[1]
|
Teitelbaum, S.L. (2000) Bone Resorption by Osteoclasts. Science, 289, 1504-1508. https://doi.org/10.1126/science.289.5484.1504
|
[2]
|
Friedenstein, A.J., Chailakhyan, R.K. and Gerasimov, U.V. (1987) Bone Marrow Osteogenic Stem Cells: In Vitro Cultivation and Transplantation in Diffusion Chambers. Cell Proliferation, 20, 263-272. https://doi.org/10.1111/j.1365-2184.1987.tb01309.x
|
[3]
|
Beyer, C., Zampetaki, A., Lin, N., Kleyer, A., Perricone, C., Iagnocco, A., et al. (2015) Signature of Circulating MicroRNAs in Osteoarthritis. Annals of the Rheumatic Diseases, 74, e18. https://doi.org/10.1136/annrheumdis-2013-204698
|
[4]
|
Jackson, R.J. and Standart, N. (2007) How Do MicroRNAs Regulate Gene Expression? Science’s STKE, 2007, re1. https://doi.org/10.1126/stke.3672007re1
|
[5]
|
Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell, 75, 843-854. https://doi.org/10.1016/0092-8674(93)90529-y
|
[6]
|
Farh, K.K., Grimson, A., Jan, C., Lewis, B.P., Johnston, W.K., Lim, L.P., et al. (2005) The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution. Science, 310, 1817-1821. https://doi.org/10.1126/science.1121158
|
[7]
|
Huntzinger, E. and Izaurralde, E. (2011) Gene Silencing by MicroRNAs: Contributions of Translational Repression and mRNA Decay. Nature Reviews Genetics, 12, 99-110. https://doi.org/10.1038/nrg2936
|
[8]
|
Mizuno, Y., Yagi, K., Tokuzawa, Y., Kanesaki-Yatsuka, Y., Suda, T., Katagiri, T., et al. (2008) miR-125b Inhibits Osteoblastic Differentiation by Down-Regulation of Cell Proliferation. Biochemical and Biophysical Research Communications, 368, 267-272. https://doi.org/10.1016/j.bbrc.2008.01.073
|
[9]
|
Zhou, B., Peng, K., Wang, G., Chen, W., Liu, P., Chen, F., et al. (2020) miR-483-3p Promotes the Osteogenesis of Human Osteoblasts by Targeting Dikkopf 2 (DKK2) and the Wnt Signaling Pathway. International Journal of Molecular Medicine, 46, 1571-1581. https://doi.org/10.3892/ijmm.2020.4694
|
[10]
|
Huang, Y., Xiao, D., Huang, S., Zhuang, J., Zheng, X., Chang, Y., et al. (2020) Circular RNA YAP1 Attenuates Osteoporosis through Up-Regulation of YAP1 and Activation of Wnt/β-Catenin Pathway. Biomedicine & Pharmacotherapy, 129, Article 110365. https://doi.org/10.1016/j.biopha.2020.110365
|
[11]
|
Huang, Y., Xu, Y., Feng, S., He, P., Sheng, B. and Ni, J. (2021) miR-19b Enhances Osteogenic Differentiation of Mesenchymal Stem Cells and Promotes Fracture Healing through the WWP1/Smurf2-Mediated KLF5/β-Catenin Signaling Pathway. Experimental & Molecular Medicine, 53, 973-985. https://doi.org/10.1038/s12276-021-00631-w
|
[12]
|
Feng, Y., Wan, P., Yin, L. and Lou, X. (2020) The Inhibition of MicroRNA-139-5p Promoted Osteoporosis of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Wnt/Beta-Catenin Signaling Pathway by NOTCH1. Journal of Microbiology and Biotechnology, 30, 448-458. https://doi.org/10.4014/jmb.1908.08036
|
[13]
|
Li, Z., Hu, H., Zhang, X., Liu, G., Ran, B., Zhang, P., et al. (2019) miR‐291a‐3p Regulates the BMSCs Differentiation via Targeting DKK1 in Dexamethasone‐Induced Osteoporosis. The Kaohsiung Journal of Medical Sciences, 36, 35-42. https://doi.org/10.1002/kjm2.12134
|
[14]
|
Lamplot, J.D., Qin, J., Nan, G., et al. (2013) BMP9 Signaling in Stem Cell Differentiation and Osteogenesis. American Journal of Stem Cells, 2, 1-21.
|
[15]
|
Chen, G., Deng, C. and Li, Y. (2012) TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation. International Journal of Biological Sciences, 8, 272-288. https://doi.org/10.7150/ijbs.2929
|
[16]
|
Sun, M.H., Wang, W.J., Li, Q., et al. (2018) Autologous Oxygen Release Nano Bionic Scaffold Composite miR-106a Induced BMSCs Enhances Osteoblast Conversion and Promotes Bone Repair through Regulating BMP-2. European Review for Medical and Pharmacological Sciences, 22, 7148-7155.
|
[17]
|
陈伟娜, 王亮, 陈立叶. 血清miR-125a-3p、BMP-2水平与骨质疏松性椎体压缩性骨折术后延迟愈合的关系[J]. 山东医药, 2023, 63(25): 56-59.
|
[18]
|
Zeng, H., Dong, L., Huang, Y., Xu, C., Zhao, X. and Wu, L. (2021) USF2 Reduces BMP3 Expression via Transcriptional Activation of miR-34a, Thus Promoting Osteogenic Differentiation of BMSCs. Journal of Bone and Mineral Metabolism, 39, 997-1008. https://doi.org/10.1007/s00774-021-01254-x
|
[19]
|
Qi, J., Zhang, Z., Dong, Z., Shan, T. and Yin, Z. (2024) miR-150-5p Inhibits the Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Irisin to Regulate the P38/MAPK Signaling Pathway. Journal of Orthopaedic Surgery and Research, 19, Article No. 190. https://doi.org/10.1186/s13018-024-04671-6
|
[20]
|
Guo, Y., Li, L., Gao, J., Chen, X. and Sang, Q. (2016) miR-214 Suppresses the Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells and These Effects Are Mediated through the Inhibition of the JNK and P38 Pathways. International Journal of Molecular Medicine, 39, 71-80. https://doi.org/10.3892/ijmm.2016.2826
|
[21]
|
Zhu, Y., Wang, S., Ding, D., Xu, L. and Zhu, H. (2017) miR-217 Inhibits Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells by Binding to Runx2. Molecular Medicine Reports, 15, 3271-3277. https://doi.org/10.3892/mmr.2017.6349
|
[22]
|
Hu, N., Feng, C., Jiang, Y., Miao, Q. and Liu, H. (2015) Regulative Effect of miR-205 on Osteogenic Differentiation of Bone Mesenchymal Stem Cells (BMSCs): Possible Role of SATB2/Runx2 and ERK/MAPK Pathway. International Journal of Molecular Sciences, 16, 10491-10506. https://doi.org/10.3390/ijms160510491
|
[23]
|
Xu, J., Liu, X., Chen, J., Zacharek, A., Cui, X., Savant-Bhonsale, S., et al. (2009) Simvastatin Enhances Bone Marrow Stromal Cell Differentiation into Endothelial Cells via Notch Signaling Pathway. American Journal of Physiology-Cell Physiology, 296, C535-C543. https://doi.org/10.1152/ajpcell.00310.2008
|
[24]
|
齐磊. miR-34b对骨髓间充质干细胞成骨分化的影响及相关机制[J]. 临床与病理杂志, 2016, 36(7): 898-904.
|
[25]
|
Chen, L., HolmstrØm, K., Qiu, W., Ditzel, N., Shi, K., Hokland, L., et al. (2014) MicroRNA-34a Inhibits Osteoblast Differentiation and in vivo Bone Formation of Human Stromal Stem Cells. Stem Cells, 32, 902-912. https://doi.org/10.1002/stem.1615
|
[26]
|
Zhou, Y., Qiao, H., Liu, L., et al. (2021) miR-21 Regulates Osteogenic and Adipogenic Differentiation of BMSCs by Targeting PTEN. Musculoskelet Neuronal Interact, 1, 568-576.
|
[27]
|
Zhao, C., Gu, Y., Wang, Y., Qin, Q., Wang, T., Huang, M., et al. (2021) miR-129-5p Promotes Osteogenic Differentiation of BMSCs and Bone Regeneration via Repressing Dkk3. Stem Cells International, 2021, Article ID: 7435605. https://doi.org/10.1155/2021/7435605
|
[28]
|
Lin, Z., He, H., Wang, M. and Liang, J. (2019) MicroRNA‐130a Controls Bone Marrow Mesenchymal Stem Cell Differentiation Towards the Osteoblastic and Adipogenic Fate. Cell Proliferation, 52, e12688. https://doi.org/10.1111/cpr.12688
|
[29]
|
Cao, W., Yang, X., Hu, X.H., Li, J., Tian, J., OuYang, R., et al. (2023) miR-344d-3p Regulates Osteogenic and Adipogenic Differentiation of Mouse Mandibular Bone Marrow Mesenchymal Stem Cells. PeerJ, 11, e14838. https://doi.org/10.7717/peerj.14838
|
[30]
|
Zhang, Z., Jiang, W., Hu, M., Gao, R. and Zhou, X. (2021) miR-486-3p Promotes Osteogenic Differentiation of BMSC by Targeting CTNNBIP1 and Activating the Wnt/β-Catenin Pathway. Biochemical and Biophysical Research Communications, 566, 59-66. https://doi.org/10.1016/j.bbrc.2021.05.098
|
[31]
|
Zhang, L., Zhang, C., Zheng, J., Wang, Y., Wei, X., Yang, Y., et al. (2023) miR-155-5p/Bmal1 Modulates the Senescence and Osteogenic Differentiation of Mouse BMSCs through the Hippo Signaling Pathway. Stem Cell Reviews and Reports, 20, 554-567. https://doi.org/10.1007/s12015-023-10666-3
|
[32]
|
Tang, J., Lin, X., Zhong, J., Xu, F., Wu, F., Liao, X., et al. (2019) miR-124 Regulates the Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells by Targeting Sp7. Molecular Medicine Reports, 19, 3807-3814. https://doi.org/10.3892/mmr.2019.10054
|
[33]
|
Zhang, Y., Zhou, L., Zhang, Z., Ren, F., Chen, L. and Lan, Z. (2020) miR-10a-5p Inhibits Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells. Molecular Medicine Reports, 22, 135-144. https://doi.org/10.3892/mmr.2020.11110
|
[34]
|
Jiang, K., Teng, G. and Chen, Y. (2020) MicroRNA‐23 Suppresses Osteogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells by Targeting the MEF2C‐Mediated MAPK Signaling Pathway. The Journal of Gene Medicine, 22, e3216. https://doi.org/10.1002/jgm.3216
|
[35]
|
Yang, Q., Zhou, Y., Wang, T., Cai, P., Fu, W., Wang, J., et al. (2021) MiRNA‐1271‐5p Regulates Osteogenic Differentiation of Human Bone Marrow‐Derived Mesenchymal Stem Cells by Targeting Forkhead Box O1 (FOXO1). Cell Biology International, 45, 1468-1476. https://doi.org/10.1002/cbin.11585
|