血浆游离DNA宏基因组二代测序在感染性疾病诊断中的应用
The Application of Plasma Cell-Free DNA Metagenomic Next-Generation Sequencing in Infectious Diseases
DOI: 10.12677/acm.2025.152383, PDF, HTML, XML,   
作者: 纪雪莲, 徐绣宇*:重庆医科大学附属第一医院医学检验科,重庆
关键词: 宏基因组二代测序血浆游离DNA感染Metagenomic Next-Generation Sequencing Plasma Cell-Free DNA Infection
摘要: 感染性疾病是临床常见疾病,快速明确病原微生物对于指导合理治疗方案至关重要。传统的病原体检测方法耗时长、阳性率低,难以满足临床需求。宏基因组二代测序(metagenomic next-generation sequencing, mNGS)作为一种新型病原检测方法,不依赖于传统的微生物培养,也不需要特异性扩增,且其检测范围广泛,可检测细菌、病毒、真菌、寄生虫、罕见病原体,甚至未知病原体,近年来,已广泛应用于临床病原学诊断。尤其是基于血浆游离DNA (cell-free DNA, cfDNA)的mNGS检测,因其采样便捷、无创性及对全身感染的反映能力,已在临床诊断中得到了广泛的关注和应用。本文综述了血浆cfDNA mNGS在感染性疾病诊断中的临床价值、研究进展及未来展望,旨在为相关研究和临床实践提供参考。
Abstract: Infectious diseases are common in clinical practice, and the rapid identification of causative pathogens is crucial for guiding rational treatment strategies. Conventional microbiological tests are time-consuming and have low positivity rates, making it difficult to meet clinical needs. Metagenomic next-generation sequencing (mNGS), as an emerging pathogen detection method, does not rely on conventional microbial culture or specific amplification. With its broad detection scope, mNGS can identify bacteria, viruses, fungi, parasites, rare pathogens, and even unknown pathogens. In recent years, it has been widely applied in clinical pathogen diagnosis. In particular, plasma cell-free DNA (cfDNA) mNGS has gained significant attention and widespread clinical application due to its ease of sampling, noninvasive nature, and ability to reflect systemic infections. This review summarizes the clinical value, recent advances, and future perspectives of plasma cfDNA mNGS in the diagnosis of infectious diseases, aiming to provide insights for further research and clinical practice.
文章引用:纪雪莲, 徐绣宇. 血浆游离DNA宏基因组二代测序在感染性疾病诊断中的应用[J]. 临床医学进展, 2025, 15(2): 590-597. https://doi.org/10.12677/acm.2025.152383

1. 引言

感染性疾病一直以来都是威胁人类健康和生命的严重问题,根据世界卫生组织(World Health Organization, WHO)的数据,全球每年约1500万人死于感染性疾病[1]。目前全球感染性疾病现状严峻,病原体呈现多样化和复杂化,如何及时准确地实现对病原体的检测是临床微生物学领域面临的严峻挑战。然而,传统的微生物检测(conventional microbiological test, CMT)在灵敏性、特异性和时间效率上存在一定的局限性。例如,培养耗时长、阳性率低、易受抗菌药物影响,聚合酶链式反应(polymerase chain reaction, PCR)灵敏度和特异性高,但依赖于预设的探针或引物,无法检测未知的病原体,难以满足复杂感染场景的需求[2]

近年来,宏基因组二代测序(metagenomic next-generation sequencing, mNGS)的出现为感染性疾病的病原体检测提供了一种全新的解决方案。mNGS无需预设,能够一次性对样本中的所有的核酸序列进行测序,同时检测包括细菌、真菌、病毒和寄生虫在内的所有病原体的序列[3]。其作为一种新的检测技术,近年来已广泛用于临床病原学诊断,尤其在不明原因发热和复杂感染病例中显示出重要的诊断价值[4]。mNGS可通过多种样本进行检测,包括血浆、脑脊液、胸腹水、呼吸道分泌物、尿液、粪便和组织等。其中血浆样本因其采集便捷、具有无创性、适用范围广,成为mNGS检测的重要目标样本。

本综述旨在系统总结血浆病原宏基因组二代测序在感染诊断中的临床应用,分析其技术优势与局限,并探讨未来优化方向和研究前景。

2. 感染性疾病及检测现状

感染性疾病是指细菌、病毒和真菌等病原体及其产物所引起的局部或全身性炎症或器官功能障碍,是导致全球范围内高发病率和死亡率的重要公共卫生问题。据统计2019年33种细菌感染导致约770万人死亡[5]。2020年至2021年间,全球约有1590万人因新型冠状病毒肺炎(Corona Virus Disease 2019, COVID-19)大流行而死亡[6]。全世界每年约655万例急性真菌相关病例,导致约375万人死亡[7]。根据WHO发布的数据,2023年全球有59.7万人因感染疟疾而死亡[8],全球每年血吸虫病死亡人数估计为11,792人[9]

目前病原体的实验室检测主要包括病原学[9]检测、免疫学检测和分子生物学检测。病原学检测包括肉眼观察、显微镜直接镜检(Direct Microscopic Examination, DME)、培养等。肉眼观察主要是用于寄生虫感染,直观、准确但依赖经验判断,且灵敏度低重复性差。DME快速便捷,操作简单,但特异性和敏感性低,适用于筛查。培养是细菌和真菌病原体检测的金标准,但阳性率低,周期长,且存在很多难以培养的病原微生物,难以鉴定多重感染。免疫学检测是通过抗原和抗体检测,耗时短,部分检测敏感性和特异性较高,但容易受到免疫状态影响,且干扰因素较多,无法区分现症感染和既往感染,并且受限于已有的抗体种类。传统分子生物学检测包括探针杂交、扩增、测序和质谱,具有高灵敏度和特异性,但仅适用于已知靶标检测,可用范围较窄。

宏基因组二代测序(Metagenomic next-generation sequencing, mNGS)是近年来新兴的检测技术,不依赖于传统的微生物培养,也无需特异性扩增,可直接提取临床样本中的核酸进行高通量测序,能快速、准确、全面地检测样本中所有的病原体,尤其适用罕见、新发和混合感染的检测[4]。其灵敏度和特异度均高于传统检测方法,检测周转时间(turn-around time, TAT)约2~3天,比传统培养技术有所缩短[10]。随着检测成本的下降,mNGS已广泛用于感染性疾病的辅助诊断,包括血流感染、神经系统感染、心内膜炎、呼吸道感染、关节感染、眼部感染及组织感染等。

3. 血浆游离DNA (Cell-Free DNA, cfDNA)宏基因组二代测序

cfDNA是指存在于体液中的游离于细胞外的DNA片段。当机体存在物理性损伤(如侵入性手术或意外创伤)或局部感染(如肺炎、脓肿)时,微生物进入血液中,经过循环核酸外切酶降解后,形成小的DNA片段,即血浆微生物游离DNA (microbial cell-free DNA, mcfDNA) [11]。血液流经全身,不同感染部位也可将足量的病原体核酸释放入血液,可用于诊断难以取样或深部的感染(心内膜炎、侵袭性真菌感染等) [12]

2019年,Blauwkamp及其同事验证了一种基于血浆mcfDNA的测序检测方法,称为Karius Test,可检测1250种细菌,DNA病毒,真菌和真核寄生虫[13]。具体步骤如下:采集患者5 mL血液至专用采血管中,预离心后将样本送至实验室进行核酸提取及文库制备。随后,利用高通量测序仪(如Illumina NextSeq500)对样本进行测序。测序完成后,对数据进行质量控制、修剪和过滤,去除低质量序列和污染源,并将其与标准化的微生物数据库进行比对,分析样本中微生物的种类及其相对丰度。最后,结合患者的临床信息,对检测结果进行综合解读,以提供精准的诊断和治疗建议[13]。该技术在灵敏性、时间效率和临床结果方面相比传统诊断方法具有明显优势,减少了侵入性操作和诊断时间成本。自此之后,血浆mNGS的应用迅速扩大,成为感染诊断领域的重要工具。

4. 血浆cfDNA mNGS在感染性疾病中的应用

4.1. 血流感染

血流感染(Bloodstream Infection, BSI)是指病原微生物(如细菌、病毒、真菌或寄生虫)进入血液循环并在其中繁殖,引发全身性炎症反应的感染性疾病。BSI仍是临床上的主要挑战之一,在许多情况下会导致脓毒症甚至脓毒性休克[14]。对于脓毒症患者,早期有效的抗菌药物治疗至关重要,每延迟一个小时治疗,患者的死亡风险就会显著增加[15]。目前病原体鉴定的金标准仍是血培养,但存在周转时间长,敏感性低,非典型病原体无法培养等问题,血培养方法只能在不到20%的脓毒症病例中鉴定病原体[16]。Blauwkamp等对350例疑似脓毒症患者的血浆样本进行mNGS检测,与复合参考标准(包括培养、血清学和核酸检测结果及临床裁决)相比,其灵敏度为92.9%,特异度为62.7%,308例脓毒症患者中,血浆mNGS的病原体检出阳性率为85.6%,明显高于传统培养法的14.4% [13]。Pang F等对431例疑似BSI患者cfDNA mNGS进行了回顾性分析,结果显示mNGS对BSI灵敏度为93.5%,明显高于常规微生物检测的37.7% [10]。Goggin等的一项前瞻性研究中得出血浆mNGS对儿童白血病患者血流感染病原体诊断的灵敏度为75%,特异性为82% [17]。Hu B等对60例怀疑血流感染的重症患者进行研究,得出血浆mNGS的阳性率为68.3%,而血培养阳性率仅为16.7% [18]。尽管血浆mNGS在病原体检测中显示出高灵敏度和特异度,不同研究中报告的结果存在差异。这种差异可能是由于患者特征、实验设计、判读标准不同导致的。不同研究中患者的基础疾病、免疫状态可能显著影响结果。例如,免疫抑制患者中潜在病原体数量较低或更隐匿导致敏感性下降。血浆mNGS除了灵敏度和特异性较高,其检测的持续时间也更长,Eichenberger EM等研究表明mcfDNA在血流感染患者中的检测阳性持续时间显著长于传统血培养(15天vs. 2天) [19]

4.2. 下呼吸道感染

2019年全球疾病负担研究显示下呼吸道感染是发病率和死亡率最高的感染性疾病[20]。引起下呼吸道感染的病原体多种多样,传统的检测方法难以满足临床需要,Qu J等的一项前瞻性研究发现传统检测方法(包括普通培养、抗原检测和PCR检测)对重症社区获得性肺炎的阳性率仅有40.8%,使用mNGS后阳性率提升至74.2% [21]。相比血浆mNGS,纤支镜灌洗液(bronchoalveolar lavage fluid, BALF) mNGS在肺部感染诊断中的敏感性显著更高,这是因为BALF直接采自感染部位,更能反映肺部的病原谱。例如,Chen X等研究显示,BALF mNGS对细菌和真菌的敏感性为81.3%,显著高于血浆mNGS的25.0% (p = 0.003) [22]。Huygens S等也发现,BALF mNGS对侵袭性真菌感染的敏感性(72.2%)高于血浆mNGS (44.0%),而血浆mNGS的特异性更高(96.6% vs. 83.3%) [23]。尽管BALF mNGS在灵敏度上占优,但其检出的病原体是否具有明确的临床意义仍需结合患者整体情况综合判断。相比之下,血浆mNGS的优势在于无创性及全身感染评估能力,在侵袭性真菌感染诊断中的作用尤为突出。Hill Jad等研究表明mcfDNA mNGS对肺部侵袭性真菌感染的灵敏度为51%,且对于非曲霉菌引起的肺部侵袭性真菌感染灵敏度更高(79%) [24]。而对于耶氏肺孢子菌肺炎(pneumocystis carinii pneumonia, PJP)的诊断,血浆mNGS和BALF mNGS检测的一致性为100% [25]。然而,血浆mNGS作为一种无创的诊断工具,尤其是在不适合侵入性操作的患者中,仍然具有重要的临床应用价值,为不能耐受支气管肺泡灌洗的患者提供了另一种检查选择,尤其是对于免疫力低下的患者[26] [27]

4.3. 感染性心内膜炎

感染性心内膜炎(infective endocarditis, IE)是指病原微生物直接感染引起心瓣膜或心室壁内膜引起的炎症。在过去30年来,IE的发病率及死亡率都急剧升高,2019年发病率为13.8例/100,000人,死亡人数达66,320人[28]。IE的主要诊断标准之一是血培养阳性,但培养阴性的心内膜炎(Culture-negative endocarditis, CNE)约占所有感染性心内膜炎病例的5%~55% [29]。也可通过瓣膜组织进行培养,但Zeng X等的一项前瞻性研究发现,99名IE患者中,瓣膜培养的阳性率仅有16.2%,低于血培养的29.3% [30]。而血浆mNGS因其高灵敏度和特异性,对不明原因的发热及感染性心内膜炎的诊断具有独特优势[31]。Kondo M等报道了1例CNE患者的血浆mNGS帮助快速诊断出致病菌并在瓣膜置换手术前指导了靶向治疗[32]。Li X等通过血浆mNGS协助诊断了1例临床表现不典型的曲霉菌心内膜炎(Aspergillus fumigatus endocarditis, AFE),指导了针对性治疗[28]。一项前瞻性研究发现mcfDNA和血培养关于IE的敏感度均为87%,而mcfDNA的阳性持续时间约为38.1天,远长于血培养的3.7天[33]。另一项前瞻性研究指出静脉血和动脉血mNGS对左侧感染性心内膜炎的病原体诊断(left-sided infective endocarditis, LSIE)阳性率显著高于血培养和瓣膜培养(43.0%, 49.4% vs. 32.9%, 19.0%, P < 0.001) [34]。除此之外,Eichenberger EM等还发现,IE患者在治疗后mcfDNA水平显著下降,说明血浆mNGS不仅能够协助IE病原体诊断,还能评估感染情况及监测治疗[33]

4.4. 腹腔感染

腹腔感染(intra-abdominal infection, IAI)是指发生在腹腔内或腹腔器官的感染性疾病,包括腹腔内脏器感染(如胃、肠、肝、胆囊、胰腺等)以及腹膜腔的感染。腹腔感染是脓毒症的常见原因,具有较高发病率和死亡率,是ICU患者中发病率和死亡率第二高的感染性疾病,仅次于肺部感染[35]。一项关于IAI引起脓毒症的前瞻性研究中发现,血浆mNGS的阳性率为76.7%,显著高于血浆标本CMT (1.6%)和腹腔引流液CMT (48.3%) [36]。Li D等研究发现mNGS的检测速度显著快于传统腹腔引流液培养(27.1小时vs. 68.9小时,p < 0.05) [37]。Hong D等对44例疑似感染性胰腺坏死(Infected pancreatic necrosis, IPN)患者进行的研究中,血浆mNGS阳性率为54.55%,其中83.33%的mNGS阳性病例与IPN引流培养结果一致[38]。Armstrong AE等在一名胰腺炎患者血浆mNGS中检出真菌,与胰腺假性囊肿液培养结果一致[39]。说明血浆mNGS可为腹腔感染患者提供早期、快速、非侵入性的病原学诊断。

4.5. 其他感染

除了以上部位感染,血浆mNGS对于全身其他部位感染均有诊断价值,包括泌尿系统感染[10] [37] [40],皮肤及软组织感染[39],肌肉骨骼感染[41],颅内感染[42]等,研究表明通过血浆mNGS对病原体进行检测能够避免侵入性操作,并且血浆mNGS检测的诊断率高于侵入性获得的标本[43]。血浆mNGS对罕见病原体感染的诊断具有重要作用,比如内脏利什曼原虫[44] [45],阿米巴脑炎[42],急性Q热[46],鼠型斑疹伤寒[47],耶氏肺孢子菌肺炎[48],弓形虫肺炎[49],沙眼衣原体尿路感染[40]等,并且对隐匿性感染和复杂感染的诊断具有明显优势[50]-[52]

5. 总结与展望

血浆cfDNA mNGS作为一种新兴的病原体检测技术,在感染性疾病的诊断中展现了巨大的潜力,有利于减少侵入性操作。然而,其在临床实践中的广泛应用仍面临诸多挑战,包括临床解读标准化不足,阳性结果致病性判断困难,测序过程复杂及成本高等问题。未来需要制定合适的临床解读标准,需要更多的临床研究探究血浆mNGS的成本效益以及对于感染性疾病临床治疗指导的价值。随着mNGS的应用增加及技术的不断改进,血浆cfDNA mNGS有望成为感染性疾病诊断的核心工具,为临床诊断和治疗提供更有价值的信息。

NOTES

*通讯作者。

参考文献

[1] WHO (2021) World Health Statistics 2021: Monitoring Health for the SDGs, Sustainable Development Goals.
https://www.who.int/publications/i/item/9789240027053
[2] Tsuchida, S., Umemura, H. and Nakayama, T. (2020) Current Status of Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) in Clinical Diagnostic Microbiology. Molecules, 25, Article 4775.
https://doi.org/10.3390/molecules25204775
[3] Gu, W., Miller, S. and Chiu, C.Y. (2019) Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annual Review of Pathology: Mechanisms of Disease, 14, 319-338.
https://doi.org/10.1146/annurev-pathmechdis-012418-012751
[4] Chiu, C.Y. and Miller, S.A. (2019) Clinical Metagenomics. Nature Reviews Genetics, 20, 341-355.
https://doi.org/10.1038/s41576-019-0113-7
[5] GBD 2019 Antimicrobial Resistance Collaborators (2022) Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet, 400, 2221-2248.
[6] GBD 2021 Demographics Collaborators (2024) Global Age-Sex-Specific Mortality, Life Expectancy, and Population Estimates in 204 Countries and territories and 811 Subnational Locations, 1950-2021, and the Impact of the COVID-19 Pandemic: A Comprehensive Demographic Analysis for the Global Burden of Disease Study 2021. Lancet, 403, 1989-2056.
[7] Ikuta, K.S., Meštrović, T. and Naghavi, M. (2024) Global Incidence and Mortality of Severe Fungal Disease. The Lancet Infectious Diseases, 24, e268.
https://doi.org/10.1016/s1473-3099(24)00102-6
[8] World Health Organization (2024) World Malaria Report 2024.
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2024
[9] World Health Organization (2023) Schistosomiasis.
https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
[10] Pang, F., Xu, W., Zhao, H., Chen, S., Tian, Y., Fu, J., et al. (2024) Comprehensive Evaluation of Plasma Microbial Cell-Free DNA Sequencing for Predicting Bloodstream and Local Infections in Clinical Practice: A Multicenter Retrospective Study. Frontiers in Cellular and Infection Microbiology, 13, Article 1256099.
https://doi.org/10.3389/fcimb.2023.1256099
[11] Mandel, P. and Metais, P. (1948) Les acides nucléiques du plasma sanguin chez l’homme [Nuclear Acids in Human Blood Plasma]. Comptes rendus des seances de la Societe de biologie et de ses filiales, 142, 241-243.
[12] Chien, J., Yu, C. and Hsueh, P. (2022) Utility of Metagenomic Next-Generation Sequencing for Etiological Diagnosis of Patients with Sepsis in Intensive Care Units. Microbiology Spectrum, 10, e0074622.
https://doi.org/10.1128/spectrum.00746-22
[13] Blauwkamp, T.A., Thair, S., Rosen, M.J., Blair, L., Lindner, M.S., Vilfan, I.D., et al. (2019) Analytical and Clinical Validation of a Microbial Cell-Free DNA Sequencing Test for Infectious Disease. Nature Microbiology, 4, 663-674.
https://doi.org/10.1038/s41564-018-0349-6
[14] Gotts, J.E. and Matthay, M.A. (2016) Sepsis: Pathophysiology and Clinical Management. BMJ, 353, i1585.
https://doi.org/10.1136/bmj.i1585
[15] Ferrer, R., Martin-Loeches, I., Phillips, G., Osborn, T.M., Townsend, S., Dellinger, R.P., et al. (2014) Empiric Antibiotic Treatment Reduces Mortality in Severe Sepsis and Septic Shock from the First Hour: Results from a Guideline-Based Performance Improvement Program. Critical Care Medicine, 42, 1749-1755.
https://doi.org/10.1097/ccm.0000000000000330
[16] Miller, J.M., Binnicker, M.J., Campbell, S., Carroll, K.C., Chapin, K.C., Gilligan, P.H., et al. (2018) A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases: 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiologya. Clinical Infectious Diseases, 67, e1-e94.
https://doi.org/10.1093/cid/ciy381
[17] Goggin, K.P., Gonzalez-Pena, V., Inaba, Y., Allison, K.J., Hong, D.K., Ahmed, A.A., et al. (2020) Evaluation of Plasma Microbial Cell-Free DNA Sequencing to Predict Bloodstream Infection in Pediatric Patients with Relapsed or Refractory Cancer. JAMA Oncology, 6, 552-556.
https://doi.org/10.1001/jamaoncol.2019.4120
[18] Hu, B., Tao, Y., Shao, Z., Zheng, Y., Zhang, R., Yang, X., et al. (2021) A Comparison of Blood Pathogen Detection among Droplet Digital PCR, Metagenomic Next-Generation Sequencing, and Blood Culture in Critically Ill Patients with Suspected Bloodstream Infections. Frontiers in Microbiology, 12, Article 641202.
https://doi.org/10.3389/fmicb.2021.641202
[19] Eichenberger, E.M., de Vries, C.R., Ruffin, F., Sharma-Kuinkel, B., Park, L., Hong, D., et al. (2021) Microbial Cell-Free DNA Identifies Etiology of Bloodstream Infections, Persists Longer than Conventional Blood Cultures, and Its Duration of Detection Is Associated with Metastatic Infection in Patients with staphylococcus Aureus and Gram-Negative Bacteremia. Clinical Infectious Diseases, 74, 2020-2027.
https://doi.org/10.1093/cid/ciab742
[20] Vos, T., Lim, S.S., Abbafati, C., Abbas, K.M., Abbasi, M., Abbasifard, M., et al. (2020) Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet, 396, 1204-1222.
https://doi.org/10.1016/s0140-6736(20)30925-9
[21] Qu, J., Zhang, J., Chen, Y., Huang, Y., Xie, Y., Zhou, M., et al. (2022) Aetiology of Severe Community Acquired Pneumonia in Adults Identified by Combined Detection Methods: A Multi-Centre Prospective Study in China. Emerging Microbes & Infections, 11, 556-566.
https://doi.org/10.1080/22221751.2022.2035194
[22] Chen, X., Ding, S., Lei, C., Qin, J., Guo, T., Yang, D., et al. (2020) Blood and Bronchoalveolar Lavage Fluid Metagenomic Next-Generation Sequencing in Pneumonia. Canadian Journal of Infectious Diseases and Medical Microbiology, 2020, Article ID: 6839103.
https://doi.org/10.1155/2020/6839103
[23] Huygens, S., Schauwvlieghe, A., Wlazlo, N., Moors, I., Boelens, J., Reynders, M., et al. (2024) Diagnostic Value of Microbial Cell-Free DNA Sequencing for Suspected Invasive Fungal Infections: A Retrospective Multicenter Cohort Study. Open Forum Infectious Diseases, 11, ofae252.
https://doi.org/10.1093/ofid/ofae252
[24] Hill, J.A., Dalai, S.C., Hong, D.K., Ahmed, A.A., Ho, C., Hollemon, D., et al. (2020) Liquid Biopsy for Invasive Mold Infections in Hematopoietic Cell Transplant Recipients with Pneumonia through Next-Generation Sequencing of Microbial Cell-Free DNA in Plasma. Clinical Infectious Diseases, 73, e3876-e3883.
https://doi.org/10.1093/cid/ciaa1639
[25] Jiang, J., Bai, L., Yang, W., Peng, W., An, J., Wu, Y., et al. (2021) Metagenomic Next-Generation Sequencing for the Diagnosis of Pneumocystis Jirovecii Pneumonia in Non-HIV-Infected Patients: A Retrospective Study. Infectious Diseases and Therapy, 10, 1733-1745.
https://doi.org/10.1007/s40121-021-00482-y
[26] Niles, D.T., Revell, P.A., Ruderfer, D., Marquez, L., McNeil, J.C. and Palazzi, D.L. (2021) Clinical Impact of Plasma Metagenomic Next-Generation Sequencing in a Large Pediatric Cohort. Pediatric Infectious Disease Journal, 41, 166-171.
https://doi.org/10.1097/inf.0000000000003395
[27] Foong, K.S., Mabayoje, M. and AlMajali, A. (2022) Clinical Impact of Noninvasive Plasma Microbial Cell-Free Deoxyribonucleic Acid Sequencing for the Diagnosis and Management of Pneumocystis jirovecii Pneumonia: A Single-Center Retrospective Study. Open Forum Infectious Diseases, 9, ofac652.
https://doi.org/10.1093/ofid/ofac652
[28] Chen, H., Zhan, Y., Zhang, K., Gao, Y., Chen, L., Zhan, J., et al. (2022) The Global, Regional, and National Burden and Trends of Infective Endocarditis from 1990 to 2019: Results from the Global Burden of Disease Study 2019. Frontiers in Medicine, 9, Article 774224.
https://doi.org/10.3389/fmed.2022.774224
[29] Tattevin, P., Watt, G., Revest, M., Arvieux, C. and Fournier, P. (2015) Update on Blood Culture-Negative Endocarditis. Médecine et Maladies Infectieuses, 45, 1-8.
https://doi.org/10.1016/j.medmal.2014.11.003
[30] Zeng, X., Wu, J., Li, X., Xiong, W., Tang, L., Li, X., et al. (2022) Application of Metagenomic Next-Generation Sequencing in the Etiological Diagnosis of Infective Endocarditis during the Perioperative Period of Cardiac Surgery: A Prospective Cohort Study. Frontiers in Cardiovascular Medicine, 9, Article 811492.
https://doi.org/10.3389/fcvm.2022.811492
[31] Zhang, H., Liang, R., Zhu, Y., Hu, L., Xia, H., Li, J., et al. (2024) Metagenomic Next-Generation Sequencing of Plasma Cell-Free DNA Improves the Early Diagnosis of Suspected Infections. BMC Infectious Diseases, 24, Article No. 187.
https://doi.org/10.1186/s12879-024-09043-3
[32] Kondo, M., Dalai, S.C., Venkatasubrahmanyam, S., Eisenberg, N., Robinson, B.D., Westblade, L.F., et al. (2019) Diagnosis and Genotyping of Coxiella Burnetii Endocarditis in a Patient with Prosthetic Pulmonary Valve Replacement Using Next-Generation Sequencing of Plasma Microbial Cell-Free DNA. Open Forum Infectious Diseases, 6, ofz242.
https://doi.org/10.1093/ofid/ofz242
[33] Eichenberger, E.M., Degner, N., Scott, E.R., Ruffin, F., Franzone, J., Sharma-Kuinkel, B., et al. (2022) Microbial Cell-Free DNA Identifies the Causative Pathogen in Infective Endocarditis and Remains Detectable Longer than Conventional Blood Culture in Patients with Prior Antibiotic Therapy. Clinical Infectious Diseases, 76, e1492-e1500.
https://doi.org/10.1093/cid/ciac426
[34] Zeng, X., Liang, Y., Wang, H., Chen, J., Xu, Y., Ou, Q., et al. (2024) Detection of Pathogens from Venous or Arterial Blood of Patients with Left-Sided Infective Endocarditis by Metagenomic Next-Generation Sequencing: A Prospective Study. Clinica Chimica Acta, 552, Article ID: 117698.
https://doi.org/10.1016/j.cca.2023.117698
[35] Napolitano, L.M. (2022) Intra-abdominal Infections. Seminars in Respiratory and Critical Care Medicine, 43, 10-27.
https://doi.org/10.1055/s-0041-1741053
[36] Mao, J., Li, D., Zhang, D., Yang, Q., Long, Y. and Cui, N. (2024) Utility of Paired Plasma and Drainage Fluid MNGs in Diagnosing Acute Intra-Abdominal Infections with Sepsis. BMC Infectious Diseases, 24, Article No. 409.
https://doi.org/10.1186/s12879-024-09320-1
[37] Li, D., Gai, W., Zhang, J., Cheng, W., Cui, N. and Wang, H. (2022) Metagenomic Next-Generation Sequencing for the Microbiological Diagnosis of Abdominal Sepsis Patients. Frontiers in Microbiology, 13, Article 816631.
https://doi.org/10.3389/fmicb.2022.816631
[38] Hong, D., Wang, P., Zhang, J., Li, K., Ye, B., Li, G., et al. (2022) Plasma Metagenomic Next-Generation Sequencing of Microbial Cell-Free DNA Detects Pathogens in Patients with Suspected Infected Pancreatic Necrosis. BMC Infectious Diseases, 22, Article No. 675.
https://doi.org/10.1186/s12879-022-07662-2
[39] Armstrong, A.E., Rossoff, J., Hollemon, D., Hong, D.K., Muller, W.J. and Chaudhury, S. (2019) Cell‐Free DNA Next‐generation Sequencing Successfully Detects Infectious Pathogens in Pediatric Oncology and Hematopoietic Stem Cell Transplant Patients at Risk for Invasive Fungal Disease. Pediatric Blood & Cancer, 66, e27734.
https://doi.org/10.1002/pbc.27734
[40] Fung, M., Zompi, S., Seng, H., Hollemon, D., Parham, A., Hong, D.K., et al. (2018) Plasma Cell-Free DNA Next-Generation Sequencing to Diagnose and Monitor Infections in Allogeneic Hematopoietic Stem Cell Transplant Patients. Open Forum Infectious Diseases, 5, ofy301.
https://doi.org/10.1093/ofid/ofy301
[41] Wood, J.B., Russell, K., Davis, T.E., Park, S.Y., Smollin, M.J. and Schneider, J.G. (2024) Plasma Microbial Cell-Free DNA Sequencing for Pathogen Detection and Quantification in Children with Musculoskeletal Infections. Journal of the Pediatric Infectious Diseases Society, 13, 211-219.
https://doi.org/10.1093/jpids/piae012
[42] Kalyatanda, G., Rand, K., Lindner, M.S., Hong, D.K., Sait Albayram, M., Gregory, J., et al. (2020) Rapid, Noninvasive Diagnosis of Balamuthia Mandrillaris Encephalitis by a Plasma-Based Next-Generation Sequencing Test. Open Forum Infectious Diseases, 7, ofaa189.
https://doi.org/10.1093/ofid/ofaa189
[43] Rossoff, J., Chaudhury, S., Soneji, M., Patel, S.J., Kwon, S., Armstrong, A., et al. (2019) Noninvasive Diagnosis of Infection Using Plasma Next-Generation Sequencing: A Single-Center Experience. Open Forum Infectious Diseases, 6, ofz327.
https://doi.org/10.1093/ofid/ofz327
[44] Chang, L., Che, G., Yang, Q., Lai, S., Teng, J., Duan, J., et al. (2023) Leishmania Donovani Visceral Leishmaniasis Diagnosed by Metagenomics Next-Generation Sequencing in an Infant with Acute Lymphoblastic Leukemia: A Case Report. Frontiers in Public Health, 11, Article 1197149.
https://doi.org/10.3389/fpubh.2023.1197149
[45] Han, N., Yu, J., Wang, M., Ma, Y., Yan, L. and Tang, H. (2022) The Value of Metagenomic Next-Generation Sequencing in Leishmaniasis Diagnosis: A Case Series and Literature Review. Open Forum Infectious Diseases, 9, ofac511.
https://doi.org/10.1093/ofid/ofac511
[46] Ranganath, N., Khodadadi, R.B. and Abu Saleh, O.M. (2022) Karius with a Q: Role for Microbial Cell-Free DNA Next-Generation Sequencing in Diagnosis of Acute Q Fever. Open Forum Infectious Diseases, 10, ofac666.
https://doi.org/10.1093/ofid/ofac666
[47] Stafford, I.A., Centeno, F.H., Al Mohajer, M., Parkerson, G., Woc-Colburn, L., Burgos-Lee, A.J., et al. (2020) Successful Detection of Unrecognized rickettsia Typhi in Pregnancy Using Cell-Free Next-Generation Sequencing. Case Reports in Obstetrics and Gynecology, 2020, Article ID: 6767351.
https://doi.org/10.1155/2020/6767351
[48] Fu, R., Lin, R., Fan, Z. P., Huang, F., Xu, N., Xuan, L., et al. (2024). Metagenomic Next-Generation Sequencing for the Diagnosis of Pneumocystis jirovecii Pneumonia after Allogeneic Hematopoietic Stem Cell Transplantation. Chinese Journal of Hematology, 45, 62-67.
[49] Roy, M., Siddique, N., Bathina, B. and Ahmad, S. (2020) Rare Presentation of Toxoplasma Pneumonitis in the Absence of Neurological Symptoms in an AIDS Patient and Use of Next-Generation Sequencing for Diagnosis. European Journal of Case Reports in Internal Medicine, 7, Article ID: 001862.
[50] Nie, G., Dai, H. and Li, J. (2022) A Case of Spontaneous Mediastinal and Subcutaneous Emphysema in a Patient with HIV-Infected Pneumonia. Current HIV Research, 20, 479-484.
https://doi.org/10.2174/1570162x20666220829143802
[51] Gu, W., Deng, X., Lee, M., Sucu, Y.D., Arevalo, S., Stryke, D., et al. (2020) Rapid Pathogen Detection by Metagenomic Next-Generation Sequencing of Infected Body Fluids. Nature Medicine, 27, 115-124.
https://doi.org/10.1038/s41591-020-1105-z
[52] Shi, J., Wu, W., Wu, K., Ni, C., He, G., Zheng, S., et al. (2022) The Diagnosis of Leptospirosis Complicated by Pulmonary Tuberculosis Complemented by Metagenomic Next-Generation Sequencing: A Case Report. Frontiers in Cellular and Infection Microbiology, 12, Article 922996.
https://doi.org/10.3389/fcimb.2022.922996