细胞因子在脓毒症严重程度评估及预后预测中的研究进展
Research Progress of Cytokines in Severity Assessment and Prognosis Prediction of Sepsis
DOI: 10.12677/acm.2025.152381, PDF, HTML, XML,    科研立项经费支持
作者: 胡希明*, 李玉翠:右江民族医学院研究生学院,广西 百色;李 军#:右江民族医学院附属医院重症医学科,广西 百色
关键词: 脓毒症细胞因子严重程度预后全身炎症反应综合征代偿性抗炎反应综合征Sepsis Cytokines Order of Severity Prognosis SIRS CARS
摘要: 脓毒症(Sepsis)是宿主对感染反应失调所致危及生命的器官功能障碍,具有高发病率和高死亡率,其进展为严重脓毒症或脓毒性休克时,患者预后通常较差。在脓毒症中,细胞因子通过参与全身炎症反应综合征(SIRS)和代偿性抗炎反应综合征(CARS)发挥重要作用,同时在病情严重程度评估和预后预测中可能成为新型生物标志物。本文综述了细胞因子与脓毒症严重程度评估及预后预测的相关性研究,旨在为未来相关研究及临床转化提供科学依据。
Abstract: Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to infection, with a high incidence and mortality rate. When patients progress to severe sepsis or septic shock, the prognosis is usually poor. In sepsis, cytokines play an important role by participating in systemic inflammatory response syndrome (SIRS) and compensatory anti-inflammatory response syndrome (CARS), and may become novel biomarkers in severity assessment and prognosis prediction. This article reviewed the correlation between cytokines and sepsis severity assessment and prognosis prediction, aiming to provide scientific basis for future related research and clinical transformation.
文章引用:胡希明, 李玉翠, 李军. 细胞因子在脓毒症严重程度评估及预后预测中的研究进展[J]. 临床医学进展, 2025, 15(2): 572-580. https://doi.org/10.12677/acm.2025.152381

1. 引言

脓毒症的治疗耗费高昂,对医疗资源的需求巨大[1]。据统计,因脓毒症死亡的患者人数占所有死亡人数的19.7% [2]。根据脓毒症3.0诊断标准[3],当感染伴随序贯器官功能衰竭评分(SOFA评分) ≥ 2分时,可确诊为脓毒症。在充分液体复苏后仍需依赖血管活性药物维持平均动脉压 ≥ 65 mmHg,且血乳酸水平 > 2 mmol/L时,则定义为脓毒性休克。

目前对脓毒症的严重程度评估及预后预测主要依赖APACHE Ⅱ评分及SOFA评分。然而,这些评分系统参数较多、周期较长,尤其在急危重症患者中,快速评估病情严重程度和预测预后面临一定挑战。因此,开发更简便、有效的评估指标已成为当前脓毒症研究的重要方向。

细胞因子是免疫细胞和组织细胞分泌的一类小分子可溶性蛋白,贯穿于抗感染免疫应答的全过程,其核心功能在于介导细胞间的信号传导[4]。在脓毒症中,患者可能经历从过度炎症反应到免疫抑制的病理过程,并常伴多器官功能障碍[5]。脓毒症早期表现为过度炎症反应,即感染性和非感染性损伤引起的全身炎症,与多器官功能衰竭相关。后期出现的代偿性抗炎反应综合征则是导致晚期感染及远期不良预后的主要原因[6]-[8]。复杂的细胞因子调节网络贯穿整个病理过程[9],因此,细胞因子作为一种新型生物标志物,展现出在预测脓毒症严重程度及预后中的潜力。

2. 白细胞介素-4 (IL-4)与脓毒症严重程度评估及预后预测的关系

白细胞介素-4 (IL-4)是一种在脓毒症早期释放的重要抗炎细胞因子,主要由活化的T细胞和肥大细胞等免疫细胞分泌。其生物学特性包括:1) 诱导CD4+ T细胞分化为Th2细胞[10];2) 通过正反馈机制促进抗炎信号传导[11];3) 抑制促炎细胞因子的释放,包括炎性小体激活和IL-1β分泌[12] [13];4) 抑制IL-12信号传导,增强Th2相关免疫应答[14];5) 促进巨噬细胞向M2表型转化[10]

在脓毒症中,IL-4的释放水平显著增加,并通过促进Th2细胞分化而调节免疫反应[10]。然而,关于IL-4在脓毒症严重程度及预后中的具体作用,现有研究结论尚不一致。部分研究表明,IL-4的表达水平与脓毒症患者的生存相关[15],但其他研究未发现显著差异[16] [17]。例如,Jia-Bao Li等[17]在前瞻性队列研究中发现,脓毒症患者的IL-4和IL-17A显著高于健康对照,但未能区分幸存者与非幸存者。相反,Fernando A. Bozza等[18]的研究显示,IL-4在脓毒症严重程度和预后评估中具有潜在价值。

值得注意的是,脓毒症患者中30%~40%表现出免疫麻痹表型,这种状态由过度的抗炎反应导致,常伴随多器官功能障碍和高死亡率。David P. Schrijver等[13]开发了一种整合apoA1-IL4融合蛋白的脂质纳米颗粒,并通过靶向注射至骨髓器官,显著改善了免疫麻痹状态和患者预后。

尽管现有研究为IL-4在脓毒症中的作用提供了一定支持,但其具体机制和临床应用潜力仍需进一步研究,尤其是大样本、多中心研究的验证。

3. 白细胞介素-6 (IL-6)与脓毒症严重程度评估及预后预测的关系

白细胞介素-6 (IL-6)是一种重要的促炎细胞因子,在炎症反应急性期发挥关键调节作用[19]。研究表明,IL-6在脓毒症早期诊断中具有较高的敏感性和特异性,尤其适用于血培养结果未明或呈阴性但高度怀疑脓毒症的患者[20] [21]。因此,IL-6已被认为是脓毒症早期诊断的潜在有效标志物。

多项研究进一步探讨了IL-6在脓毒症病程和预后评估中的作用。一项前瞻性多中心队列研究随访了483名脓毒症患者,分析其住院期间及发病后1年内多个时间点的IL-6和高敏C反应蛋白(hs-CRP)水平。结果显示,IL-6和hs-CRP水平较高的患者在1年内的死亡率和再次入院率显著升高[22]。此外,IL-6持续升高与脓毒症患者晚期后遗症相关[22]。类似地,一项回顾性研究发现,与非危重症患者相比,危重症患者的IL-6水平显著升高,且与预后呈显著相关性[23]

在特殊人群中,IL-6同样表现出重要的预测价值。例如,新生儿脓毒症患者的IL-6水平可预测病情进展为脓毒性休克[24] [25]。Fernanda Andrade Macaferri da Fonseca等[25]的研究发现,脓毒症新生儿第0天的IL-6和IL-8浓度显著升高,而进展为脓毒性休克的患儿CRP、IL-6、IL-8和IL-10水平更高。

IL-6的动态变化也为脓毒症治疗效果的评估提供了参考。一项针对老年脓毒症患者的研究显示,幸存者的IL-6水平在住院第1天到第7天显著下降,而非幸存者的IL-6水平无明显变化[26]。类似地,一项ICU患者研究发现,IL-6在入住ICU后6小时内的变化与死亡率显著相关[27],提示IL-6的动态监测对预后评估具有重要意义。

值得注意的是,IL-6还可用于构建预后模型。例如,Sadaf Davoudian等[28]的研究基于IL-6、IL-18等指标,开发了脓毒症患者90天死亡率的预后指数,显示出较高的敏感性和特异性,为临床分层管理提供了有力工具。

4. 白细胞介素-10 (IL-10)与脓毒症严重程度评估及预后预测的关系

白细胞介素-10 (IL-10)是一种重要的抗炎因子,主要由单核细胞、巨噬细胞和Th2细胞分泌[19]。IL-10的主要功能包括:1) 抑制T细胞增殖和功能;2) 抑制促炎细胞因子的释放;3) 促进免疫抑制细胞的增殖,如调节性T细胞(Tregs)和骨髓来源抑制性细胞(MDSC);4) 通过抑制CD4+ T细胞向Th1细胞分化,减少促炎因子的释放[10]。此外,IL-10还能下调骨髓和淋巴细胞的炎性因子分泌及MHC II类抗原表达,从而维持免疫平衡[29]

在脓毒症患者中,IL-10水平的升高通常与严重程度和预后不良相关。多项研究表明,严重脓毒症患者的血清IL-10水平显著升高,且死亡组的IL-10水平显著高于生存组[30]-[32]。IL-10的持续上升反映了严重的免疫抑制状态,是脓毒症患者进展为脓毒性休克甚至死亡的重要预测指标[33]。例如,Jun Yin等研究发现,脓毒症患者第3天的IL-10水平与HLA-DR表达均是独立的预后因子[34]。一项回顾性研究进一步指出,随着疾病进展,病程后期最终死亡的脓毒症患者IL-10显著增加[35]。这一结果在Charalambos A. Gogos等对严重脓毒症患者的研究中得到确认,表明IL-10的持续升高是预后不良的重要标志[36]

此外,IL-10在特殊人群中的表现也值得关注。在Fernanda Andrade Macaferri da Fonseca等[25]针对新生儿脓毒症的研究中,确诊当天进展为脓毒性休克的新生儿IL-10水平显著升高,显示了IL-10对新生儿脓毒症预后的预测价值。在伴中性粒细胞减少的脓毒症患者中,IL-10也表现出较高的特异性[37]

尽管IL-10升高与不良预后相关,但其潜在的保护作用也受到关注。Feng Zhi等[38]通过孟德尔随机化分析指出,基因预测的低水平IL-10与脓毒症风险升高显著相关(比值比0.68,95%可信区间0.52~0.90,P = 0.006),提示IL-10可能在一定程度上对脓毒症患者具有保护作用。此外,研究者还探索了根据IL-10水平进行患者分层管理的可能性。例如,Marie Vogeler等[39]和Nicolas Nesseler等[40]的研究均表明,IL-10的动态变化可能用于脓毒症患者的免疫反应分层及预后管理。

5. 白细胞介素-17 (IL-17)与脓毒症严重程度评估及预后预测的关系

白细胞介素-17 (IL-17)是一类重要的促炎细胞因子,包括IL-17A至IL-17F六个成员,其中以IL-17A研究最为深入[41]。IL-17在脓毒症患者中的作用呈双刃剑效应。一方面,IL-17可通过介导中性粒细胞的募集和激活,增强其杀伤细菌的能力,同时诱导中性粒细胞迁移并促进巨噬细胞的病原体清除,从而帮助机体抵御脓毒症[42]。另一方面,过量的IL-17会放大炎症反应,导致组织损伤和器官功能障碍[43]

研究表明,IL-17在脓毒症患者中水平显著升高,其通过激活NLRP3炎性体参与炎症反应并加重脓毒症相关器官损伤[44]。血清IL-17A的高水平不仅与脓毒症风险增加显著相关,还可能作为一种新的预测因子和治疗靶标[45]。例如,进一步研究显示,IL-17A在评估脓毒症相关急性肾损伤(AKI)患者的预后中具有重要价值,其临界值为4.7 pg/ml,敏感性和特异性分别为77.4%和71.0% [46]

尽管IL-17A的临床价值在某些研究中已得到初步验证,但其双刃剑作用也对治疗提出了挑战。在未来,需进一步探索IL-17A的精准调控策略,以平衡其促炎和保护作用,从而实现更有效的脓毒症干预。

6. 肿瘤坏死因子-α (TNF-α)与脓毒症严重程度评估及预后预测的关系

肿瘤坏死因子-α (TNF-α)是一种关键的促炎细胞因子,其在脓毒症中的作用机制复杂。早期动物实验显示,TNF-α水平与脓毒症死亡率无显著相关,可能在某些情况下起到适应性作用[47]。然而,临床研究表明,TNF-α在脓毒症严重程度及预后中具有重要作用[28]

研究表明,TNF-α水平随着脓毒症严重程度的增加而升高。在Sadaf Davoudian等[28]的研究中,急诊科入院的脓毒症和脓毒性休克患者第1天的TNF-α水平显著高于非脓毒症患者。此外,一项meta分析显示,与入院时相比,经治疗后的脓毒症生存组TNF-α水平显著降低,提示TNF-α水平的下降可能与更好的预后相关[48]。另一项meta分析进一步确认了TNF-α作为ICU脓毒症患者预后指标的价值[49]

动态监测研究也揭示了TNF-α的预测作用。Liuniu Xiao等[30]分析脓毒症患者入院后72小时的TNF-α水平变化,发现其与APACHE II和SOFA评分显著相关,可用于评估入院时病情严重程度。Jun Yin等[34]的单因素分析表明,TNF-α是脓毒症患者预后评估的独立指标,该结论在老年脓毒症患者中同样适用[26]

然而,TNF-α在脓毒症不同阶段和病理机制中的作用仍存在争议。例如,Amal A. Gharamti等发现TNF-α浓度与脓毒症死亡率相关,但与疾病严重程度、器官功能障碍或微生物学原因无关[50]。此外,研究表明,TNF-α升高与脓毒症相关脑功能障碍及多发伤患者的不良预后密切相关[51] [52]

7. γ-干扰素(IFN-γ)与脓毒症严重程度评估及预后预测的关系

γ-干扰素(IFN-γ)是一种重要的促炎细胞因子,主要由活化的T淋巴细胞、单核细胞及NK细胞分泌[53]。其主要作用包括激活免疫细胞功能、提高巨噬细胞的吞噬和杀菌能力,以及增强病原体清除能力[10] [54]。此外,IFN-γ的作用可能与遗传多态性密切相关。例如,-1616 TT基因型与较轻的脓毒症严重程度相关,并可防止较高的APACHE II和SOFA评分,而TAC单倍体型则可能阻止脓毒症进展为严重脓毒症[55]

IFN-γ在脓毒症的临床研究中展现出重要作用。一项研究表明,早产儿脓毒症患者静脉血中IFN-γ浓度显著升高,因此IFN-γ可作为预测和诊断早产儿脓毒症的潜在生物标志物[56]。另一项针对141例严重脓毒症或脓毒性休克患者的回顾性队列研究发现,合并中性粒细胞减少的患者IFN-γ水平显著升高,且死亡组的IFN-γ浓度高于生存组[37]。此外,15名接受IFN-γ辅助免疫治疗的脓毒症患者中,HLA-DR的表达显著增加,这表明IFN-γ在增强免疫功能、改善预后方面具有潜在价值[57]

然而,IFN-γ的作用呈现双刃剑效应。在脓毒症小鼠模型中,IFN-γ促进了腹腔内局部炎症反应,但IFN-γ缺陷小鼠的全身炎症反应较轻[58]。类似地,在脓毒症大鼠中,使用抗IFN-γ抗体可显著降低腹膜中的细菌载量,表明过量的IFN-γ可能加剧炎症损伤[59]

总体而言,IFN-γ在脓毒症中的角色既复杂又重要。未来研究需进一步探讨其作用机制及双刃剑效应,以优化其在辅助免疫治疗中的应用,平衡其促炎和保护作用,为脓毒症的个体化治疗提供新思路。

8. 讨论

脓毒症患者的免疫过程高度复杂,通常伴随着严重的细胞因子风暴。细胞因子风暴由中性粒细胞、巨噬细胞和NK细胞等免疫细胞的过度激活引发,导致炎症因子的过度释放和级联反应。这种失控的免疫反应可进一步诱发新的细胞因子释放,造成细胞和器官损伤。在脓毒性休克阶段,严重的细胞因子风暴和低容量灌注共同导致急性器官功能障碍,最终导致患者死亡。

细胞因子在脓毒症中的作用呈现典型的“双刃剑”效应。一方面,细胞因子参与免疫细胞的激活,增强机体对外来病原体的抵御能力,通过炎症反应,限制组织损伤和增加局部凝血作用;另一方面,过量的细胞因子释放可导致全身炎症反应综合征(SIRS)和多器官功能衰竭(MODS),从而破坏免疫反应的正常调节并诱发病理性炎症反应,如毛细血管渗漏和组织损伤。后期出现的免疫抑制也可能是一方面原因。具体而言,IL-4主要在脓毒症早期通过促进抗炎细胞因子的释放、抑制促炎因子发挥作用。然而,当前研究尚未明确IL-4与脓毒症严重程度评估及预后预测的具体关系,需要更大样本的研究支持。在临床中,针对细胞因子介导的过度炎症反应,可采用糖皮质激素抑制炎症反应或探索细胞因子拮抗治疗。

IL-6是早期脓毒症诊断的敏感指标,其水平升高通常先于C反应蛋白(CRP)。研究表明,IL-6不仅在老年脓毒症患者中表现出良好的预后价值,也在新生儿脓毒症中被证实可预测病情严重程度和进展。相比之下,IL-10作为一种抗炎细胞因子,能够抑制炎性细胞因子和趋化因子的分泌,维持免疫平衡。尽管IL-10的升高与脓毒症的严重程度和不良预后相关,但其潜在的保护作用也为治疗提供了可能的方向。

IL-17是一种促炎细胞因子,具有典型的双重作用。一方面,其可通过促进中性粒细胞的成熟和活性增强抗感染能力;另一方面,过量的IL-17分泌会引发靶器官损伤。TNF-α在脓毒症的早期诊断中表现出较高的应用价值,能够帮助临床医生快速判断患者病情变化。IFN-γ则是一种重要的免疫调节因子,在严重脓毒症和脓毒性休克患者中显著升高。其作用可能与不同的基因型相关,提示个体化治疗的重要性。

综上所述,目前已有研究表明IL-6、IL-10、TNF-α和IFN-γ对脓毒症严重程度及预后具有较高的预测价值。其中,IL-17的双重作用需谨慎对待,而IL-4的具体作用仍需进一步研究,导致上述二者实验结论未能一致的原因,可能与研究的样本量较少有关,因而针对二者进行大样本、多中心的研究不失为一种解决方案。当前的研究仍存在一定的争议点,如脓毒症的病程中存在“炎症风暴”与“免疫抑制”交替的动态变化,而传统研究多聚焦于某一时点的细胞因子水平,这种静态分析无法准确反映病程发展。动态监测的标准化和可行性仍是挑战。对脓毒症确诊后进行连续的细胞因子监测,采取统计学方法,找出脓毒症炎症反应由适度到过度的拐点,以及在拐点后进行相应的人工干预控制炎症反应,是未来研究的一个方向。未来,针对细胞因子的动态监测及其在个体化治疗中的应用探索,将为脓毒症的严重程度评估及预后预测提供新的思路。

基金项目

广西科技计划项目(桂科AB22080088)、广西医疗卫生重点(培育)学科建设项目[桂卫科教发(2019)19号]。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Fleischmann-Struzek, C. and Rudd, K. (2023) Challenges of Assessing the Burden of Sepsis. Medizinische Klinik-Intensivmedizin und Notfallmedizin, 118, 68-74.
https://doi.org/10.1007/s00063-023-01088-7
[2] Rudd, K.E., Johnson, S.C., Agesa, K.M., Shackelford, K.A., Tsoi, D., Kievlan, D.R., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211.
https://doi.org/10.1016/s0140-6736(19)32989-7
[3] Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[4] Liu, C., Chu, D., Kalantar‐Zadeh, K., George, J., Young, H.A. and Liu, G. (2021) Cytokines: From Clinical Significance to Quantification. Advanced Science, 8, e2004433.
https://doi.org/10.1002/advs.202004433
[5] Jarczak, D. and Nierhaus, A. (2022) Cytokine Storm—Definition, Causes, and Implications. International Journal of Molecular Sciences, 23, Article No. 11740.
https://doi.org/10.3390/ijms231911740
[6] Assinger, A., Schrottmaier, W.C., Salzmann, M. and Rayes, J. (2019) Platelets in Sepsis: An Update on Experimental Models and Clinical Data. Frontiers in Immunology, 10, Article No. 1687.
https://doi.org/10.3389/fimmu.2019.01687
[7] Shubin, N.J., Monaghan, S.F. and Ayala, A. (2011) Anti-Inflammatory Mechanisms of Sepsis. In: Contributions to Microbiology, S. Karger AG, 108-124.
https://doi.org/10.1159/000324024
[8] Clere-Jehl, R., Mariotte, A., Meziani, F., Bahram, S., Georgel, P. and Helms, J. (2020) JAK-STAT Targeting Offers Novel Therapeutic Opportunities in Sepsis. Trends in Molecular Medicine, 26, 987-1002.
https://doi.org/10.1016/j.molmed.2020.06.007
[9] Chousterman, B.G., Swirski, F.K. and Weber, G.F. (2017) Cytokine Storm and Sepsis Disease Pathogenesis. Seminars in Immunopathology, 39, 517-528.
https://doi.org/10.1007/s00281-017-0639-8
[10] Liu, D., Huang, S., Sun, J., Zhang, H., Cai, Q., Gao, C., et al. (2022) Sepsis-Induced Immunosuppression: Mechanisms, Diagnosis and Current Treatment Options. Military Medical Research, 9, Article No. 56.
https://doi.org/10.1186/s40779-022-00422-y
[11] Wang, X., Zhang, H., Guo, R., Li, X., Liu, H., Wang, Z., et al. (2021) MicroRNA-223 Modulates the IL-4-Medicated Macrophage M2-Type Polarization to Control the Progress of Sepsis. International Immunopharmacology, 96, Article ID: 107783.
https://doi.org/10.1016/j.intimp.2021.107783
[12] Hotchkiss, R.S., Monneret, G. and Payen, D. (2013) Sepsis-Induced Immunosuppression: From Cellular Dysfunctions to Immunotherapy. Nature Reviews Immunology, 13, 862-874.
https://doi.org/10.1038/nri3552
[13] Schrijver, D.P., Röring, R.J., Deckers, J., de Dreu, A., Toner, Y.C., Prevot, G., et al. (2023) Resolving Sepsis-Induced Immunoparalysis via Trained Immunity by Targeting Interleukin-4 to Myeloid Cells. Nature Biomedical Engineering, 7, 1097-1112.
https://doi.org/10.1038/s41551-023-01050-0
[14] Song, Z., Zhang, J., Zhang, X., Li, D., Wang, H., Xu, X., et al. (2014) Interleukin 4 Deficiency Reverses Development of Secondary Pseudomonas Aeruginosa Pneumonia during Sepsis-Associated Immunosuppression. Journal of Infectious Diseases, 211, 1616-1627.
https://doi.org/10.1093/infdis/jiu668
[15] Wu, H., Wu, C., Chen, C., Chung, K., Tseng, J., Liu, Y., et al. (2008) The Interleukin-4 Expression in Patients with Severe Sepsis. Journal of Critical Care, 23, 519-524.
https://doi.org/10.1016/j.jcrc.2007.11.008
[16] Hynninen, M., Pettilä, V., Takkunen, O., Orko, R., Jansson, S., Kuusela, P., et al. (2003) Predictive Value of Monocyte Histocompatibility Leukocyte Antigen-Dr Expression and Plasma Interleukin-4 and-10 Levels in Critically Ill Patients with Sepsis. Shock, 20, 1-4.
https://doi.org/10.1097/01.shk.0000068322.08268.b4
[17] Li, J. (2023) Over-Expression of Programmed Death-Ligand 1 and Programmed Death-1 on Antigen-Presenting Cells as a Predictor of Organ Dysfunction and Mortality during Early Sepsis: A Prospective Cohort Study. World Journal of Emergency Medicine, 14, 179-185.
https://doi.org/10.5847/wjem.j.1920-8642.2023.041
[18] Bozza, F.A., Salluh, J.I., Japiassu, A.M., Soares, M., Assis, E.F., Gomes, R.N., et al. (2007) Cytokine Profiles as Markers of Disease Severity in Sepsis: A Multiplex Analysis. Critical Care, 11, R49.
https://doi.org/10.1186/cc5783
[19] Ruiz-Rodríguez, J.C., Plata-Menchaca, E.P., Chiscano-Camón, L., Ruiz-Sanmartin, A. and Ferrer, R. (2022) Blood Purification in Sepsis and COVID-19: What’s New in Cytokine and Endotoxin Hemoadsorption. Journal of Anesthesia, Analgesia and Critical Care, 2, Article No. 15.
https://doi.org/10.1186/s44158-022-00043-w
[20] Mirzarahimi, M., Barak, M., Eslami, A. and Enteshari-Moghaddam, A. (2017) The Role of Interleukin-6 in the Early Diagnosis of Sepsis in Premature Infants. Pediatric Reports, 9, Article No. 7305.
https://doi.org/10.4081/pr.2017.7305
[21] Reis Machado, J., Soave, D.F., da Silva, M.V., de Menezes, L.B., Etchebehere, R.M., Monteiro, M.L.G.d.R., et al. (2014) Neonatal Sepsis and Inflammatory Mediators. Mediators of Inflammation, 2014, Article ID: 269681.
https://doi.org/10.1155/2014/269681
[22] Yende, S., Kellum, J.A., Talisa, V.B., Peck Palmer, O.M., Chang, C.H., Filbin, M.R., et al. (2019) Long-Term Host Immune Response Trajectories among Hospitalized Patients with Sepsis. JAMA Network Open, 2, e198686.
https://doi.org/10.1001/jamanetworkopen.2019.8686
[23] Matsumoto, H., Ogura, H., Shimizu, K., Ikeda, M., Hirose, T., Matsuura, H., et al. (2018) The Clinical Importance of a Cytokine Network in the Acute Phase of Sepsis. Scientific Reports, 8, Article No. 13995.
https://doi.org/10.1038/s41598-018-32275-8
[24] Memar, M.Y., Alizadeh, N., Varshochi, M. and Kafil, H.S. (2017) Immunologic Biomarkers for Diagnostic of Early-Onset Neonatal Sepsis. The Journal of Maternal-Fetal & Neonatal Medicine, 32, 143-153.
https://doi.org/10.1080/14767058.2017.1366984
[25] da Fonseca, F.A.M., Espósito, A.P., da Silva, M.H.B.N., Nunes, V.S., Cazita, P.M., Ferreira, G.S., et al. (2022) Monocyte-to-HDL Ratio and Non-HDL Cholesterol Were Predictors of Septic Shock in Newborns. Clinics, 77, Article ID: 100111.
https://doi.org/10.1016/j.clinsp.2022.100111
[26] Kumar, A.T., Sudhir, U., Punith, K., Kumar, V.N.R. and Rao, M.Y. (2009) Cytokine Profile in Elderly Patients with Sepsis. Indian Journal of Critical Care Medicine, 13, 74-78.
https://doi.org/10.4103/0972-5229.56052
[27] Matsuura, R., Komaru, Y., Miyamoto, Y., Yoshida, T., Yoshimoto, K., Hamasaki, Y., et al. (2020) Different Biomarker Kinetics in Critically Ill Patients with High Lactate Levels. Diagnostics, 10, Article No. 454.
https://doi.org/10.3390/diagnostics10070454
[28] Davoudian, S., Piovani, D., Desai, A., Mapelli, S.N., Leone, R., Sironi, M., et al. (2022) A Cytokine/PTX3 Prognostic Index as a Predictor of Mortality in Sepsis. Frontiers in Immunology, 13, Article ID: 979232.
https://doi.org/10.3389/fimmu.2022.979232
[29] Hess, D.A., Trac, J.Z., Glazer, S.A., Terenzi, D.C., Quan, A., Teoh, H., et al. (2020) Vascular Risk Reduction in Obesity through Reduced Granulocyte Burden and Improved Angiogenic Monocyte Content Following Bariatric Surgery. Cell Reports Medicine, 1, Article ID: 100018.
https://doi.org/10.1016/j.xcrm.2020.100018
[30] Xiao, L., Ran, X., Zhong, Y., Le, Y. and Li, S. (2022) A Combined Ratio Change of Inflammatory Biomarkers at 72 h Could Predict the Severity and Prognosis of Sepsis from Pulmonary Infections. Immunobiology, 227, Article ID: 152290.
https://doi.org/10.1016/j.imbio.2022.152290
[31] Rau, M., Schiller, M., Krienke, S., Heyder, P., Lorenz, H. and Blank, N. (2010) Clinical Manifestations but Not Cytokine Profiles Differentiate Adult-Onset Still’s Disease and Sepsis. The Journal of Rheumatology, 37, 2369-2376.
https://doi.org/10.3899/jrheum.100247
[32] Hugo Montes, A., Valle-Garay, E., Martin, G., Collazos, J., Alvarez, V., Meana, A., et al. (2021) The tnf-α (−238 G/A) Polymorphism Could Protect against Development of Severe Sepsis. Innate Immunity, 27, 409-420.
https://doi.org/10.1177/17534259211036186
[33] Chaudhry, H., Zhou, J., Zhong, Y., et al. (2013) Role of Cytokines as a Double-Edged Sword in Sepsis. In Vivo, 27, 669-684.
[34] Yin, J., Chen, Y., Huang, J., Yan, L., Kuang, Z., Xue, M., et al. (2021) Prognosis-Related Classification and Dynamic Monitoring of Immune Status in Patients with Sepsis: A Prospective Observational Study. World Journal of Emergency Medicine, 12, 185-191.
https://doi.org/10.5847/wjem.j.1920-8642.2021.03.004
[35] Lu, X., Song, C., Wang, P., Li, L., Lin, L., Jiang, S., et al. (2023) The Clinical Trajectory of Peripheral Blood Immune Cell Subsets, T-Cell Activation, and Cytokines in Septic Patients. Inflammation Research, 73, 145-155.
https://doi.org/10.1007/s00011-023-01825-w
[36] Gogos, C.A., Drosou, E., Bassaris, H.P. and Skoutelis, A. (2000) Pro‐ versus Anti‐Inflammatory Cytokine Profile in Patients with Severe Sepsis: A Marker for Prognosis and Future Therapeutic Options. The Journal of Infectious Diseases, 181, 176-180.
https://doi.org/10.1086/315214
[37] Yin, F., Xi, Y., Wang, Y., Li, B., Qian, J., Ren, H., et al. (2021) The Clinical Outcomes and Biomarker Features of Severe Sepsis/Septic Shock with Severe Neutropenia: A Retrospective Cohort Study. Translational Pediatrics, 10, 464-473.
https://doi.org/10.21037/tp-20-230
[38] Zhi, F., Ma, J., Ji, D., Bao, J. and Li, Q. (2024) Causal Associations between Circulating Cytokines and Risk of Sepsis and Related Outcomes: A Two-Sample Mendelian Randomization Study. Frontiers in Immunology, 15, Article ID: 1336586.
https://doi.org/10.3389/fimmu.2024.1336586
[39] Vogeler, M., Schenz, J., Müller, E., Weigand, M. and Fischer, D. (2024) The Immune System of the Critically Ill Patient. Anasthesiol Intensivmed Notfallmed Schmerzther, 59, 96-112.
[40] Nesseler, N., Martin-Chouly, C., Perrichet, H., Ross, J.T., Rousseau, C., Sinha, P., et al. (2019) Low Interleukin-10 Release after ex Vivo Stimulation of Whole Blood Is Associated with Persistent Organ Dysfunction in Sepsis: A Prospective Observational Study. Anaesthesia Critical Care & Pain Medicine, 38, 485-491.
https://doi.org/10.1016/j.accpm.2019.01.009
[41] Amatya, N., Garg, A.V. and Gaffen, S.L. (2017) IL-17 Signaling: The Yin and the Yang. Trends in Immunology, 38, 310-322.
https://doi.org/10.1016/j.it.2017.01.006
[42] Freitas, A., Alves-Filho, J.C., Victoni, T., Secher, T., Lemos, H.P., Sônego, F., et al. (2009) IL-17 Receptor Signaling Is Required to Control Polymicrobial Sepsis. The Journal of Immunology, 182, 7846-7854.
https://doi.org/10.4049/jimmunol.0803039
[43] Pool, R., Gomez, H. and Kellum, J.A. (2018) Mechanisms of Organ Dysfunction in Sepsis. Critical Care Clinics, 34, 63-80.
https://doi.org/10.1016/j.ccc.2017.08.003
[44] Zhou, K.L., He, Y.R., Liu, Y.J., Liu, Y.M., Xuan, L.Z., Gu, Z.Y., et al. (2023) Il‐17a/p38 Signaling Pathway Induces Alveolar Epithelial Cell Pyroptosis and Hyperpermeability in Sepsis‐Induced Acute Lung Injury by Activating NLRP3 Inflammasome. Advanced Biology, 7, e2300220.
https://doi.org/10.1002/adbi.202300220
[45] Rendon, J.L. and Choudhry, M.A. (2012) Th17 Cells: Critical Mediators of Host Responses to Burn Injury and Sepsis. Journal of Leukocyte Biology, 92, 529-538.
https://doi.org/10.1189/jlb.0212083
[46] Jin, H., Wei, W., Zhao, Y., Ma, A., Sun, K., Lin, X., et al. (2023) The Roles of Interleukin-17a in Risk Stratification and Prognosis of Patients with Sepsis-Associated Acute Kidney Injury. Kidney Research and Clinical Practice, 42, 742-750.
https://doi.org/10.23876/j.krcp.22.063
[47] Kassasseya, C., Torsin, L.I., Musset, C., Benhamou, M., Chaudry, I.H., Cavaillon, J., et al. (2024) Divergent Effects of Tumor Necrosis Factor (TNF) in Sepsis: A Meta-Analysis of Experimental Studies. Critical Care, 28, Article No. 293.
https://doi.org/10.1186/s13054-024-05057-0
[48] Li, X., Liu, M., Fu, Y., Jiang, Y. and Zhang, Z. (2023) Alterations in Levels of Cytokine Following Treatment to Predict Outcome of Sepsis: A Meta-Analysis. Cytokine, 161, Article ID: 156056.
https://doi.org/10.1016/j.cyto.2022.156056
[49] Li, J., Xiao, C. and Zheng, H. (2024) Prognostic Value of Inflammatory Cytokine Detection for Sepsis Patients in ICU: A Meta-Analysis. American Journal of Translational Research, 16, 2612-2621.
https://doi.org/10.62347/nylm7723
[50] Gharamti, A.A., Samara, O., Monzon, A., Montalbano, G., Scherger, S., DeSanto, K., et al. (2022) Proinflammatory Cytokines Levels in Sepsis and Healthy Volunteers, and Tumor Necrosis Factor-Alpha Associated Sepsis Mortality: A Systematic Review and Meta-Analysis. Cytokine, 158, Article ID: 156006.
https://doi.org/10.1016/j.cyto.2022.156006
[51] Orhun, G., Tüzün, E., Özcan, P.E., et al. (2019) Association between Inflammatory Markers and Cognitive Outcome in Patients with Acute Brain Dysfunction Due to Sepsis. Noro Psikiyatri Arsivi, 56, 63-70.
[52] Paraschos, M.D., Patrani, M., Pistiki, A., Katsenos, C., Tsaganos, T., Netea, M.G., et al. (2015) Defective Cytokine Production Early after Multiple Traumas: Modulation in Severe Sepsis. Cytokine, 76, 222-226.
https://doi.org/10.1016/j.cyto.2015.05.021
[53] Li, Q., Wu, C., Liu, Z., Zhang, H., Du, Y., Liu, Y., et al. (2019) Increased TLR4 Expression Aggravates Sepsis by Promoting IFN-γ Expression in CD38(-/-) Mice. Journal of Immunology Research, 2019, Article ID: 3737890.
https://doi.org/10.1155/2019/3737890
[54] Stassen, N.A., Leslie-Norfleet, L.A., Robertson, A.M., Eichenberger, M.R. and Polk, H.C. (2002) Interferon-γ Gene Polymorphisms and the Development of Sepsis in Patients with Trauma. Surgery, 132, 289-292.
https://doi.org/10.1067/msy.2002.127167
[55] Wang, D., Zhong, X., Huang, D., Chen, R., Bai, G., Li, Q., et al. (2014) Functional Polymorphisms of Interferon-Gamma Affect Pneumonia-Induced Sepsis. PLOS ONE, 9, e87049.
https://doi.org/10.1371/journal.pone.0087049
[56] Vucic, J., Vucic, M., Stankovic, T., Stamenkovic, H., Stankovic, S. and Zlatanovic, D. (2021) Potential Role of IFN-γ and IL-5 in Sepsis Prediction of Preterm Neonates. Open Medicine, 16, 139-145.
https://doi.org/10.1515/med-2021-0206
[57] Payen, D., Faivre, V., Miatello, J., Leentjens, J., Brumpt, C., Tissières, P., et al. (2019) Multicentric Experience with Interferon Gamma Therapy in Sepsis Induced Immunosuppression. a Case Series. BMC Infectious Diseases, 19, Article No. 931.
https://doi.org/10.1186/s12879-019-4526-x
[58] Romero, C.R., Herzig, D.S., Etogo, A., Nunez, J., Mahmoudizad, R., Fang, G., et al. (2010) The Role of Interferon-γ in the Pathogenesis of Acute Intra-Abdominal Sepsis. Journal of Leukocyte Biology, 88, 725-735.
https://doi.org/10.1189/jlb.0509307
[59] Qiu, G., Wang, C., Smith, R., Harrison, K. and Yin, K. (2001) Role of IFN-γ in Bacterial Containment in a Model of Intra-Abdominal Sepsis. Shock, 16, 425-429.
https://doi.org/10.1097/00024382-200116060-00004