[1]
|
Fleischmann-Struzek, C. and Rudd, K. (2023) Challenges of Assessing the Burden of Sepsis. Medizinische Klinik-Intensivmedizin und Notfallmedizin, 118, 68-74. https://doi.org/10.1007/s00063-023-01088-7
|
[2]
|
Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211. https://doi.org/10.1016/s0140-6736(19)32989-7
|
[3]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://doi.org/10.1001/jama.2016.0287
|
[4]
|
Liu, C., Chu, D., Kalantar‐Zadeh, K., George, J., Young, H.A. and Liu, G. (2021) Cytokines: From Clinical Significance to Quantification. Advanced Science, 8, e2004433. https://doi.org/10.1002/advs.202004433
|
[5]
|
Jarczak, D. and Nierhaus, A. (2022) Cytokine Storm—Definition, Causes, and Implications. International Journal of Molecular Sciences, 23, Article No. 11740. https://doi.org/10.3390/ijms231911740
|
[6]
|
Assinger, A., Schrottmaier, W.C., Salzmann, M. and Rayes, J. (2019) Platelets in Sepsis: An Update on Experimental Models and Clinical Data. Frontiers in Immunology, 10, Article No. 1687. https://doi.org/10.3389/fimmu.2019.01687
|
[7]
|
Shubin, N.J., Monaghan, S.F. and Ayala, A. (2011) Anti-Inflammatory Mechanisms of Sepsis. In: Contributions to Microbiology, S. Karger AG, 108-124. https://doi.org/10.1159/000324024
|
[8]
|
Clere-Jehl, R., Mariotte, A., Meziani, F., Bahram, S., Georgel, P. and Helms, J. (2020) JAK-STAT Targeting Offers Novel Therapeutic Opportunities in Sepsis. Trends in Molecular Medicine, 26, 987-1002. https://doi.org/10.1016/j.molmed.2020.06.007
|
[9]
|
Chousterman, B.G., Swirski, F.K. and Weber, G.F. (2017) Cytokine Storm and Sepsis Disease Pathogenesis. Seminars in Immunopathology, 39, 517-528. https://doi.org/10.1007/s00281-017-0639-8
|
[10]
|
Liu, D., Huang, S., Sun, J., Zhang, H., Cai, Q., Gao, C., et al. (2022) Sepsis-Induced Immunosuppression: Mechanisms, Diagnosis and Current Treatment Options. Military Medical Research, 9, Article No. 56. https://doi.org/10.1186/s40779-022-00422-y
|
[11]
|
Wang, X., Zhang, H., Guo, R., Li, X., Liu, H., Wang, Z., et al. (2021) MicroRNA-223 Modulates the IL-4-Medicated Macrophage M2-Type Polarization to Control the Progress of Sepsis. International Immunopharmacology, 96, Article ID: 107783. https://doi.org/10.1016/j.intimp.2021.107783
|
[12]
|
Hotchkiss, R.S., Monneret, G. and Payen, D. (2013) Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy. Nature Reviews Immunology, 13, 862-874. https://doi.org/10.1038/nri3552
|
[13]
|
Schrijver, D.P., Röring, R.J., Deckers, J., de Dreu, A., Toner, Y.C., Prevot, G., et al. (2023) Resolving Sepsis-Induced Immunoparalysis via Trained Immunity by Targeting Interleukin-4 to Myeloid Cells. Nature Biomedical Engineering, 7, 1097-1112. https://doi.org/10.1038/s41551-023-01050-0
|
[14]
|
Song, Z., Zhang, J., Zhang, X., Li, D., Wang, H., Xu, X., et al. (2014) Interleukin 4 Deficiency Reverses Development of Secondary Pseudomonas Aeruginosa Pneumonia during Sepsis-Associated Immunosuppression. Journal of Infectious Diseases, 211, 1616-1627. https://doi.org/10.1093/infdis/jiu668
|
[15]
|
Wu, H., Wu, C., Chen, C., Chung, K., Tseng, J., Liu, Y., et al. (2008) The Interleukin-4 Expression in Patients with Severe Sepsis. Journal of Critical Care, 23, 519-524. https://doi.org/10.1016/j.jcrc.2007.11.008
|
[16]
|
Hynninen, M., Pettilä, V., Takkunen, O., Orko, R., Jansson, S., Kuusela, P., et al. (2003) Predictive Value of Monocyte Histocompatibility Leukocyte Antigen-Dr Expression and Plasma Interleukin-4 and-10 Levels in Critically Ill Patients with Sepsis. Shock, 20, 1-4. https://doi.org/10.1097/01.shk.0000068322.08268.b4
|
[17]
|
Li, J. (2023) Over-Expression of Programmed Death-Ligand 1 and Programmed Death-1 on Antigen-Presenting Cells as a Predictor of Organ Dysfunction and Mortality during Early Sepsis: A Prospective Cohort Study. World Journal of Emergency Medicine, 14, 179-185. https://doi.org/10.5847/wjem.j.1920-8642.2023.041
|
[18]
|
Bozza, F.A., Salluh, J.I., Japiassu, A.M., Soares, M., Assis, E.F., Gomes, R.N., et al. (2007) Cytokine Profiles as Markers of Disease Severity in Sepsis: A Multiplex Analysis. Critical Care, 11, R49. https://doi.org/10.1186/cc5783
|
[19]
|
Ruiz-Rodríguez, J.C., Plata-Menchaca, E.P., Chiscano-Camón, L., Ruiz-Sanmartin, A. and Ferrer, R. (2022) Blood Purification in Sepsis and COVID-19: What’s New in Cytokine and Endotoxin Hemoadsorption. Journal of Anesthesia, Analgesia and Critical Care, 2, Article No. 15. https://doi.org/10.1186/s44158-022-00043-w
|
[20]
|
Mirzarahimi, M., Barak, M., Eslami, A. and Enteshari-Moghaddam, A. (2017) The Role of Interleukin-6 in the Early Diagnosis of Sepsis in Premature Infants. Pediatric Reports, 9, Article No. 7305. https://doi.org/10.4081/pr.2017.7305
|
[21]
|
Reis Machado, J., Soave, D.F., da Silva, M.V., de Menezes, L.B., Etchebehere, R.M., Monteiro, M.L.G.d.R., et al. (2014) Neonatal Sepsis and Inflammatory Mediators. Mediators of Inflammation, 2014, Article ID: 269681. https://doi.org/10.1155/2014/269681
|
[22]
|
Yende, S., Kellum, J.A., Talisa, V.B., Peck Palmer, O.M., Chang, C.H., Filbin, M.R., et al. (2019) Long-Term Host Immune Response Trajectories among Hospitalized Patients with Sepsis. JAMA Network Open, 2, e198686. https://doi.org/10.1001/jamanetworkopen.2019.8686
|
[23]
|
Matsumoto, H., Ogura, H., Shimizu, K., Ikeda, M., Hirose, T., Matsuura, H., et al. (2018) The Clinical Importance of a Cytokine Network in the Acute Phase of Sepsis. Scientific Reports, 8, Article No. 13995. https://doi.org/10.1038/s41598-018-32275-8
|
[24]
|
Memar, M.Y., Alizadeh, N., Varshochi, M. and Kafil, H.S. (2017) Immunologic Biomarkers for Diagnostic of Early-Onset Neonatal Sepsis. The Journal of Maternal-Fetal & Neonatal Medicine, 32, 143-153. https://doi.org/10.1080/14767058.2017.1366984
|
[25]
|
da Fonseca, F.A.M., Espósito, A.P., da Silva, M.H.B.N., Nunes, V.S., Cazita, P.M., Ferreira, G.S., et al. (2022) Monocyte-to-HDL Ratio and Non-HDL Cholesterol Were Predictors of Septic Shock in Newborns. Clinics, 77, Article ID: 100111. https://doi.org/10.1016/j.clinsp.2022.100111
|
[26]
|
Kumar, A.T., Sudhir, U., Punith, K., Kumar, V.N.R. and Rao, M.Y. (2009) Cytokine Profile in Elderly Patients with Sepsis. Indian Journal of Critical Care Medicine, 13, 74-78. https://doi.org/10.4103/0972-5229.56052
|
[27]
|
Matsuura, R., Komaru, Y., Miyamoto, Y., Yoshida, T., Yoshimoto, K., Hamasaki, Y., et al. (2020) Different Biomarker Kinetics in Critically Ill Patients with High Lactate Levels. Diagnostics, 10, Article No. 454. https://doi.org/10.3390/diagnostics10070454
|
[28]
|
Davoudian, S., Piovani, D., Desai, A., Mapelli, S.N., Leone, R., Sironi, M., et al. (2022) A Cytokine/PTX3 Prognostic Index as a Predictor of Mortality in Sepsis. Frontiers in Immunology, 13, Article ID: 979232. https://doi.org/10.3389/fimmu.2022.979232
|
[29]
|
Hess, D.A., Trac, J.Z., Glazer, S.A., Terenzi, D.C., Quan, A., Teoh, H., et al. (2020) Vascular Risk Reduction in Obesity through Reduced Granulocyte Burden and Improved Angiogenic Monocyte Content Following Bariatric Surgery. Cell Reports Medicine, 1, Article ID: 100018. https://doi.org/10.1016/j.xcrm.2020.100018
|
[30]
|
Xiao, L., Ran, X., Zhong, Y., Le, Y. and Li, S. (2022) A Combined Ratio Change of Inflammatory Biomarkers at 72 h Could Predict the Severity and Prognosis of Sepsis from Pulmonary Infections. Immunobiology, 227, Article ID: 152290. https://doi.org/10.1016/j.imbio.2022.152290
|
[31]
|
Rau, M., Schiller, M., Krienke, S., Heyder, P., Lorenz, H. and Blank, N. (2010) Clinical Manifestations but Not Cytokine Profiles Differentiate Adult-Onset Still’s Disease and Sepsis. The Journal of Rheumatology, 37, 2369-2376. https://doi.org/10.3899/jrheum.100247
|
[32]
|
Hugo Montes, A., Valle-Garay, E., Martin, G., Collazos, J., Alvarez, V., Meana, A., et al. (2021) The tnf-α (−238 G/A) Polymorphism Could Protect against Development of Severe Sepsis. Innate Immunity, 27, 409-420. https://doi.org/10.1177/17534259211036186
|
[33]
|
Chaudhry, H., Zhou, J., Zhong, Y., et al. (2013) Role of Cytokines as a Double-Edged Sword in Sepsis. In Vivo, 27, 669-684.
|
[34]
|
Yin, J., Chen, Y., Huang, J., Yan, L., Kuang, Z., Xue, M., et al. (2021) Prognosis-Related Classification and Dynamic Monitoring of Immune Status in Patients with Sepsis: A Prospective Observational Study. World Journal of Emergency Medicine, 12, 185-191. https://doi.org/10.5847/wjem.j.1920-8642.2021.03.004
|
[35]
|
Lu, X., Song, C., Wang, P., Li, L., Lin, L., Jiang, S., et al. (2023) The Clinical Trajectory of Peripheral Blood Immune Cell Subsets, T-Cell Activation, and Cytokines in Septic Patients. Inflammation Research, 73, 145-155. https://doi.org/10.1007/s00011-023-01825-w
|
[36]
|
Gogos, C.A., Drosou, E., Bassaris, H.P. and Skoutelis, A. (2000) Pro‐ versus Anti‐Inflammatory Cytokine Profile in Patients with Severe Sepsis: A Marker for Prognosis and Future Therapeutic Options. The Journal of Infectious Diseases, 181, 176-180. https://doi.org/10.1086/315214
|
[37]
|
Yin, F., Xi, Y., Wang, Y., Li, B., Qian, J., Ren, H., et al. (2021) The Clinical Outcomes and Biomarker Features of Severe Sepsis/Septic Shock with Severe Neutropenia: A Retrospective Cohort Study. Translational Pediatrics, 10, 464-473. https://doi.org/10.21037/tp-20-230
|
[38]
|
Zhi, F., Ma, J., Ji, D., Bao, J. and Li, Q. (2024) Causal Associations between Circulating Cytokines and Risk of Sepsis and Related Outcomes: A Two-Sample Mendelian Randomization Study. Frontiers in Immunology, 15, Article ID: 1336586. https://doi.org/10.3389/fimmu.2024.1336586
|
[39]
|
Vogeler, M., Schenz, J., Müller, E., Weigand, M. and Fischer, D. (2024) The Immune System of the Critically Ill Patient. Anasthesiol Intensivmed Notfallmed Schmerzther, 59, 96-112.
|
[40]
|
Nesseler, N., Martin-Chouly, C., Perrichet, H., Ross, J.T., Rousseau, C., Sinha, P., et al. (2019) Low Interleukin-10 Release after ex Vivo Stimulation of Whole Blood Is Associated with Persistent Organ Dysfunction in Sepsis: A Prospective Observational Study. Anaesthesia Critical Care & Pain Medicine, 38, 485-491. https://doi.org/10.1016/j.accpm.2019.01.009
|
[41]
|
Amatya, N., Garg, A.V. and Gaffen, S.L. (2017) IL-17 Signaling: The Yin and the Yang. Trends in Immunology, 38, 310-322. https://doi.org/10.1016/j.it.2017.01.006
|
[42]
|
Freitas, A., Alves-Filho, J.C., Victoni, T., Secher, T., Lemos, H.P., Sônego, F., et al. (2009) IL-17 Receptor Signaling Is Required to Control Polymicrobial Sepsis. The Journal of Immunology, 182, 7846-7854. https://doi.org/10.4049/jimmunol.0803039
|
[43]
|
Pool, R., Gomez, H. and Kellum, J.A. (2018) Mechanisms of Organ Dysfunction in Sepsis. Critical Care Clinics, 34, 63-80. https://doi.org/10.1016/j.ccc.2017.08.003
|
[44]
|
Zhou, K.L., He, Y.R., Liu, Y.J., Liu, Y.M., Xuan, L.Z., Gu, Z.Y., et al. (2023) Il‐17a/p38 Signaling Pathway Induces Alveolar Epithelial Cell Pyroptosis and Hyperpermeability in Sepsis‐Induced Acute Lung Injury by Activating NLRP3 Inflammasome. Advanced Biology, 7, e2300220. https://doi.org/10.1002/adbi.202300220
|
[45]
|
Rendon, J.L. and Choudhry, M.A. (2012) Th17 Cells: Critical Mediators of Host Responses to Burn Injury and Sepsis. Journal of Leukocyte Biology, 92, 529-538. https://doi.org/10.1189/jlb.0212083
|
[46]
|
Jin, H., Wei, W., Zhao, Y., Ma, A., Sun, K., Lin, X., et al. (2023) The Roles of Interleukin-17a in Risk Stratification and Prognosis of Patients with Sepsis-Associated Acute Kidney Injury. Kidney Research and Clinical Practice, 42, 742-750. https://doi.org/10.23876/j.krcp.22.063
|
[47]
|
Kassasseya, C., Torsin, L.I., Musset, C., Benhamou, M., Chaudry, I.H., Cavaillon, J., et al. (2024) Divergent Effects of Tumor Necrosis Factor (TNF) in Sepsis: A Meta-Analysis of Experimental Studies. Critical Care, 28, Article No. 293. https://doi.org/10.1186/s13054-024-05057-0
|
[48]
|
Li, X., Liu, M., Fu, Y., Jiang, Y. and Zhang, Z. (2023) Alterations in Levels of Cytokine Following Treatment to Predict Outcome of Sepsis: A Meta-Analysis. Cytokine, 161, Article ID: 156056. https://doi.org/10.1016/j.cyto.2022.156056
|
[49]
|
Li, J., Xiao, C. and Zheng, H. (2024) Prognostic Value of Inflammatory Cytokine Detection for Sepsis Patients in ICU: A Meta-Analysis. American Journal of Translational Research, 16, 2612-2621. https://doi.org/10.62347/nylm7723
|
[50]
|
Gharamti, A.A., Samara, O., Monzon, A., Montalbano, G., Scherger, S., DeSanto, K., et al. (2022) Proinflammatory Cytokines Levels in Sepsis and Healthy Volunteers, and Tumor Necrosis Factor-Alpha Associated Sepsis Mortality: A Systematic Review and Meta-Analysis. Cytokine, 158, Article ID: 156006. https://doi.org/10.1016/j.cyto.2022.156006
|
[51]
|
Orhun, G., Tüzün, E., Özcan, P.E., et al. (2019) Association between Inflammatory Markers and Cognitive Outcome in Patients with Acute Brain Dysfunction Due to Sepsis. Noro Psikiyatri Arsivi, 56, 63-70.
|
[52]
|
Paraschos, M.D., Patrani, M., Pistiki, A., Katsenos, C., Tsaganos, T., Netea, M.G., et al. (2015) Defective Cytokine Production Early after Multiple Traumas: Modulation in Severe Sepsis. Cytokine, 76, 222-226. https://doi.org/10.1016/j.cyto.2015.05.021
|
[53]
|
Li, Q., Wu, C., Liu, Z., Zhang, H., Du, Y., Liu, Y., et al. (2019) Increased TLR4 Expression Aggravates Sepsis by Promoting IFN-γ Expression in CD38(-/-) Mice. Journal of Immunology Research, 2019, Article ID: 3737890. https://doi.org/10.1155/2019/3737890
|
[54]
|
Stassen, N.A., Leslie-Norfleet, L.A., Robertson, A.M., Eichenberger, M.R. and Polk, H.C. (2002) Interferon-γ Gene Polymorphisms and the Development of Sepsis in Patients with Trauma. Surgery, 132, 289-292. https://doi.org/10.1067/msy.2002.127167
|
[55]
|
Wang, D., Zhong, X., Huang, D., Chen, R., Bai, G., Li, Q., et al. (2014) Functional Polymorphisms of Interferon-Gamma Affect Pneumonia-Induced Sepsis. PLOS ONE, 9, e87049. https://doi.org/10.1371/journal.pone.0087049
|
[56]
|
Vucic, J., Vucic, M., Stankovic, T., Stamenkovic, H., Stankovic, S. and Zlatanovic, D. (2021) Potential Role of IFN-γ and IL-5 in Sepsis Prediction of Preterm Neonates. Open Medicine, 16, 139-145. https://doi.org/10.1515/med-2021-0206
|
[57]
|
Payen, D., Faivre, V., Miatello, J., Leentjens, J., Brumpt, C., Tissières, P., et al. (2019) Multicentric Experience with Interferon Gamma Therapy in Sepsis Induced Immunosuppression. a Case Series. BMC Infectious Diseases, 19, Article No. 931. https://doi.org/10.1186/s12879-019-4526-x
|
[58]
|
Romero, C.R., Herzig, D.S., Etogo, A., Nunez, J., Mahmoudizad, R., Fang, G., et al. (2010) The Role of Interferon-γ in the Pathogenesis of Acute Intra-Abdominal Sepsis. Journal of Leukocyte Biology, 88, 725-735. https://doi.org/10.1189/jlb.0509307
|
[59]
|
Qiu, G., Wang, C., Smith, R., Harrison, K. and Yin, K. (2001) Role of IFN-γ in Bacterial Containment in a Model of Intra-Abdominal Sepsis. Shock, 16, 425-429. https://doi.org/10.1097/00024382-200116060-00004
|