine, 205, 1763-1773. https://doi.org/10.1084/jem.20072397
|
[12]
|
孟俊, 彭奕冰, 王学锋, 等. 多发性硬化症与EB病毒及白细胞介素17/白细胞介素23关联性分析[J]. 诊断学理论与实践, 2017, 16(1): 88-92.
|
[13]
|
Robinson, W.H. and Steinman, L. (2022) Epstein-Barr Virus and Multiple Sclerosis. Science, 375, 264-265. https://doi.org/10.1126/science.abm7930
|
[14]
|
Jakhmola, S., Upadhyay, A., Jain, K., Mishra, A. and Jha, H.C. (2021) Herpesviruses and the Hidden Links to Multiple Sclerosis Neuropathology. Journal of Neuroimmunology, 358, Article ID: 577636. https://doi.org/10.1016/j.jneuroim.2021.577636
|
[15]
|
Donati, D. (2020) Viral Infections and Multiple Sclerosis. Drug Discovery Today: Disease Models, 32, 27-33. https://doi.org/10.1016/j.ddmod.2020.02.003
|
[16]
|
Junker, A., Krumbholz, M., Eisele, S., Mohan, H., Augstein, F., Bittner, R., et al. (2009) MicroRNA Profiling of Multiple Sclerosis Lesions Identifies Modulators of the Regulatory Protein CD47. Brain, 132, 3342-3352. https://doi.org/10.1093/brain/awp300
|
[17]
|
Bartholomäus, I., Kawakami, N., Odoardi, F., Schläger, C., Miljkovic, D., Ellwart, J.W., et al. (2009) Effector T Cell Interactions with Meningeal Vascular Structures in Nascent Autoimmune CNS Lesions. Nature, 462, 94-98. https://doi.org/10.1038/nature08478
|
[18]
|
Moser, T., Akgün, K., Proschmann, U., Sellner, J. and Ziemssen, T. (2020) The Role of TH17 Cells in Multiple Sclerosis: Therapeutic Implications. Autoimmunity Reviews, 19, Article ID: 102647. https://doi.org/10.1016/j.autrev.2020.102647
|
[19]
|
Li, R. and Bar-Or, A. (2018) The Multiple Roles of B Cells in Multiple Sclerosis and Their Implications in Multiple Sclerosis Therapies. Cold Spring Harbor Perspectives in Medicine, 9, a029108. https://doi.org/10.1101/cshperspect.a029108
|
[20]
|
Zozulya, A.L. and Wiendl, H. (2008) The Role of Regulatory T Cells in Multiple Sclerosis. Nature Clinical Practice Neurology, 4, 384-398. https://doi.org/10.1038/ncpneuro0832
|
[21]
|
Solomon, A.J. and Whitham, R.H. (2010) Multiple Sclerosis and Vitamin D: A Review and Recommendations. Current Neurology and Neuroscience Reports, 10, 389-396. https://doi.org/10.1007/s11910-010-0131-5
|
[22]
|
Rodgers, J., Friede, T., Vonberg, F.W., Constantinescu, C.S., Coles, A., Chataway, J., et al. (2021) The Impact of Smoking Cessation on Multiple Sclerosis Disease Progression. Brain, 145, 1368-1378. https://doi.org/10.1093/brain/awab385
|
[23]
|
Freeman, L., Longbrake, E.E., Coyle, P.K., Hendin, B. and Vollmer, T. (2022) High-Efficacy Therapies for Treatment-Naïve Individuals with Relapsing-Remitting Multiple Sclerosis. CNS Drugs, 36, 1285-1299. https://doi.org/10.1007/s40263-022-00965-7
|
[24]
|
Montalban, X., Gold, R., Thompson, A.J., Otero-Romero, S., Amato, M.P., Chandraratna, D., et al. (2018) ECTRIMS/EAN Guideline on the Pharmacological Treatment of People with Multiple Sclerosis. Multiple Sclerosis Journal, 24, 96-120. https://doi.org/10.1177/1352458517751049
|
[25]
|
Cohan, S.L., Hendin, B.A., Reder, A.T., Smoot, K., Avila, R., Mendoza, J.P., et al. (2021) Interferons and Multiple Sclerosis: Lessons from 25 Years of Clinical and Real-World Experience with Intramuscular Interferon β-1a (Avonex). CNS Drugs, 35, 743-767. https://doi.org/10.1007/s40263-021-00822-z
|
[26]
|
O’Connor, P., Wolinsky, J.S., Confavreux, C., Comi, G., Kappos, L., Olsson, T.P., et al. (2011) Randomized Trial of Oral Teriflunomide for Relapsing Multiple Sclerosis. New England Journal of Medicine, 365, 1293-1303. https://doi.org/10.1056/nejmoa1014656
|
[27]
|
Hauser, S.L. and Cree, B.A.C. (2020) Treatment of Multiple Sclerosis: A Review. The American Journal of Medicine, 133, 1380-1390.e2. https://doi.org/10.1016/j.amjmed.2020.05.049
|
[28]
|
Gross, R.H. and Corboy, J.R. (2019) Monitoring, Switching, and Stopping Multiple Sclerosis Disease-Modifying Therapies. Continuum: Lifelong Learning in Neurology, 25, 715-735. https://doi.org/10.1212/con.0000000000000738
|
[29]
|
Vasileiou, E.S. and Fitzgerald, K.C. (2023) Multiple Sclerosis Pathogenesis and Updates in Targeted Therapeutic Approaches. Current Allergy and Asthma Reports, 23, 481-496. https://doi.org/10.1007/s11882-023-01102-0
|
[30]
|
Ayache, S.S. and Chalah, M.A. (2017) Fatigue in Multiple Sclerosis—Insights into Evaluation and Management. Neurophysiologie Clinique/Clinical Neurophysiology, 47, 139-171. https://doi.org/10.1016/j.neucli.2017.02.004
|
[31]
|
Murray, T.J. (1985) Amantadine Therapy for Fatigue in Multiple Sclerosis. Canadian Journal of Neurological Sciences/Journal Canadien des Sciences Neurologiques, 12, 251-254. https://doi.org/10.1017/s0317167100047107
|
[32]
|
Solaro, C., Trabucco, E. and Messmer Uccelli, M. (2012) Pain and Multiple Sclerosis: Pathophysiology and Treatment. Current Neurology and Neuroscience Reports, 13, Article No. 320. https://doi.org/10.1007/s11910-012-0320-5
|
[33]
|
Aboud, T. and Schuster, N.M. (2019) Pain Management in Multiple Sclerosis: A Review of Available Treatment Options. Current Treatment Options in Neurology, 21, Article No. 62. https://doi.org/10.1007/s11940-019-0601-2
|
[34]
|
Nazari, F., Soheili, M., Hosseini, S. and Shaygannejad, V. (2015) A Comparison of the Effects of Reflexology and Relaxation on Pain in Women with Multiple Sclerosis. Journal of Complementary and Integrative Medicine, 13, 65-71. https://doi.org/10.1515/jcim-2015-0046
|
[35]
|
Andrews, K.L. and Husmann, D.A. (1997) Bladder Dysfunction and Management in Multiple Sclerosis. Mayo Clinic Proceedings, 72, 1176-1183. https://doi.org/10.4065/72.12.1176
|
[36]
|
Kuhlemeier, K.V., McEachran, A.B., Lloyd, L.K., et al. (1984) Serum Creatinine as an Indicator of Renal Function after Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 65, 694-697.
|
[37]
|
Bai, L., Lennon, D.P., Caplan, A.I., DeChant, A., Hecker, J., Kranso, J., et al. (2012) Hepatocyte Growth Factor Mediates Mesenchymal Stem Cell-Induced Recovery in Multiple Sclerosis Models. Nature Neuroscience, 15, 862-870. https://doi.org/10.1038/nn.3109
|
[38]
|
Freedman, M.S., Bar-Or, A., Atkins, H.L., Karussis, D., Frassoni, F., Lazarus, H., et al. (2010) The Therapeutic Potential of Mesenchymal Stem Cell Transplantation as a Treatment for Multiple Sclerosis: Consensus Report of the International MSCT Study Group. Multiple Sclerosis Journal, 16, 503-510. https://doi.org/10.1177/1352458509359727
|
[39]
|
Gugliandolo, A., Bramanti, P. and Mazzon, E. (2020) Mesenchymal Stem Cells in Multiple Sclerosis: Recent Evidence from Pre-Clinical to Clinical Studies. International Journal of Molecular Sciences, 21, Article 8662. https://doi.org/10.3390/ijms21228662
|
[40]
|
Wang, J., Sun, H., Guo, R., Guo, J., Tian, X., Wang, J., et al. (2023) Exosomal miR-23b-3p from Bone Mesenchymal Stem Cells Alleviates Experimental Autoimmune Encephalomyelitis by Inhibiting Microglial Pyroptosis. Experimental Neurology, 363, Article ID: 114374. https://doi.org/10.1016/j.expneurol.2023.114374
|
[41]
|
Li, J., Zhang, D., Geng, T., Chen, L., Huang, H., Yin, H., et al. (2014) The Potential of Human Umbilical Cord-Derived Mesenchymal Stem Cells as a Novel Cellular Therapy for Multiple Sclerosis. Cell Transplantation, 23, 113-122. https://doi.org/10.3727/096368914x685005
|
[42]
|
Charabati, M., Wheeler, M.A., Weiner, H.L. and Quintana, F.J. (2023) Multiple Sclerosis: Neuroimmune Crosstalk and Therapeutic Targeting. Cell, 186, 1309-1327. https://doi.org/10.1016/j.cell.2023.03.008
|
[43]
|
Clark, I.C., Wheeler, M.A., Lee, H., Li, Z., Sanmarco, L.M., Thaploo, S., et al. (2023) Identification of Astrocyte Regulators by Nucleic Acid Cytometry. Nature, 614, 326-333. https://doi.org/10.1038/s41586-022-05613-0
|
[44]
|
Sanmarco, L.M., Wheeler, M.A., Gutiérrez-Vázquez, C., Polonio, C.M., Linnerbauer, M., Pinho-Ribeiro, F.A., et al. (2021) Gut-licensed IFNγ+ NK Cells Drive LAMP1+TRAIL+ Anti-Inflammatory Astrocytes. Nature, 590, 473-479. https://doi.org/10.1038/s41586-020-03116-4
|
[45]
|
Dangond, F., Donnelly, A., Hohlfeld, R., Lubetzki, C., Kohlhaas, S., Leocani, L., et al. (2021) Facing the Urgency of Therapies for Progressive MS—A Progressive MS Alliance Proposal. Nature Reviews Neurology, 17, 185-192. https://doi.org/10.1038/s41582-020-00446-9
|
[46]
|
Kappos, L., Li, D., Calabresi, P.A., O’Connor, P., Bar-Or, A., Barkhof, F., et al. (2011) Ocrelizumab in Relapsing-Remitting Multiple Sclerosis: A Phase 2, Randomised, Placebo-Controlled, Multicentre Trial. The Lancet, 378, 1779-1787. https://doi.org/10.1016/s0140-6736(11)61649-8
|
[47]
|
Allanach, J.R., Farrell, J.W., Mésidor, M. and Karimi-Abdolrezaee, S. (2021) Current Status of Neuroprotective and Neuroregenerative Strategies in Multiple Sclerosis: A Systematic Review. Multiple Sclerosis Journal, 28, 29-48. https://doi.org/10.1177/13524585211008760
|
[48]
|
Scolding, N.J., Pasquini, M., Reingold, S.C., Cohen, J.A., Atkins, H., Banwell, B., et al. (2017) Cell-Based Therapeutic Strategies for Multiple Sclerosis. Brain, 140, 2776-2796. https://doi.org/10.1093/brain/awx154
|
[49]
|
Vishwakarma, S.K., Bardia, A., Tiwari, S.K., Paspala, S.A.B. and Khan, A.A. (2014) Current Concept in Neural Regeneration Research: NSCs Isolation, Characterization and Transplantation in Various Neurodegenerative Diseases and Stroke: A Review. Journal of Advanced Research, 5, 277-294. https://doi.org/10.1016/j.jare.2013.04.005
|
[50]
|
Bezukladova, S., Genchi, A., Panina-Bordignon, P. and Martino, G. (2022) Promoting Exogenous Repair in Multiple Sclerosis: Myelin Regeneration. Current Opinion in Neurology, 35, 313-318. https://doi.org/10.1097/wco.0000000000001062
|
[51]
|
Duncan, I.D., Marik, R.L., Broman, A.T. and Heidari, M. (2017) Thin Myelin Sheaths as the Hallmark of Remyelination Persist over Time and Preserve Axon Function. Proceedings of the National Academy of Sciences of the United States of America, 114, E9685-E9691. https://doi.org/10.1073/pnas.1714183114
|
[52]
|
Franklin, R.J.M., Frisén, J. and Lyons, D.A. (2021) Revisiting Remyelination: Towards a Consensus on the Regeneration of CNS Myelin. Seminars in Cell & Developmental Biology, 116, 3-9. https://doi.org/10.1016/j.semcdb.2020.09.009
|