[1]
|
Keimer, B., Kivelson, S.A., Norman, M.R., Uchida, S. and Zaanen, J. (2015) From Quantum Matter to High-Temperature Superconductivity in Copper Oxides. Nature, 518, 179-186. https://doi.org/10.1038/nature14165
|
[2]
|
Xu, H., Chung, C., Qin, M., Schollwöck, U., White, S.R. and Zhang, S. (2024) Coexistence of Superconductivity with Partially Filled Stripes in the Hubbard Model. Science, 384, eadh7691. https://doi.org/10.1126/science.adh7691
|
[3]
|
Zhao, S.Y.F., Cui, X., Volkov, P.A., Yoo, H., Lee, S., Gardener, J.A., et al. (2023) Time-Reversal Symmetry Breaking Superconductivity between Twisted Cuprate Superconductors. Science, 382, 1422-1427. https://doi.org/10.1126/science.abl8371
|
[4]
|
Stolz, R., Schmelz, M., Zakosarenko, V., Foley, C.P., Tanabe, K., Xie, X., et al. (2021) Superconducting Sensors and Methods in Geophysical Applications. Superconductor Science and Technology, 34, Article ID: 033001. https://doi.org/10.1088/1361-6668/abd7ce
|
[5]
|
Hahn, S., Kim, K., Kim, K., Hu, X., Painter, T., Dixon, I., et al. (2019) 45.5-Tesla Direct-Current Magnetic Field Generated with a High-Temperature Superconducting Magnet. Nature, 570, 496-499. https://doi.org/10.1038/s41586-019-1293-1
|
[6]
|
Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., et al. (1987) Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure. Physical Review Letters, 58, 908-910. https://doi.org/10.1103/physrevlett.58.908
|
[7]
|
Coombs, T.A., Wang, Q., Shah, A., Hu, J., Hao, L., Patel, I., et al. (2024) High-Temperature Superconductors and Their Large-Scale Applications. Nature Reviews Electrical Engineering, 1, 788-801. https://doi.org/10.1038/s44287-024-00112-y
|
[8]
|
Molodyk, A. and Larbalestier, D.C. (2023) The Prospects of High-Temperature Superconductors. Science, 380, 1220-1222. https://doi.org/10.1126/science.abq4137
|
[9]
|
Wang, Z., Zou, C., Lin, C., Luo, X., Yan, H., Yin, C., et al. (2023) Correlating the Charge-Transfer Gap to the Maximum Transition Temperature in Bi2Sr2Can-1CunO2n+4+δ. Science, 381, 227-231. https://doi.org/10.1126/science.add3672
|
[10]
|
Charaev, I., Bandurin, D.A., Bollinger, A.T., Phinney, I.Y., Drozdov, I., Colangelo, M., et al. (2023) Single-Photon Detection Using High-Temperature Superconductors. Nature Nanotechnology, 18, 343-349. https://doi.org/10.1038/s41565-023-01325-2
|
[11]
|
Drozdov, A.P., Kong, P.P., Minkov, V.S., Besedin, S.P., Kuzovnikov, M.A., Mozaffari, S., et al. (2019) Superconductivity at 250 K in Lanthanum Hydride under High Pressures. Nature, 569, 528-531. https://doi.org/10.1038/s41586-019-1201-8
|
[12]
|
Wu, T., Mayaffre, H., Krämer, S., Horvatić, M., Berthier, C., Hardy, W.N., et al. (2011) Magnetic-Field-Induced Charge-Stripe Order in the High-Temperature Superconductor YBa2Cu3Oy. Nature, 477, 191-194. https://doi.org/10.1038/nature10345
|
[13]
|
Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y. and Goldman, A.M. (2011) Electrostatic Control of the Evolution from a Superconducting Phase to an Insulating Phase in Ultrathin YBa2Cu3O7−x Films. Physical Review Letters, 107, Article ID: 039901. https://doi.org/10.1103/physrevlett.107.027001
|
[14]
|
Fujita, K., Noda, T., Kojima, K.M., Eisaki, H. and Uchida, S. (2005) Effect of Disorder Outside the CuO2 planes on Tc of Copper Oxide Superconductors. Physical Review Letters, 95, Article ID: 097006. https://doi.org/10.1103/physrevlett.95.097006
|
[15]
|
Pfeiffer, C., Ruffieux, S., Jonsson, L., Chukharkin, M.L., Kalaboukhov, A., Xie, M., et al. (2020) A 7-Channel High-Tc SQUID-Based On-Scalp MEG System. IEEE Transactions on Biomedical Engineering, 67, 1483-1489. https://doi.org/10.1109/tbme.2019.2938688
|
[16]
|
Wu, J., Zhi, Q., Wang, X., Deng, X., Liu, Y. and Chen, X. (2022) Fixed-Loop TEM Surveying Using the SQUID Magnetometer for Deep Mineral Exploration in a Conductive Area. Journal of Geophysics and Engineering, 19, 1300-1307. https://doi.org/10.1093/jge/gxac084
|
[17]
|
Cybart, S.A., Cho, E.Y., Wong, T.J., Wehlin, B.H., Ma, M.K., Huynh, C., et al. (2015) Nano Josephson Superconducting Tunnel Junctions in YBa2Cu3O7–δ Directly Patterned with a Focused Helium Ion Beam. Nature Nanotechnology, 10, 598-602. https://doi.org/10.1038/nnano.2015.76
|
[18]
|
Zaluzhnyy, I.A., Goteti, U., Stoychev, B.K., Basak, R., Lamb, E.S., Kisiel, E., et al. (2024) Structural Changes in YBa2Cu3O7 Thin Films Modified with He+-Focused Ion Beam for High-Temperature Superconductive Nanoelectronics. ACS Applied Nano Materials, 7, 15943-15949. https://doi.org/10.1021/acsanm.4c00247
|
[19]
|
Murphy, S.T. (2020) A Point Defect Model for YBa2Cu3O7 from Density Functional Theory. Journal of Physics Communications, 4, Article ID: 115003. https://doi.org/10.1088/2399-6528/abc9a7
|
[20]
|
Ha, D.H., Byon, S. and Lee, K.W. (2000) On the Role of Apical Oxygen in the Charge Transfer of YBCO Superconductors. Physica C: Superconductivity, 340, 243-250. https://doi.org/10.1016/s0921-4534(00)01502-1
|
[21]
|
Perez-Muñoz, A.M., Schio, P., Poloni, R., Fernandez-Martinez, A., Rivera-Calzada, A., Cezar, J.C., et al. (2016) In Operando Evidence of Deoxygenation in Ionic Liquid Gating of Yba2Cu3O7-x. Proceedings of the National Academy of Sciences of the United States of America, 114, 215-220. https://doi.org/10.1073/pnas.1613006114
|
[22]
|
Saipuddin, S.F., Hashim, A., Samat, M.H., Suhaimi, N.E. and Taib, M.F.M. (2021). DFT + U Calculation in Determining Structural and Electronic Properties of YBa2Cu3O7-δ. AIP Conference Proceedings, 2368, Article ID: 040001. https://doi.org/10.1063/5.0058262
|
[23]
|
Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J. and Sutton, A.P. (1998) Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA + U Study. Physical Review B, 57, 1505-1509. https://doi.org/10.1103/physrevb.57.1505
|
[24]
|
Lopez, G.M., Filippetti, A., Mantega, M. and Fiorentini, V. (2010) First-Principles Calculation of Electronic and Structural Properties of YBa2Cu3O6+y. Physical Review B, 82, Article ID: 195122. https://doi.org/10.1103/physrevb.82.195122
|
[25]
|
Schwingenschlögl, U. and Schuster, C. (2012) Doping and Defects in YBa2Cu3O7: Results from Hybrid Density Functional Theory. Applied Physics Letters, 100, Article ID: 253111. https://doi.org/10.1063/1.4729892
|
[26]
|
Zweck, U. (2018) Electronic and Magnetic Excitations in Underdoped YBa2Cu3O6. Master’s Thesis, Technical University of Munich (TUM).
|
[27]
|
Kresse, G. and Furthmüller, J. (1996) Efficient Iterative Schemes for ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 11169-11186. https://doi.org/10.1103/physrevb.54.11169
|
[28]
|
Blöchl, P.E. (1994) Projector Augmented-Wave Method. Physical Review B, 50, 17953-17979. https://doi.org/10.1103/physrevb.50.17953
|
[29]
|
Heyd, J., Scuseria, G.E. and Ernzerhof, M. (2003) Hybrid Functionals Based on a Screened Coulomb Potential. The Journal of Chemical Physics, 118, 8207-8215. https://doi.org/10.1063/1.1564060
|
[30]
|
Paier, J., Marsman, M., Hummer, K., Kresse, G., Gerber, I.C. and Ángyán, J.G. (2006) Screened Hybrid Density Functionals Applied to Solids. The Journal of Chemical Physics, 124, Article ID: 154709. https://doi.org/10.1063/1.2187006
|